MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast

Zhibo Wen a,b,*, Shuguang Hu c, Fanheng Huang a, Xianlong Wang a, Linglang Guo d, Xianyue Quan a, Silun Wang b, Jinyuan Zhou b,e,a

a Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
b Division of MR Research, Department of Radiology, Johns Hopkins University, MD, USA
c Philips Healthcare, Guangzhou, Guangdong, China
d Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
e F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA

A R T I C L E I N F O

Article history:
Received 17 November 2009
Revised 2 February 2010
Accepted 16 February 2010
Available online 24 February 2010

Keywords:
CEST
APT
Magnetization transfer
Brain tumor
Protein
MRI

A B S T R A C T

Amide proton transfer (APT) imaging is a novel MRI technique, in which the amide protons of endogenous proteins and peptides are irradiated to accomplish indirect detection using the bulk water signal. In this paper, the APT approach was added to a standard brain MRI protocol at 3 T, and twelve patients with high-grade gliomas confirmed by histopathology were scanned. It is shown that all tumors, including one with minimal gadolinium enhancement, showed heterogeneous hyperintensity on the APT images. The average APT signal intensities of the viable tumor cores were significantly higher than those of peritumoral edema and normal-appearing white matter (P<0.001). The average APT signal intensities were significantly lower in the necrotic regions than in the viable tumor cores (P=0.004). The APT signal intensities of the cystic cavities were similar to those of viable tumor cores (P>0.2). The initial results show that APT imaging at the protein and peptide level may enhance non-invasive identification of tissue heterogeneity in high-grade brain tumors.

© 2010 Elsevier Inc. All rights reserved.

Introduction

High-grade gliomas in patients are invasive and histologically heterogeneous. These brain tumors typically consist of a solid tumor mass, often mixed with necrosis, and individual tumor cells infiltrating into edematous or even normal-appearing brain tissue (Burger et al., 1983; Kelly et al., 1987). Currently, these tumors are generally evaluated using gadolinium contrast-enhanced MRI, in combination with T2-weighted or fluid-attenuated inversion recovery (FLAIR) MRI, which are used to determine the extent of involvement, to guide treatments, and to assess a therapeutic response (Chang et al., 2009). However, existing MRI techniques are not sufficiently tissue-specific and suffer from several limitations. First, gadolinium enhancement on the post-contrast T1-weighted images reveals focal areas of tumor where the blood–brain barrier is disrupted, but it does not show large areas of infiltrating tumor (Kelly et al., 1987). Another limitation is that some high-grade gliomas demonstrate no gadolinium enhancement (Scott et al., 2002; Segall et al., 1990). In this case, it can be difficult to identify the most malignant portions of tumor prior to surgery or local therapies. Third, gadolinium enhancement is not always specific for tumor grade, as low-grade gliomas occasionally enhance (Knopp et al., 1999). Fourth, gadolinium enhancement occurs in any area of a blood–brain barrier disruption, such as treatment-related injury (Brandsma et al., 2008; Mullins et al., 2005), regardless of etiology. Finally, glioma patients require frequent MRI exams and gadolinium exposure has risk in patients with renal insufficiency (Broome, 2008). These imaging limitations have immediate clinical repercussions that may make diagnosis problematic and render local therapies ineffective. In recent years, there has been much progress in tumor assessment using more advanced MRI approaches, including MR spectroscopy (Graves et al., 2001; Vigneron et al., 2001), diffusion imaging (Field and Alexander, 2004; Lu et al., 2004; Price et al., 2003; Sinha et al., 2002), perfusion imaging (Cha, 2004; Covarrubias et al., 2004), or a combination of these techniques (Catalaa et al., 2006; Law et al., 2003; Verma et al., 2008). Despite these, additional MR approaches, especially tissue-specific ones that use endogenous contrast agents, are much needed.

Amide proton transfer (APT) imaging is a new MRI technique that detects endogenous, low-concentration mobile proteins and peptides in tissue using a change in bulk water intensity due to saturation transfer of the amide protons in the peptide bonds (Zhou et al., 2003a,b). This technique, without the need for exogenous contrast agents, is based on the recently emerged chemical exchange saturation transfer (CEST) sensitivity enhancement approach (Aime et al., 2002; Ward et al., 2000;
Zhang et al., 2001; Zhou and van Zijl, 2006). When applied to imaging of human brain tumors, the pilot clinical data suggested that APT might provide useful visual information about the presence and grade of brain tumors (Jones et al., 2006; Zhou et al., 2008), based on increased cellular protein and peptide levels in gliomas (Hobbis et al., 2003; Howe et al., 2003). The APT sequence is similar to the routinely used magnetization transfer contrast (MTC) sequences in the clinic (Wolff and Balaban, 1989), and it can be performed on any standard MRI platforms, including 7 T (Mougin et al., 2010). The purpose of this study was to demonstrate that protein and peptide-based APT imaging could potentially enhance non-invasive identification of the heterogeneity of high-grade brain tumors, which is particularly important when gadolinium-enhanced T1-weighted MRI is not available.

Materials and methods

Study population

Twelve patients (nine male, three female; age range, 21–63 years; mean age, 42.9 years; see Table 1 for more information) with high-grade gliomas were included in this study. The studied neoplasms consisted of World Health Organization glioblastoma multiforme (grade IV astrocytoma) in four, grade III anaplastic astrocytoma in five, grade III anaplastic oligodendroglioma in one, the recurrence of grade III anaplastic astrocytoma in one, and the recurrence of grade III anaplastic oligodendroglioma in one. All diagnoses were confirmed by histopathology. The study was approved by the local ethics committee, and written, informed consent was obtained from each patient.

MR imaging

All patients were scanned on a Philips 3 T MRI scanner (Achieva 3.0 T; Philips Medical Systems, Best, The Netherlands) using a body coil for radiofrequency (RF) transmission and an eight-channel sensitivity-encoding coil for reception. The sequences performed for each patient included T1-weighted (repetition time = 2 s; echo time = 20 ms), T2-weighted (repetition time = 3 s; echo time = 80 ms), FLAIR (repetition time = 11 s; inversion time = 2.2 s; echo time = 125 ms), APT imaging, and gadolinium contrast-enhanced T1-weighted. For the routine MRI sequences, the field of view was 240 × 240 mm², the matrix was 512 × 512, and the slice thickness was 6 mm. After T1-weighted, T2-weighted, FLAIR, and APT scans were performed, 10 ml of gadopentetate dimeglumine (Magnevist; Bayer Schering, Guangzhou, China) was injected through the median cubital vein, and routine MRI sequences, the imaging, and gadolinium contrast-enhanced T1-weighted. For the procedure previously reported (Zhou et al., 2008), the B0 inhomogeneity map was created. After this, the original z-spectrum scan were combined. Then, the z-spectrum was fitted on a pixel-by-pixel basis according to the procedure previously reported (Zhou et al., 2008), and the B0 inhomogeneity map was created. After this, the original z-spectrum was corrected for the B0 inhomogeneity effect through the interpolation accuracy of APT data. Using the modified APT acquisition method, there was no need for the procedure to turn off the pre-scan between the two scans, which can affect the shim and frequency offset settings. The imaging parameters used were: RF saturation power = 3 mT; saturation time = 500 ms; repetition time = 3 s; echo time = 11 ms; sensitivity-encoding factor = 2; matrix = 128 × 64; field of view = 240 × 240 mm²; and slice thickness = 6 mm. One unsaturated image (no saturation pulses added) was acquired for control. The scanning time for this APT scan was about 3 min.

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Sex</th>
<th>Lesion location</th>
<th>Clinical presentation</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>M</td>
<td>Right parietal</td>
<td>Headache</td>
<td>Astrocytoma, Grade III</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>M</td>
<td>Left parietal</td>
<td>Seizure</td>
<td>Recurrence of astrocytoma, Grade III</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>M</td>
<td>Left frontal</td>
<td>Seizure</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>F</td>
<td>Right frontal</td>
<td>Headache</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>M</td>
<td>Left frontal</td>
<td>Weakness of right limbs</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>M</td>
<td>Right temporal</td>
<td>Weakness of left limbs</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>F</td>
<td>Left basal ganglia</td>
<td>Weakness of right limbs</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>M</td>
<td>Left temporal</td>
<td>Seizure</td>
<td>Recurrence of anaplastic oligodendroglioma, Grade III</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>F</td>
<td>Left occipital</td>
<td>Weakness of right limbs</td>
<td>Astrocytoma, Grade III</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>M</td>
<td>Left temporal</td>
<td>Weakness of right limbs</td>
<td>Astrocytoma, Grade III</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>M</td>
<td>Right parietal–occipital</td>
<td>Headache</td>
<td>Anaplastic oligodendroglioma, Grade III</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>M</td>
<td>Left parietal–occipital</td>
<td>Seizure and weakness of left limbs</td>
<td>Astrocytoma, Grade III</td>
</tr>
</tbody>
</table>
from the core of the tumor, usually within a 1-cm margin), and peripheral edema (outside the immediate-edema regions) (Oh et al., 2005). The ipsilateral and contralateral normal-appearing white matter was used for comparison.

Statistical analysis

The average APT imaging intensities and corresponding 95% confidence intervals were calculated for each tissue type. The analysis of variance (ANOVA) post-hoc tests were used to determine whether the differences in APT intensities for various tissue types were significant. In addition, the average APT-MRI contrasts between tumor cores and peritumoral edema were calculated, and 95% confidence intervals were calculated for the mean contrasts. The level of significance was set at \(P < 0.05 \).

Results

Of 12 cases enrolled in this study, 11 tumors demonstrated clear gadolinium enhancement, and one had minor gadolinium enhancement; however, all tumors had markedly increased APT signals. Examples of APT imaging for patients who had pathologically-proven high-grade gliomas are shown in Figs. 2–5. Fig. 2 shows APT and standard anatomic MR images for a 21-year-old man (Patient 1) with an astrocytoma (grade III) in the right medial parietal lobe. Fig. 3 demonstrates MRI data for a 45-year-old man (Patient 2) with recurrent astrocytoma (grade III) in the left parietal lobe. Fig. 4 shows MR images for a 35-year-old man (Patient 3) with a glioblastoma multiforme in the left frontal lobe. Fig. 5 demonstrates MR images of a 46-year-old woman (Patient 4) with a pathologically confirmed glioblastoma multiforme in the right frontal lobe. Fig. 6 quantitatively compares the APT-MRI signal intensities from several regions of interest for all patients. Table 3 summarizes the statistical results of t-tests for the APT imaging intensities for various tissue types.

Tumor core versus peritumoral edema

For 11 patients who had obvious gadolinium enhancement in this study, as shown in Figs. 2–4, the gadolinium-enhancing tumor cores on the post-contrast T1-weighted images were all hyperintense on the APT images. Moreover, the area of maximal gadolinium enhancement for each case, which was associated with the most viable, actively growing aspect of the lesion (Burger et al., 1983; Kelly et al., 1987), corresponded well to the area of the highest intensity on the APT image. It seemed that the regions of increased APT extended outside the tumor core into peripheral brain zones (without gadolinium enhancement). When comparing the size of the lesions, the APT images were unique in that the APT-hyperintense areas were smaller than the abnormal areas on the T2-weighted or FLAIR images, but larger than or comparable to the lesions identified by the gadolinium-enhanced T1-weighted images. In addition, it is interesting that the gadolinium-enhancing cores of recurrent gliomas on the post-contrast T1-weighted images remained APT-hyperintense (Fig. 3).

The case with minor gadolinium enhancement on the T1-weighted image also had elevated signal intensity on the APT image (Fig. 5). In this case, the FLAIR image showed a large heterogeneous mass with a zone of low signal intensity inside the lesion. On the pre-contrast T1-weighted image, the tumor was mostly hypointense, but mixed with an area of high signal intensity, which was consistent with the existence of hemorrhage. Although only the minor gadolinium enhancement was observed (part of the tumor, tumor rim), the noticeably high signal intensity appeared in most of the tumor on the APT image. This area of FLAIR hypointensity and T1-weighted hyperintensity on the pre-contrast T1-weighted image was a tumor mass, where high-density tumor cells were found by histopathology.

Table 2

<table>
<thead>
<tr>
<th>Offset (ppm)</th>
<th>NA</th>
<th>Offset (ppm)</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>±0.25</td>
<td>1</td>
<td>±3.25</td>
<td>4</td>
</tr>
<tr>
<td>±0.5</td>
<td>1</td>
<td>±3.5</td>
<td>8</td>
</tr>
<tr>
<td>±0.75</td>
<td>1</td>
<td>±3.75</td>
<td>4</td>
</tr>
<tr>
<td>±1</td>
<td>1</td>
<td>±4</td>
<td>2</td>
</tr>
<tr>
<td>±1.5</td>
<td>1</td>
<td>±4.5</td>
<td>1</td>
</tr>
<tr>
<td>±2</td>
<td>1</td>
<td>±5</td>
<td>1</td>
</tr>
<tr>
<td>±2.5</td>
<td>1</td>
<td>±6</td>
<td>1</td>
</tr>
</tbody>
</table>

One image without RF irradiation was acquired for signal normalization. NA stands for the number of acquisitions.
As shown in Fig. 6, the average signal intensities of the tumor cores (3.8%±0.5%) on the APT images were significantly higher than those of the immediate edema (2.5%±0.6%, P<0.001) and peripheral edema (2.2%±0.5%, P<0.001). The average APT contrasts between the tumor cores and the immediate edema, and between the tumor cores and the peripheral edema were, respectively, 1.3%±0.6% and 1.6%±0.6%, with the 95% confidence intervals 0.9% to 1.6% and 1.2% to 2.0%, respectively. The average signal intensities were slightly higher in the immediate edema (2.5%±0.6%) than in the peripheral edema (2.2%±0.5%), but the difference was not statistically significant (P>0.2).

Necrosis and cystic cavity

The viable tumor cores of malignant high-grade gliomas are often accompanied by necrosis and cyst formation. We found that these pathologically distinct lesions had markedly different characteristics on the APT images: low APT signal intensities in the necrotic areas (observed in nine of 12 patients; see Figs. 2–4), and high APT signal intensities in the areas with cyst formation (observed in five of 12 patients; see Figs. 4 and 5). As shown in Fig. 2, the gadolinium-enhanced T1-weighted image showed a multi-locular, ring-enhancing tumor mass in the right medial parietal lobe, surrounded by an area with hyperintense T2-weighted signal abnormality, nearly as bright as the cerebrospinal fluid, which was consistent with edema. The core of the tumor was obviously heterogeneous on the APT image, with APT hyperintensity in the gadolinium-enhancing ring and low APT signal intensities in the central necrotic area (without gadolinium enhancement).

On the other hand, as shown in Fig. 5, there was a large area with cyst formation (with the high FLAIR signal) inside the tumor mass. This cystic area demonstrated the characteristic “fluid–fluid level” on the FLAIR image, which was filled with liquid-like, chronic hemorrhage, as confirmed during surgery. It is interesting that the cystic cavity with the lack of gadolinium enhancement on the post-contrast T1-weighted image showed hyperintensity on the APT image.

The average APT signal intensities were significantly lower in the necrotic regions (2.9%±0.6%) than in the viable tumor cores (3.8%±0.5%, P=0.004). However, there was no significantly difference between the cystic components (4.0%±0.2%) and the viable tumor cores (3.8%±0.5%, P>0.2) on the APT images.

Discussion

When using in vivo APT imaging, it is important to understand that although both APT and MTC (Wolff and Balaban, 1989) are magnetization transfer effects, they have different mechanisms and origins. Conventional MTC imaging is based on protons in immobile semi-solid macromolecules (such as structural proteins, membranes, and myelins), where saturation transfer occurs in multiple steps, both through dipolar coupling and chemical exchange. These solid-like protons have a very short T2 and, therefore, resonate over a very large spectral width (± 100 kHz) that does not allow selective RF irradiation of individual resonances. Thus, the z-spectrum appears to be almost symmetric around the water resonance. It has been demonstrated that
MTC is useful for the characterization and diagnosis of various brain diseases, such as glioma (Gong et al., 2004) and multiple sclerosis (Tozer et al., 2003). In contrast, APT imaging, with RF irradiation around 3.5 ppm from water to saturate the amide protons of mobile proteins and peptides in tissue, employs chemical exchange as a single transfer pathway to accomplish magnetization transfer. The frequency offset in APT experiments is limited to a small range around the water resonance, and two proton pools can be distinguished from each other on the NMR time scale. This leads to a clear asymmetry in the z-spectrum with respect to the water resonance, such that the APT effect can be separated from MTC and direct saturation by determining the asymmetry in MTR at ±3.5 ppm.

The viable, actively growing tumor cores in high-grade gliomas demonstrate the high signal intensities on the APT images. Although some tumors do not enhance on the gadolinium-enhanced T1-weighted images, the high signal intensities still exist for the tumors on the APT images. The APT signal intensities of these tumor cores are significantly higher than those of the immediate edema, peripheral edema, and normal-appearing white matters. The clear APT hyper-intensity is thus a typical feature of the tumor, suggesting a higher mobile protein and peptide concentration, as measured previously by MRI-guided proteomics (Hobbs et al., 2003) and in vivo MR spectroscopy (Howe et al., 2003). Recently, in an initial MRI-proteomics correlation experiment, Hobbs et al., (2003) found that protein expression profiles correlated with gadolinium enhancement in human glioblastoma multiforme. More protein species and higher protein expression levels were seen in gadolinium-enhancing than in non-enhancing regions. In addition, using in vivo proton MRS, Howe et al. (2003) showed that the MRS-detectable mobile macromolecular proton concentration was higher in human brain tumors than in normal white matter, and increased with tumor grade. Here, it is important to notice that the aliphatic signals studied by Howe et al. (2003) are related to the 8.3 ppm amide resonance through the intramolecular nuclear Overhauser effects between these proton signals.
groups, as shown in our recent water exchange experiments (Zhou et al., 2003b).

The edema, which usually encircles the tumor core, is an area of T2-weighted or FLAIR hyperintensity, nearly as bright as the cerebrospinal fluid, due to higher water content. The edematous area surrounding a malignant glioma is often infiltrated by isolated tumor cells, and it may have a higher T2-weighted (or FLAIR) signal abnormality than the tumor core. However, the boundary between the edema regions and tumor cores is generally not clear. As shown in Figs. 2–5, both the solid tumor masses and the peritumoral edema are hyperintense on the T2-weighted images or FLAIR images; thus, they are indistinguishable with conventional MR images. However, the edematous areas clearly have the low APT signals for all patients. Therefore, these two components may be simply distinguished with APT imaging. Furthermore, the APT signal intensity of immediate edema is a little higher than the peripheral-edema regions, even though the difference was not statistically significant. The tendency that the regions of increased APT extend outside the tumor core (usually signified by gadolinium enhancement) into the peripheral brain zones may represent tumor infiltration, but more evaluations are needed.

The masses of solid tumors are histologically heterogeneous. Our preliminary results in this study show that APT imaging, when added into the conventional MR imaging, may help identify the different components of high-grade gliomas. As shown in Figs. 2–4, the non-enhancing necrotic regions inside the solid tumor cores seem isointense on the APT images. The average APT signal intensity in the necrotic regions, which is similar to those of immediate edema and peripheral edema, is significantly lower than that of the enhancing viable tumor cores. Unlike the necrotic regions, the cystic areas of the tumor cores are hyperintense on the APT images, as shown in Figs. 4 and 5. The average signal intensity of the cystic cavities, similar to that of the viable tumor cores, is significantly higher than those of the necrosis, immediate edema, and peripheral edema. It is possible that there exists a large amount of mobile proteins and peptides in the liquid-like cystic cavities, thus resulting in the increase in APT detectability.

There were two cases (Patients 2, 8) of recurrent high-grade gliomas in this study. The results show that the gadolinium-enhancing cores of recurrent gliomas on the post-contrast T1-weighted images still show hyperintensity on the APT images (Fig. 3), with the APT signal intensities similar to those of the newly diagnosed tumors. The standard of care for patients with brain tumors is maximal surgery and concurrent chemotherapy and radiation therapy. Although this regimen improves survival, the associated risk for brain injury also increases. The treatment-induced injury can exactly mimic tumor recurrence, both clinically and radiographically (Brandtma et al., 2008; Mullins et al., 2005), including the signal abnormality on T2-weighted or FLAIR images, gadolinium enhancement on post-contrast T1-weighted images, and mass effect. This has complicated daily patient care and is a critical barrier to investigating the efficacy of new therapies for brain tumors. The APT signals may be used as an imaging biomarker for assessing disease progression (APT hyperintense) and treatment-related injury, such as radiation necrosis (APT isointense or even hypointense).

