
Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics

Processors

Wenbin Fang
wenbin@cse.ust.hk

HKUST

25 June, 2010

1 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

2 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

3 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars Modules running on:

An NVIDIA GPU: MarsCUDA

4 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars Modules running on:

An NVIDIA GPU: MarsCUDA
An AMD GPU: MarsBrook

5 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars Modules running on:

An NVIDIA GPU: MarsCUDA
An AMD GPU: MarsBrook
A Multi-core CPU: MarsCPU

6 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars Modules running on:

An NVIDIA GPU: MarsCUDA
An AMD GPU: MarsBrook
A Multi-core CPU: MarsCPU
Multi-core CPUs + GPUs: Co-processing

7 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?

A MapReduce Programming System, Map + Reduce.

A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars Modules running on:

An NVIDIA GPU: MarsCUDA
An AMD GPU: MarsBrook
A Multi-core CPU: MarsCPU
Multi-core CPUs + GPUs: Co-processing
Distributed System: MarsHadoop

8 / 80

Why Mars
How it works

Evaluation
Conclusion

Mars: Accelerating MapReduce on Graphics Processors

How Good?

Ease of use. Up to 7 times code saving.

High performance. An order of magnitude speedup over a
state-of-the-art CPU-based MapReduce system.

9 / 80

Why Mars
How it works

Evaluation
Conclusion

Agenda

1 Why Mars
GPGPU
MapReduce

2 How it works
Design
Implementation

3 Evaluation
Ease of use
High Performance

4 Conclusion

10 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Agenda

1 Why Mars
GPGPU
MapReduce

2 How it works
Design
Implementation

3 Evaluation
Ease of use
High Performance

4 Conclusion

11 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

GPU Hardware Trend (1)

Figure: Floating-Point Operations per Second on NVIDIA GPUs and Intel CPUs.

Source: NVIDA CUDA Programming Guide [4].

12 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

GPU Chip

Figure: GPUs devote more transisters to data processing.

Source: NVIDA CUDA Programming Guide [4].

13 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

GPU Hardware Trend (2)

Figure: Bandwidth of NVIDIA GPU memory and CPU memory.

Source: NVIDA CUDA Programming Guide [4].

14 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

GPU

SIMD
Multiprocessor

SIMD
Multiprocessor

...

Local Mem Local Mem

Device Memory

CPU

Main Memory

15 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

GPU

SIMD
Multiprocessor

SIMD
Multiprocessor

...

Local Mem Local Mem

Device Memory

CPU

Main Memory

Programability

NVIDIA CUDA

AMD Brook+

OpenCL

More...

16 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Non-Graphics Workloads on GPUs

Owens et al. [5] A Survey of General-Purpose Computation on
Graphics Hardware

Linear algebra

Finance

Database query

Machine Learning

More...

Data Parallel programs on SIMD multiprocessors.

17 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Map Function and Reduce Function

Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters. OSDI’04. [2]

Map(void *doc) {
1: for each word w in doc
2: EmitIntermediate(w, 1); // count each word once
}
Reduce(void *word, Iterator values) {
1: int result = 0;
2: for each v in values
3: result += v;
4: Emit(word, result); // output word and its count
}

18 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

MapReduce Workflow

Source - http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0007.html

19 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment

Google MapReduce
Apache Hadoop (Yahoo, Facebook, ...)
MySpace Qizmt

20 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment

Google MapReduce
Apache Hadoop (Yahoo, Facebook, ...)
MySpace Qizmt

Multicore CPU

Phoenix from Stanford, HPCA’07 [6]/IISWC’09 [7].

21 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment

Google MapReduce
Apache Hadoop (Yahoo, Facebook, ...)
MySpace Qizmt

Multicore CPU

Phoenix from Stanford, HPCA’07 [6]/IISWC’09 [7].

Cell BE

FPGA

22 / 80

Why Mars
How it works

Evaluation
Conclusion

GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment

Google MapReduce
Apache Hadoop (Yahoo, Facebook, ...)
MySpace Qizmt

Multicore CPU

Phoenix from Stanford, HPCA’07 [6]/IISWC’09 [7].

Cell BE

FPGA

GPUs

From UC-Berkeley, STMCS’08 [1]
Merge, from Intel, ASPLOS’08 [3]

23 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Agenda

1 Why Mars
GPGPU
MapReduce

2 How it works
Design
Implementation

3 Evaluation
Ease of use
High Performance

4 Conclusion

24 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Goals and Challenges

Design Goals

Programmability. Ease of use.

Flexibility. Support various multi/many core processors.

High Performance.

25 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Goals and Challenges

Design Goals

Programmability. Ease of use.

Flexibility. Support various multi/many core processors.

High Performance.

Challenges

Result output.

Write conflicts among GPU threads.

Unknown output buffer size.

26 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Goals and Challenges

Design Goals

Programmability. Ease of use.

Flexibility. Support various multi/many core processors.

High Performance.

Challenges

Result output.

Write conflicts among GPU threads.

Unknown output buffer size.

Solution

Lock-free scheme

27 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Workflow

Workflow of Mars

Preprocess
Map
Split

PrefixSum

Reduce
Split

PrefixSumGroup

Notation: GPU Processing Mars Scheduler

Map Stage

Reduce StageGroup Stage

Reduce
Count

Reduce
Count

...

MapCount

MapCount

...

Map

Map

...

Reduce

Reduce

...

28 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Workflow

Workflow of Mars

Preprocess
Map
Split

PrefixSum

Reduce
Split

PrefixSumGroup

Notation: GPU Processing Mars Scheduler

Map Stage

Reduce StageGroup Stage

Reduce
Count

Reduce
Count

...

MapCount

MapCount

...

Map

Map

...

Reduce

Reduce

...

Customizing
Workflow

Map Only.

Map→Group.

Map→Group

→Reduce.

(
(

(
(

(
(

((

Group→ Reduce.

�
�

�Group.

(
(

(
(

(
((

Map→ Reduce.

29 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Data Structure

Records

Input Records →
Map Stage → Intermediate Records I → Group Stage →
Intermediate Records II → Reduce Stage
→ Output Records

30 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Data Structure

Records

Input Records →
Map Stage → Intermediate Records I → Group Stage →
Intermediate Records II → Reduce Stage
→ Output Records

Structure of Arrays

Key array

Value array

Directory index array – Variable-sized record

<Key size, Key offset, Value size, Value offset>

31 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Data Structure

Records

Input Records →
Map Stage → Intermediate Records I → Group Stage →
Intermediate Records II → Reduce Stage
→ Output Records

Structure of Arrays

Key array

Value array

Directory index array – Variable-sized record

<Key size, Key offset, Value size, Value offset>

Chained MapReduce:
Map1→Group1→Map2→Map3→Map4→Group4

32 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output

Lock Free

MapCount

Call User defined MapCount function
Each function emits intermediate key size and value size

33 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output

Lock Free

MapCount

Call User defined MapCount function
Each function emits intermediate key size and value size

Prefix sum on intermediate key sizes and value sizes

The size of intermediate buffer, allocate at one time
The deterministic write position for each Map, lock-free

34 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output

Lock Free

MapCount

Call User defined MapCount function
Each function emits intermediate key size and value size

Prefix sum on intermediate key sizes and value sizes

The size of intermediate buffer, allocate at one time
The deterministic write position for each Map, lock-free

Allocate intermediate buffer

35 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output

Lock Free

MapCount

Call User defined MapCount function
Each function emits intermediate key size and value size

Prefix sum on intermediate key sizes and value sizes

The size of intermediate buffer, allocate at one time
The deterministic write position for each Map, lock-free

Allocate intermediate buffer

Map

Call User defined Map function
Output records according to the write position

36 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

37 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

MapCount

MapCount1 → 9

MapCount2 → 4

MapCount3 → 6

38 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

MapCount

MapCount1 → 9

MapCount2 → 4

MapCount3 → 6

Prefix Sum, Allocate buffer, and Map

9, 4, 6 – size array

39 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

MapCount

MapCount1 → 9

MapCount2 → 4

MapCount3 → 6

Prefix Sum, Allocate buffer, and Map

9, 4, 6 – size array

0, 9, 13 – write position array

19 – output buffer size

40 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

MapCount

MapCount1 → 9

MapCount2 → 4

MapCount3 → 6

Prefix Sum, Allocate buffer, and Map

9, 4, 6 – size array

0, 9, 13 – write position array

19 – output buffer size

Allocate a buffer of size 19

41 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

Lock-Free Output, Example

Map1 → ”123456789”, Map2 → ”abcd”, Map3 → ”ABCDED”

MapCount

MapCount1 → 9

MapCount2 → 4

MapCount3 → 6

Prefix Sum, Allocate buffer, and Map

9, 4, 6 – size array

0, 9, 13 – write position array

19 – output buffer size

Allocate a buffer of size 19

”123456789abcdABCDED”

42 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA

Building blocks

NVIDA CUDA

Prefix Sum: CUDPP Library, GPU-based Prefix Sum

Group: GPU-based Bitonic Sort

43 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. → Reduce # of device memory accesses.

44 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. → Reduce # of device memory accesses.

Local memory

Programmable on-chip memory (shared memory in NVIDIA’s
term).

Exploit local memory in GPU-based Bitonic Sort for Group
Stage.

Users can explicitly utilize local memory in their Map/Reduce
functions.

45 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Memory Optimization (2)

Built-in Vector type

Address Alignment

float4 and int4

One load instruction to read data of built-in type, of size up
to 16 bytes → Reduce # of memory load instructions,
compared with reading scalar type

46 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Memory Optimization (2)

Built-in Vector type

Address Alignment

float4 and int4

One load instruction to read data of built-in type, of size up
to 16 bytes → Reduce # of memory load instructions,
compared with reading scalar type

Page-lock host memory

Prevent OS from paging the locked memory buffer → High PCI-E
bandwidth

47 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Task distribution

Map/Reduce

⌈N/B⌉ thread blocks

N : the number of Map or Reduce tasks

B: the number of GPU threads per thread block, which is
practically set to 256

1 task per GPU thread

48 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCUDA – Task distribution

Map/Reduce

⌈N/B⌉ thread blocks

N : the number of Map or Reduce tasks

B: the number of GPU threads per thread block, which is
practically set to 256

1 task per GPU thread

Special case for Reduce

Communicative and Associative. For example, Integer
Addition.

Parallel reduction for load balanced reduce task distribution.

49 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCPU

Building blocks

pthreads

Group: Parallel Merge Sort

50 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsCPU

Building blocks

pthreads

Group: Parallel Merge Sort

General Mars Design

Lock Free

⌈N/T ⌉ tasks per CPU thread.

N : the number of Map or Reduce tasks
T : the number of CPU threads
N is usually much larger than T

51 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

GPU/CPU Co-processing

The workflow of GPU/CPU co-processing

Preprocess
Map
Split

Map Worker

Map Worker

Group

Group

Merge

Reduce Worker

Reduce Worker

Reduce
Split

Merge

Map Stage Reduce StageGroup Stage

GPU Worker CPU WorkerNotation: co-processing scheduler

I : Total size of input data
S : Speedup of GPU Worker over CPU Worker
Workload for GPU Worker: SI

1+S

Workload for CPU Worker: I
1+S

52 / 80

Why Mars
How it works

Evaluation
Conclusion

Design
Implementation

MarsHadoop

Input Files

Map
Worker

Partitioner

Map
Worker

Reduce
Worker

Output Files

Reduce
Worker

Sorter

Hadoop Runtime (Distributed File System + Job Scheduler)

Input Files

Partitioner

Reduce
Worker

Output Files

Reduce
Worker

Sorter

Node 1 Node N

Notation: GPU Worker CPU Worker

Shuffle

...

Map
Worker

Map
Worker

Figure: MarsHadoop. Using Hadoop Streaming.
53 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Agenda

1 Why Mars
GPGPU
MapReduce

2 How it works
Design
Implementation

3 Evaluation
Ease of use
High Performance

4 Conclusion

54 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Experimental Setup

Machine PC A PC B PC C

GPU NVIDIA GTX280 NVIDIA 8800GTX ATI Radeon HD 3870

GPU core 240 128 320

GPU Core Clock 602 MHz 575 MHz 775 MHz

GPU Memory Clock 1107 MHz 900 MHz 2250 MHz

GPU Memory Band-

width

141.7 GB/s 86.4 GB/s 72.0 GB/s

GPU Memory size 1024 MB 768 MB 512 MB

CPU Intel Core2 Quad Q6600 Intel Core2 Quad Q6600 Intel Pentium 4 540

CPU Clock 2400 MHz 2400 MHz 3200 MHz

CPU core 4 4 2

CPU Memory size 2048 MB 2048 MB 1024 MB

OS 32-bit CentOS Linux 32-bit CentOS Linux 32-bit Windows XP

55 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Applications

Applications Small Medium Large

String Match (SM) size: 55MB size: 105MB size: 160MB

Matrix Multiplication (MM) 256x256 512x512 1024x1024

Black-Scholes (BS) # option: 1,000,000 # option: 3,000,000 # option: 5,000,000

Similarity Score (SS) # feature: 128, # docu-

ments: 512

feature: 128, # docu-

ments: 1024

feature: 128, # docu-

ments: 2048

PCA 1000x256 2000x256 4000x256

Monte Carlo (MC) # option: 500, # samples

per option: 500

option: 500, # samples

per option: 2500

option: 500, # samples

per option: 5000

GPU Implementation: MarsCUDA, CUDA
CPU Implementation: MarsCPU, Phoenix, pthreads
GPUCPU Coprocessing: MarsCUDA + MarsCPU

56 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Code size saving

In lines:

Applications Phoenix MarsCUDA/MarsCPU CUDA

String Match 206 147 157

Matrix Multiplication 178 72 68

Black-Scholes 199 147 721

Similarity Score 125 82 615

Principal component analysis 297 168 583

Monte Carlo 251 203 359

57 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCPU vs Phoenix

Speedup = TPhoenix/TMarsCPU

 0

 2

 4

 6

 8

 10

 12

 14

SM MM BS SS PCA MC

S
pe

ed
up

Applications

17.6 25.9

Small
Medium

Large

Overhead of Phoenix

58 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCPU vs Phoenix

Speedup = TPhoenix/TMarsCPU

 0

 2

 4

 6

 8

 10

 12

 14

SM MM BS SS PCA MC

S
pe

ed
up

Applications

17.6 25.9

Small
Medium

Large

Overhead of Phoenix

Always need
Reduce stage.

59 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCPU vs Phoenix

Speedup = TPhoenix/TMarsCPU

 0

 2

 4

 6

 8

 10

 12

 14

SM MM BS SS PCA MC

S
pe

ed
up

Applications

17.6 25.9

Small
Medium

Large

Overhead of Phoenix

Always need
Reduce stage.

Lock overhead.

60 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCPU vs Phoenix

Speedup = TPhoenix/TMarsCPU

 0

 2

 4

 6

 8

 10

 12

 14

SM MM BS SS PCA MC

S
pe

ed
up

Applications

17.6 25.9

Small
Medium

Large

Overhead of Phoenix

Always need
Reduce stage.

Lock overhead.

Re-allocate buffer
on the fly.

61 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCPU vs Phoenix

Speedup = TPhoenix/TMarsCPU

 0

 2

 4

 6

 8

 10

 12

 14

SM MM BS SS PCA MC

S
pe

ed
up

Applications

17.6 25.9

Small
Medium

Large

Overhead of Phoenix

Always need
Reduce stage.

Lock overhead.

Re-allocate buffer
on the fly.

Insertion sort on
static arrays. Call
memmove()
frequently.

62 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCUDA vs MarsCPU on Kernel

Speedup = TMarsCPU∗/TMarsCUDA∗

 5

 10

 15

 20

 25

 30

 35

 40

 45

SM MM BS SS PCA MC

S
pe

ed
up

Applications

Preprocess +
Map + Group +
Reduce

63 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsCUDA vs MarsCPU

Speedup = TMarsCPU/TMarsCUDA

 1

 2

 3

 4

 5

 6

 7

SM MM BS SS PCA MC

S
pe

ed
up

Applications

10.2

Small
Medium

Large

Preprocess + Map
+ Group +
Reduce

64 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Time Breakdown

MarsCUDA

 0

 20

 40

 60

 80

 100

SM MM BS SS PCA MC

%
 o

f t
ot

al

Applications

Preprocess
Map
Group
Reduce

MarsCPU

 0

 20

 40

 60

 80

 100

SM MM BS SS PCA MC

%
 o

f t
ot

al

Applications

Preprocess
Map
Group
Reduce

65 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Amdahl’s Law

Amdahl’s Law

Speedup = 1
(1−P)+P/S

P : The proportion that is
parallelized

(1 − P): The proportion
that is not parallelized

S: Speedup by parallelism

66 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Amdahl’s Law

Amdahl’s Law

Speedup = 1
(1−P)+P/S

P : The proportion that is
parallelized

(1 − P): The proportion
that is not parallelized

S: Speedup by parallelism

For MarsCUDA

P: Map + Reduce

(1 - P): Preprocess

Example: String Match

Parallelized: Map stage
P = 25%
S = 20
Speedup
= 1

(1−25%)+25%/20 = 1.3

67 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Preprocess is a bottleneck?

Real world applications in Chained MapReduce:
Preprocess→Map1→Group1→Reduce1→Map2→Map3→
Map4→Group4

Prepare key/value pairs

Transfer input key/value pairs from main memory to device
memory

68 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

GPU/CPU Co-processing

Speedup = TStandalone/TCoprocessing

 1

 5

 10

 15

 20

SM M
C

M
M

BS SS PCA

S
pe

ed
up

Applications

27.1772.91

vs MarsCUDA
vs MarsCPU

vs Phoenix

Co-processing over
MarsCUDA:

Speedup = S+1
S

S: Speedup of
MarsCUDA over
MarsCPU

69 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

MarsHadoop

Speedup = THadoop/TMarsHadoop

 1

 1.5

 2

 2.5

 3

512x512

1024x1024

2048x2048

S
pe

ed
up

Workloads for Matrix Multiplication

Time Breakdown

 0

 20

 40

 60

 80

 100

512x512

1024x1024

2048x2048
%

 o
f t

ot
al

Workloads for Matrix Multiplication

Disk I/O
PCI-E I/O
GPU Computation

Two slave nodes: PC A and PC B
One master node: PC A

70 / 80

Why Mars
How it works

Evaluation
Conclusion

Ease of use
High Performance

Reference

Marc de Kruijf and Karthikeyan Sankaralingam.

Mapreduce for the cell b.e. architecture.
Technical report, University of WisconsinMadison, 2007.

Jeffrey Dean and Sanjay Ghemawat.

Mapreduce: Simplified data processing on large clusters.
OSDI, 2004.

Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng.

Merge: a programming model for heterogeneous multi-core systems.
ASPLOS, 2008.

NVIDIA corp.

NVIDIA CUDA Programming Guide 2.0, 2008.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn, and

Timothy J. Purcell.
A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 2007.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.

Evaluating mapreduce for multi-core and multiprocessor systems.
HPCA, 2007.

Richard Yoo, Anthony Romano, and Christos Kozyrakis.

Phoenix rebirth: Scalable mapreduce on a numa system.
In IISWC, 2009.

71 / 80

Why Mars
How it works

Evaluation
Conclusion

Conclusion

Mars

MarsCUDA for NVIDIA GPU
MarsBrook for AMD GPU
MarsCPU for multicore CPU
GPU/CPU Co-processing
MarsHadoop for clusters

Ease of programming

High performance

72 / 80

Why Mars
How it works

Evaluation
Conclusion

Thanks! Q&A?
http://www.cse.ust.hk/gpuqp/Mars.html

73 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

74 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

Why such design?

75 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

Why such design?

CPU: Use Cache to inmprove memory performance.

76 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

Why such design?

CPU: Use Cache to inmprove memory performance.

GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

77 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

Why such design?

CPU: Use Cache to inmprove memory performance.

GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

GPU: the only way – wider memory bus + faster clock rate

78 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth ∝ (Clock Rate × Memory Bus width)

Why such design?

CPU: Use Cache to inmprove memory performance.

GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

GPU: the only way – wider memory bus + faster clock rate

Price(NVIDIA GTX 285 GPU with 1 GB memory) ≈ Price (
Intel Core i7 CPU with 6 GB memory).

79 / 80

Why Mars
How it works

Evaluation
Conclusion

Backup 2: Performance Slowdown Over Native
Implementations

MarsCUDA vs CUDA. Slowdown
= TMarsCUDA/TCUDA

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

SM MM BS SS PCA MC

S
lo

w
do

w
n

Applications

4.3 6.4

MarsCPU vs pthreads. Slowdown
= TMarsCPU/Tpthreads

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

SM MM BS SS PCA MC

S
lo

w
do

w
n

Applications

3.6

80 / 80

	Why Mars
	GPGPU
	MapReduce

	How it works
	Design
	Implementation

	Evaluation
	Ease of use
	High Performance

	Conclusion

