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What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).

@ Mars Modules running on:
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Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics

Processors (GPUs).
@ Mars Modules running on:

]

o
o
]
]

An NVIDIA GPU: MarsCUDA

An AMD GPU: MarsBrook

A Multi-core CPU: MarsCPU

Multi-core CPUs + GPUs: Co-processing
Distributed System: MarsHadoop
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Mars: Accelerating MapReduce on Graphics Processors

How Good?
@ Ease of use. Up to 7 times code saving.

@ High performance. An order of magnitude speedup over a
state-of-the-art CPU-based MapReduce system.
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o GPGPU
@ MapReduce

© How it works
@ Design
@ Implementation

© Evaluation
o Ease of use
@ High Performance

@ Conclusion
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Why Mars

GPU Hardware Trend (1)
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Figure: Floating-Point Operations per Second on NVIDIA GPUs and Intel CPUs.

Source: NVIDA CUDA Programming Guide [4].



CPU GPU

Figure: GPUs devote more transisters to data processing.

Source: NVIDA CUDA Programming Guide [4].
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Why Mars
GPGPU

MapReduce

GPU Hardware Trend (2)
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Figure: Bandwidth of NVIDIA GPU memory and CPU memory.

Source: NVIDA CUDA Programming Guide [4].
14 /80



Why Mars
GPGPU

MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

SIMD

Local Mem |

CPU

—>‘ Main Memory
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Why Mars
GPGPU

MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

Programability

SIMD SIMD cPU [~ NVIDIA CUDA
Loca e | [ tece e ] @ AMD Brook—+
GPU
J @ OpenCL

Device Memory ‘e—)‘ Main Memory

@ More...
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Why Mars
GPGPU

MapReduce

Non-Graphics Workloads on GPUs

Owens et al. [5] A Survey of General-Purpose Computation on
Graphics Hardware

Linear algebra
Finance

Database query

o
°
@ Machine Learning
o More...

°

Data Parallel programs on SIMD multiprocessors.
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Why Mars
GPGPU
MapReduce

Map Function and Reduce Function

Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters. OSDI'04. [2]

Map (void *doc) {

1: for each word w in doc

2:  Emitintermediate(w, 1); // count each word once

}

Reduce(void *word, Iterator values) {

1: int result = 0;

2: for each v in values

3: result +=v;

4: Emit(word, result); // output word and its count

}
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Why Mars
GPGPU
MapReduce

MapReduce Workflow

Intermediate‘ kl:vkl:vk2:v ‘ ‘ kl:v ‘ k3:v kv ‘ ka:v k5:v ‘ ka:v ‘ kl:wv k3w ‘

Grouped ‘kl:v,v,v,v k2:v ‘k3:v,v kd:v,v,v kS:V‘

D 0 ¢

o [ | [ [ ]

Source - http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0007.html
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Why Mars
GPGPU
MapReduce

Implementations of MapReduce

@ Distributed Environment

@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt
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Implementations of MapReduce

@ Distributed Environment
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Why Mars
GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment
@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt
Multicore CPU
@ Phoenix from Stanford, HPCA'07 [6]/1ISWC’09 [7].

Cell BE
FPGA

GPUs

@ From UC-Berkeley, STMCS'08 [1]
@ Merge, from Intel, ASPLOS'08 [3]
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How it works

© How it works
@ Design
@ Implementation
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How it works Design
Implementation

Goals and Challenges

Design Goals

@ Programmability. Ease of use.

@ Flexibility. Support various multi/many core processors.

@ High Performance.
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How it works Design
Implementation

Goals and Challenges

Design Goals

@ Programmability. Ease of use.

@ Flexibility. Support various multi/many core processors.

@ High Performance.

Challenges

Result output.
@ Write conflicts among GPU threads.

@ Unknown output buffer size.
Lock-free scheme
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How it works Design
Implementation

Workflow
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How it works Design
Implementation

Workflow

rkflow of Mars

Workflow
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How it works Design
Implementation

Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records Il — Reduce Stage

— Output Records
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Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records || — Reduce Stage

— Output Records

Structure of Arrays
o Key array

@ Value array
@ Directory index array — Variable-sized record
o <Key size, Key offset, Value size, Value offset>
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How it works Design
Implementation

Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records || — Reduce Stage

— Output Records

Structure of Arrays
o Key array
@ Value array

@ Directory index array — Variable-sized record
o <Key size, Key offset, Value size, Value offset>

@ Chained MapReduce:
Mapl—Groupl—Map2—Map3— —>
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How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size
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How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size

@ Prefix sum on intermediate key sizes and value sizes

@ The size of intermediate buffer, allocate at one time

o The deterministic write position for each Map, lock-free
@ Allocate intermediate buffer
@ Map

@ Call User defined Map function
@ Output records according to the write position
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How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"
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How it works Design
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Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array
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Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

@ 0,9, 13 — write position array
@ 19 — output buffer size

@ Allocate a buffer of size 19
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How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

@ 0,9, 13 — write position array
@ 19 — output buffer size

@ Allocate a buffer of size 19

@ "123456789abcdABCDED”
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How it works Design
Implementation

MarsCUDA

Building blocks

o NVIDA CUDA
@ Prefix Sum: CUDPP Library, GPU-based Prefix Sum
@ Group: GPU-based Bitonic Sort
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How it works Design
Implementation

MarsCUDA — Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. — Reduce # of device memory accesses.
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How it works Design
Implementation

MarsCUDA — Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. — Reduce # of device memory accesses.

Local memory

@ Programmable on-chip memory (shared memory in NVIDIA's
term).

@ Exploit local memory in GPU-based Bitonic Sort for Group
Stage.

@ Users can explicitly utilize local memory in their Map/Reduce
functions.
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How it works Design
Implementation

MarsCUDA — Memory Optimization (2)

Built-in Vector type

@ Address Alignment
o float4 and int4

@ One load instruction to read data of built-in type, of size up
to 16 bytes — Reduce # of memory load instructions,
compared with reading scalar type
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How it works Design
Implementation

MarsCUDA — Memory Optimization (2)

Built-in Vector type

@ Address Alignment
o float4 and int4

@ One load instruction to read data of built-in type, of size up
to 16 bytes — Reduce # of memory load instructions,
compared with reading scalar type

Page-lock host memory

Prevent OS from paging the locked memory buffer — High PCI-E
bandwidth
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How it works Design
Implementation

MarsCUDA — Task distribution

Map/Reduce

[N/B] thread blocks
@ N: the number of Map or Reduce tasks

@ B: the number of GPU threads per thread block, which is
practically set to 256

@ 1 task per GPU thread
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How it works Design
Implementation

MarsCUDA — Task distribution

Map/Reduce

[N/B] thread blocks
@ N: the number of Map or Reduce tasks

@ B: the number of GPU threads per thread block, which is
practically set to 256

@ 1 task per GPU thread

Special case for Reduce

@ Communicative and Associative. For example, Integer
Addition.

@ Parallel reduction for load balanced reduce task distribution.
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How it works Design
Implementation

MarsCPU

Building blocks

@ pthreads
@ Group: Parallel Merge Sort
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How it works Design

Implementation

MarsCPU

Building blocks

@ pthreads
@ Group: Parallel Merge Sort

General Mars Design

@ Lock Free
@ [N/T] tasks per CPU thread.

o N: the number of Map or Reduce tasks
o T the number of CPU threads
e N is usually much larger than T
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How it works Design
Implementation

GPU/CPU Co-processing

The workflow of GPU/CPU co-processing
Notation: | GPU Worker | l CPU Worker I

Map Worker |>—>| Group | Reduce Worker

Map Worker Reduce Worker

Preprocess

Map Stage . Group Stage | 1 Reduce Stage

@ [ : Total size of input data
@ S : Speedup of GPU Worker over CPU Worker

@ Workload for GPU Worker: ﬁ—IS

@ Workload for CPU Worker: 1i

n
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MarsHadoop

Figure: MarsHadoop. Using Hadoop Streaming.

How it works

Notation: ( GPU Worker

Design
Implementation

Hadoop Runtime (Distributed File System + Job Scheduler)

Input Files
Map
Worker

Reduce Reduce
Worker Worker
Output Files

Shuffle

Node 1

Input Files
Map
Worker

i

Reduce Reduce
Worker Worker
Output Files

Node N
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Evaluation

© Evaluation
o Ease of use
@ High Performance
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Evaluation

Experimental Setup

ance

Machine PCA PCB PCC

GPU NVIDIA GTX280 NVIDIA 8800GTX ATI Radeon HD 3870
# GPU core 240 128 320

GPU Core Clock 602 MHz 575 MHz 775 MHz

GPU Memory Clock 1107 MHz 900 MHz 2250 MHz

GPU Memory Band- 141.7 GB/s 86.4 GB/s 72.0 GB/s

width

GPU Memory size 1024 MB 768 MB 512 MB

CPU

CPU Clock

# CPU core

CPU Memory size
0os

Intel Core2 Quad Q6600
2400 MHz

4

2048 MB

32-bit CentOS Linux

Intel Core2 Quad Q6600
2400 MHz

4

2048 MB

32-bit CentOS Linux

Intel Pentium 4 540
3200 MHz

2

1024 MB

32-bit Windows XP
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Applications

Evaluation

rmance

Applications Small Medium Large
String Match (SM) size: 55MB size: 106MB size: 160MB
Matrix Multiplication (MM) 256x256 512x512 1024x1024

Black-Scholes (BS)
Similarity Score (SS)

PCA
Monte Carlo (MC)

# option: 1,000,000

# feature: 128, # docu-
ments: 512

1000x256

# option: 500, # samples

per option: 500

# option: 3,000,000

# feature: 128, # docu-
ments: 1024

2000x256

# option: 500, # samples

per option: 2500

# option: 5,000,000

# feature: 128, # docu-
ments: 2048

4000x256

# option: 500, # samples

per option: 5000

GPU Implementation: MarsCUDA, CUDA
CPU Implementation: MarsCPU, Phoenix, pthreads
GPUCPU Coprocessing: MarsCUDA + MarsCPU
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Ease of use
Evaluation High

Code size saving

In lines:

Applications Phoenix MarsCUDA /MarsCPU CUDA
String Match 206 147 157
Matrix Multiplication 178 72 68
Black-Scholes 199 147 721
Similarity Score 125 82 615
Principal component analysis 297 168 583
Monte Carlo 251 203 359
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Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

0 -

Applications
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Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

o Always need
Reduce stage.

@ Lock overhead.

@ Re-allocate buffer
on the fly.

@ Insertion sort on
static arrays. Call

.- memmove! ’

frequently.

0 - =

Applications
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Evaluation

Ease of use
High Performance

MarsCUDA vs MarsCPU on Kernel

Speedup = Thrarscpus/T)

Speedup

45

40

35

30

25

20

15

10

[ [

SM

MM

BS SS PCA
Applications

MC

o Preproeess +
Map + Group +

Reduce
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High Performance

Evaluation

MarsCUDA vs MarsCPU

+ Group +

@ Preprocess + Map
Reduce

dnpaads

2
G| SO

Applications
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Ease of use
Evaluation High Performance

Amdahl’s Law

Amdahl’'s Law

_ 1
Speedup = m
@ P: The proportion that is
parallelized

@ (1 — P): The proportion
that is not parallelized

@ S: Speedup by parallelism
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Ease of use
Evaluation High Performance

Amdahl’s Law

For MarsCUDA

Amdahl’s Law @ P: Map + Reduce

_ 1
Speedup = m
@ P: The proportion that is
parallelized

@ (1 - P): Preprocess
@ Example: String Match
Parallelized: Map stage

©

@ (1 — P): The proportion o P=25%
that is not parallelized e 5S=20
@ Speedup

@ S: Speedup by parallelism

_ 1 _
— (1—25%)+25%/20 L3
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Ease of use
Evaluation High Performance

Preprocess is a bottleneck?

Real world applications in Chained MapReduce:
Preprocess—Mapl—Groupl—Reducel —Map2—Map3—
Map4— Group4

@ Prepare key/value pairs

@ Transfer input key/value pairs from main memory to device
memory
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Ease of use
Evaluation High Performance

GPU/CPU Co-processing

Speedu p= TStasndalone/ Coprocessing

7291 27.17

Co-processing over

2 :1 vs MarsCUDA
— styghso%ilti MarSCUDA:

15
o @ Speedup = S+1
g @ S: Speedup of

. MarsCUDA over

MarsCPU
S [Sp— NI WS RSN BT SN SR
Y o % Y
Applications
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MarsHadoop

Time Breakdown
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Workloads for Matrix Multiplication

‘Workloads for Matrix Multiplication

: PCAand PCB

Two slave nodes

PCA

One master node
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E f use
Evaluation High Performance
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Conclusion

Conclusion

@ Mars

MarsCUDA for NVIDIA GPU
MarsBrook for AMD GPU
MarsCPU for multicore CPU
GPU/CPU Co-processing
MarsHadoop for clusters

¢ © ¢ ¢ ¢

@ Ease of programming

@ High performance
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Conclusion

Thanks! Q&A?
http://www.cse.ust.hk/gpuqgp/Mars.html
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Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)
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Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

@ CPU: Use Cache to inmprove memory performance.

@ GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

@ GPU: the only way — wider memory bus + faster clock rate

@ Price( NVIDIA GTX 285 GPU with 1 GB memory ) ~ Price (
Intel Core i7 CPU with 6 GB memory ).
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Conclusion

Backup 2: Performance Slowdown Over Native
Implementations

MarsCUDA vs CUDA. Slowdown MarsCPU vs pthreads. Slowdown

= Tymarscupa/Tcupa = Diyieevatoy st
1.35 - 112 1
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11
c 1.25 |
s S 108
: s
e 1.2 °
E g 1.06
? 115 o
11 b | 1.04
1.05 | H B 102 |- ﬂ
1 1
SM MM BS SSs PCA MC SM MM BS Ss PCA MC
Applications Applications
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