Mars: Accelerating MapReduce on Graphics
Processors

Wenbin Fang

wenbin@cse.ust.hk

HKUST

25 June, 2010

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).

@ Mars Modules running on:
@ An NVIDIA GPU: MarsCUDA

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).
@ Mars Modules running on:

o An NVIDIA GPU: MarsCUDA
o An AMD GPU: MarsBrook

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).
@ Mars Modules running on:
@ An NVIDIA GPU: MarsCUDA

o An AMD GPU: MarsBrook
@ A Multi-core CPU: MarsCPU

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics
Processors (GPUs).

@ Mars Modules running on:

An NVIDIA GPU: MarsCUDA

An AMD GPU: MarsBrook

A Multi-core CPU: MarsCPU

Multi-core CPUs + GPUs: Co-processing

¢ ¢ ¢ @

80

Mars: Accelerating MapReduce on Graphics Processors

What is Mars?
@ A MapReduce Programming System, Map + Reduce.

@ A Parallel Processing System accelerated by Graphics

Processors (GPUs).
@ Mars Modules running on:

]

o
o
]
]

An NVIDIA GPU: MarsCUDA

An AMD GPU: MarsBrook

A Multi-core CPU: MarsCPU

Multi-core CPUs + GPUs: Co-processing
Distributed System: MarsHadoop

80

Mars: Accelerating MapReduce on Graphics Processors

How Good?
@ Ease of use. Up to 7 times code saving.

@ High performance. An order of magnitude speedup over a
state-of-the-art CPU-based MapReduce system.

@ Why Mars
o GPGPU
@ MapReduce

© How it works
@ Design
@ Implementation

© Evaluation
o Ease of use
@ High Performance

@ Conclusion

10/80

@ Why Mars
o GPGPU
@ MapReduce

11/80

Why Mars

GPU Hardware Trend (1)

{[eli) @T200
HVIDIA GPU
—a—lntal CPU Gsa G692
o Ultra
"
2 GS0
o
: 500
o
= G711
]
a
- NVi0 _— 32 GHz
NV35 30GHz Harpertown
NV30 Core2 Duo
" ._._.___._.——.—'"—.
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV3S = GeForce FX 5950 Ultra
G32 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
GB0 = GeForce BB00 GTX NV40 = GeForoe 6800 Ultra

Figure: Floating-Point Operations per Second on NVIDIA GPUs and Intel CPUs.

Source: NVIDA CUDA Programming Guide [4].

CPU GPU

Figure: GPUs devote more transisters to data processing.

Source: NVIDA CUDA Programming Guide [4].

13 /80

Why Mars
GPGPU

MapReduce

GPU Hardware Trend (2)

120
G80
Ultra
100 + Ll
@80
80
Bandwidth
- GTL
L | NV40
Harpertown

Wooderest
n1 ws.a/,/ Prescott EE
... B iy

b T
2003 2004 2005 2008 w07

Figure: Bandwidth of NVIDIA GPU memory and CPU memory.

Source: NVIDA CUDA Programming Guide [4].
14 /80

Why Mars
GPGPU

MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

SIMD

Local Mem |

CPU

—>‘ Main Memory

15/80

Why Mars
GPGPU

MapReduce

General Purpose GPU Computing

Many-core Arch for GPUs

Programability

SIMD SIMD cPU [~ NVIDIA CUDA
Loca e | [tece e] @ AMD Brook—+
GPU
J @ OpenCL

Device Memory ‘e—)‘ Main Memory

@ More...

16 /80

Why Mars
GPGPU

MapReduce

Non-Graphics Workloads on GPUs

Owens et al. [5] A Survey of General-Purpose Computation on
Graphics Hardware

Linear algebra
Finance

Database query

o
°
@ Machine Learning
o More...

°

Data Parallel programs on SIMD multiprocessors.

17 /80

Why Mars
GPGPU
MapReduce

Map Function and Reduce Function

Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters. OSDI'04. [2]

Map (void *doc) {

1: for each word w in doc

2: Emitintermediate(w, 1); // count each word once

}

Reduce(void *word, Iterator values) {

1: int result = 0;

2: for each v in values

3: result +=v;

4: Emit(word, result); // output word and its count

}

18 /80

Why Mars
GPGPU
MapReduce

MapReduce Workflow

Intermediate‘ kl:vkl:vk2:v ‘ ‘ kl:v ‘ k3:v kv ‘ ka:v k5:v ‘ ka:v ‘ kl:wv k3w ‘

Grouped ‘kl:v,v,v,v k2:v ‘k3:v,v kd:v,v,v kS:V‘

D 0 ¢

o [| [[]

Source - http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0007.html

19/80

Why Mars
GPGPU
MapReduce

Implementations of MapReduce

@ Distributed Environment

@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt

20/80

Why Mars
GPGPU
MapReduce

Implementations of MapReduce

@ Distributed Environment
@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt
@ Multicore CPU
@ Phoenix from Stanford, HPCA'07 [6]/1ISWC’09 [7].

21/80

Why Mars
GPGPU
MapReduce

Implementations of MapReduce

@ Distributed Environment

@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt

@ Multicore CPU
@ Phoenix from Stanford, HPCA'07 [6]/1ISWC’09 [7].

o Cell BE
o FPGA

22 /80

Why Mars
GPGPU
MapReduce

Implementations of MapReduce

Distributed Environment
@ Google MapReduce
@ Apache Hadoop (Yahoo, Facebook, ...)
o MySpace Qizmt
Multicore CPU
@ Phoenix from Stanford, HPCA'07 [6]/1ISWC’09 [7].

Cell BE
FPGA

GPUs

@ From UC-Berkeley, STMCS'08 [1]
@ Merge, from Intel, ASPLOS'08 [3]

23 /80

How it works

© How it works
@ Design
@ Implementation

24 /80

How it works Design
Implementation

Goals and Challenges

Design Goals

@ Programmability. Ease of use.

@ Flexibility. Support various multi/many core processors.

@ High Performance.

25/80

How it works Design
Implementation

Goals and Challenges

Design Goals

@ Programmability. Ease of use.

@ Flexibility. Support various multi/many core processors.

@ High Performance.

Challenges

Result output.
@ Write conflicts among GPU threads.

@ Unknown output buffer size.

26 /80

How it works Design
Implementation

Goals and Challenges

Design Goals

@ Programmability. Ease of use.

@ Flexibility. Support various multi/many core processors.

@ High Performance.

Challenges

Result output.
@ Write conflicts among GPU threads.

@ Unknown output buffer size.
Lock-free scheme

27 /80

How it works Design
Implementation

Workflow

roten
,,,,,,,,,,,, Map Stage 3
/@r’ N
Preproce S 1 PrefixSum (—» >

>

!
l

rancom
lapCount
N

—
\M
—

Reduce

Split PrefixSum

| Group Stage | Reduce Stage

28 /80

How it works Design
Implementation

Workflow

rkflow of Mars

Workflow

 MapStage]
[) @ Map Only.
oo -
Preproce _" — | PrefixSum —»{ > o Map—>Gr0up.
\@» Ll v @ Map—Group
— — —Reduce.
\i g °
| Gro educe.
fioducs —» PrefixSum [+
Group. Split N Group.
9 Map —Reduce.
| Group Stage | 7 Reduce Stage

How it works Design
Implementation

Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records Il — Reduce Stage

— Output Records

30/80

How it works Design
Implementation

Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records || — Reduce Stage

— Output Records

Structure of Arrays
o Key array

@ Value array
@ Directory index array — Variable-sized record
o <Key size, Key offset, Value size, Value offset>

31/80

How it works Design
Implementation

Data Structure

Records

Input Records —

Map Stage — Intermediate Records | — Group Stage —
Intermediate Records || — Reduce Stage

— Output Records

Structure of Arrays
o Key array
@ Value array

@ Directory index array — Variable-sized record
o <Key size, Key offset, Value size, Value offset>

@ Chained MapReduce:
Mapl—Groupl—Map2—Map3— —>

32/80

How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size

33/80

How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size

@ Prefix sum on intermediate key sizes and value sizes

@ The size of intermediate buffer, allocate at one time
o The deterministic write position for each Map, lock-free

34 /80

How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size

@ Prefix sum on intermediate key sizes and value sizes

@ The size of intermediate buffer, allocate at one time
o The deterministic write position for each Map, lock-free

@ Allocate intermediate buffer

How it works Design
Implementation

Lock-Free Output

@ MapCount

o Call User defined MapCount function
o Each function emits intermediate key size and value size

@ Prefix sum on intermediate key sizes and value sizes

@ The size of intermediate buffer, allocate at one time

o The deterministic write position for each Map, lock-free
@ Allocate intermediate buffer
@ Map

@ Call User defined Map function
@ Output records according to the write position

36 /80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

37/80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED”

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

38/80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

39/80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

@ 0,9, 13 — write position array

@ 19 — output buffer size

40/80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

@ 0,9, 13 — write position array
@ 19 — output buffer size

@ Allocate a buffer of size 19

41/80

How it works Design
Implementation

Lock-Free Output, Example

Mapl — "123456789", Map2 — "abcd”, Map3 — "ABCDED"

@ MapCountl — 9
o MapCount2 — 4
@ MapCount3 — 6

Prefix Sum, Allocate buffer, and Map

@ 9, 4, 6 — size array

@ 0,9, 13 — write position array
@ 19 — output buffer size

@ Allocate a buffer of size 19

@ "123456789abcdABCDED”

42 /80

How it works Design
Implementation

MarsCUDA

Building blocks

o NVIDA CUDA
@ Prefix Sum: CUDPP Library, GPU-based Prefix Sum
@ Group: GPU-based Bitonic Sort

43 /80

How it works Design
Implementation

MarsCUDA — Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. — Reduce # of device memory accesses.

44./80

How it works Design
Implementation

MarsCUDA — Memory Optimization (1)

Coalesced Access

For a half-warp of threads, simultaneous device memory accesses
to consecutive device memory addresses can be coalesced into one
transaction. — Reduce # of device memory accesses.

Local memory

@ Programmable on-chip memory (shared memory in NVIDIA's
term).

@ Exploit local memory in GPU-based Bitonic Sort for Group
Stage.

@ Users can explicitly utilize local memory in their Map/Reduce
functions.

45 /80

How it works Design
Implementation

MarsCUDA — Memory Optimization (2)

Built-in Vector type

@ Address Alignment
o float4 and int4

@ One load instruction to read data of built-in type, of size up
to 16 bytes — Reduce # of memory load instructions,
compared with reading scalar type

46 /80

How it works Design
Implementation

MarsCUDA — Memory Optimization (2)

Built-in Vector type

@ Address Alignment
o float4 and int4

@ One load instruction to read data of built-in type, of size up
to 16 bytes — Reduce # of memory load instructions,
compared with reading scalar type

Page-lock host memory

Prevent OS from paging the locked memory buffer — High PCI-E
bandwidth

47 /80

How it works Design
Implementation

MarsCUDA — Task distribution

Map/Reduce

[N/B] thread blocks
@ N: the number of Map or Reduce tasks

@ B: the number of GPU threads per thread block, which is
practically set to 256

@ 1 task per GPU thread

48 /80

How it works Design
Implementation

MarsCUDA — Task distribution

Map/Reduce

[N/B] thread blocks
@ N: the number of Map or Reduce tasks

@ B: the number of GPU threads per thread block, which is
practically set to 256

@ 1 task per GPU thread

Special case for Reduce

@ Communicative and Associative. For example, Integer
Addition.

@ Parallel reduction for load balanced reduce task distribution.

49 /80

How it works Design
Implementation

MarsCPU

Building blocks

@ pthreads
@ Group: Parallel Merge Sort

50/80

How it works Design

Implementation

MarsCPU

Building blocks

@ pthreads
@ Group: Parallel Merge Sort

General Mars Design

@ Lock Free
@ [N/T] tasks per CPU thread.

o N: the number of Map or Reduce tasks
o T the number of CPU threads
e N is usually much larger than T

51/80

How it works Design
Implementation

GPU/CPU Co-processing

The workflow of GPU/CPU co-processing
Notation: | GPU Worker | l CPU Worker I

Map Worker |>—>| Group | Reduce Worker

Map Worker Reduce Worker

Preprocess

Map Stage . Group Stage | 1 Reduce Stage

@ [: Total size of input data
@ S : Speedup of GPU Worker over CPU Worker

@ Workload for GPU Worker: ﬁ—IS

@ Workload for CPU Worker: 1i

n

52 /80

MarsHadoop

Figure: MarsHadoop. Using Hadoop Streaming.

How it works

Notation: (GPU Worker

Design
Implementation

Hadoop Runtime (Distributed File System + Job Scheduler)

Input Files
Map
Worker

Reduce Reduce
Worker Worker
Output Files

Shuffle

Node 1

Input Files
Map
Worker

i

Reduce Reduce
Worker Worker
Output Files

Node N

53/80

Evaluation

© Evaluation
o Ease of use
@ High Performance

54 /80

Evaluation

Experimental Setup

ance

Machine PCA PCB PCC

GPU NVIDIA GTX280 NVIDIA 8800GTX ATI Radeon HD 3870
GPU core 240 128 320

GPU Core Clock 602 MHz 575 MHz 775 MHz

GPU Memory Clock 1107 MHz 900 MHz 2250 MHz

GPU Memory Band- 141.7 GB/s 86.4 GB/s 72.0 GB/s

width

GPU Memory size 1024 MB 768 MB 512 MB

CPU

CPU Clock

CPU core

CPU Memory size
0os

Intel Core2 Quad Q6600
2400 MHz

4

2048 MB

32-bit CentOS Linux

Intel Core2 Quad Q6600
2400 MHz

4

2048 MB

32-bit CentOS Linux

Intel Pentium 4 540
3200 MHz

2

1024 MB

32-bit Windows XP

55/80

Applications

Evaluation

rmance

Applications Small Medium Large
String Match (SM) size: 55MB size: 106MB size: 160MB
Matrix Multiplication (MM) 256x256 512x512 1024x1024

Black-Scholes (BS)
Similarity Score (SS)

PCA
Monte Carlo (MC)

option: 1,000,000

feature: 128, # docu-
ments: 512

1000x256

option: 500, # samples

per option: 500

option: 3,000,000

feature: 128, # docu-
ments: 1024

2000x256

option: 500, # samples

per option: 2500

option: 5,000,000

feature: 128, # docu-
ments: 2048

4000x256

option: 500, # samples

per option: 5000

GPU Implementation: MarsCUDA, CUDA
CPU Implementation: MarsCPU, Phoenix, pthreads
GPUCPU Coprocessing: MarsCUDA + MarsCPU

56 /80

Ease of use
Evaluation High

Code size saving

In lines:

Applications Phoenix MarsCUDA /MarsCPU CUDA
String Match 206 147 157
Matrix Multiplication 178 72 68
Black-Scholes 199 147 721
Similarity Score 125 82 615
Principal component analysis 297 168 583
Monte Carlo 251 203 359

57 /80

Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

0 -

Applications

58 /80

Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

o Always need
Reduce stage.

0 -

Applications

59 /80

Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

o Always need
Reduce stage.

@ Lock overhead.

0 -

Applications

60 /80

Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

o Always need
Reduce stage.

@ Lock overhead.

@ Re-allocate buffer
on the fly.

0 - =

Applications

61/80

Ease of use
Evaluation High Performance

MarsCPU vs Phoenix

Overhead of Phoenix

o Always need
Reduce stage.

@ Lock overhead.

@ Re-allocate buffer
on the fly.

@ Insertion sort on
static arrays. Call

.- memmove! ’

frequently.

0 - =

Applications

62 /80

Evaluation

Ease of use
High Performance

MarsCUDA vs MarsCPU on Kernel

Speedup = Thrarscpus/T)

Speedup

45

40

35

30

25

20

15

10

[[

SM

MM

BS SS PCA
Applications

MC

o Preproeess +
Map + Group +

Reduce

63 /80

High Performance

Evaluation

MarsCUDA vs MarsCPU

+ Group +

@ Preprocess + Map
Reduce

dnpaads

2
G| SO

Applications

64 /80

CUDA

Ma

c
2
@]

ge)

~
T
L

m
)

E

T

8 o <o 9 <o 9o o
& ¢ © © § &

Ease of use
Evaluation High Performance

Amdahl’s Law

Amdahl’'s Law

_ 1
Speedup = m
@ P: The proportion that is
parallelized

@ (1 — P): The proportion
that is not parallelized

@ S: Speedup by parallelism

66 /80

Ease of use
Evaluation High Performance

Amdahl’s Law

For MarsCUDA

Amdahl’s Law @ P: Map + Reduce

_ 1
Speedup = m
@ P: The proportion that is
parallelized

@ (1 - P): Preprocess
@ Example: String Match
Parallelized: Map stage

©

@ (1 — P): The proportion o P=25%
that is not parallelized e 5S=20
@ Speedup

@ S: Speedup by parallelism

_ 1 _
— (1—25%)+25%/20 L3

67 /80

Ease of use
Evaluation High Performance

Preprocess is a bottleneck?

Real world applications in Chained MapReduce:
Preprocess—Mapl—Groupl—Reducel —Map2—Map3—
Map4— Group4

@ Prepare key/value pairs

@ Transfer input key/value pairs from main memory to device
memory

68 /80

Ease of use
Evaluation High Performance

GPU/CPU Co-processing

Speedu p= TStasndalone/ Coprocessing

7291 27.17

Co-processing over

2 :1 vs MarsCUDA
— styghso%ilti MarSCUDA:

15
o @ Speedup = S+1
g @ S: Speedup of

. MarsCUDA over

MarsCPU
S [Sp— NI WS RSN BT SN SR
Y o % Y
Applications

69 /80

o
o
=
]
£
£
<
9]
a
=
i
ac

Evaluation

MarsHadoop

Time Breakdown

"sH adoop

TJ\[m

100

c
S
s
=
2
w2
208
G248
! ! 2
&
oF
3RS 35 0>
RRRRRIRRRISS
hRotoleletetetstetete%e %! zoev
P
EREELZRLZERRZZZRIIIIIIIS gF
ORI SV
R
09090 %0 %% %% %a%a%a%a9a%a%a %% %% % 2
ov)\
RLLIIIIIIIIZZL NI
PRI)
RRRRRIILILLLLLLLA &
RIS
i i i i
o o o ° o
8 3 S 5
€101 JO %
envw
o
[_H 3\0
D
&
O
J\Y
r S
3
o
[m on(
. . .
© 0 ~ o -
o 3

dnpaads

Workloads for Matrix Multiplication

‘Workloads for Matrix Multiplication

: PCAand PCB

Two slave nodes

PCA

One master node

70/80

E f use
Evaluation High Performance

Reference

= B = W

=J

[

Marc de Kruijf and Karthikeyan Sankaralingam.

Mapreduce for the cell b.e. architecture.
Technical report, University of WisconsinMadison, 2007

Jeffrey Dean and Sanjay Ghemawat.

Mapreduce: Simplified data processing on large clusters.
OSDI, 2004

Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng.

Merge: a programming model for heterogeneous multi-core systems.
ASPLOS, 2008

NVIDIA corp.
NVIDIA CUDA Programming Guide 2.0, 2008.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn, and

Timothy J. Purcell.
A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 2007

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.

Evaluating mapreduce for multi-core and multiprocessor systems.
HPCA, 2007

Richard Yoo, Anthony Romano, and Christos Kozyrakis.

Phoenix rebirth: Scalable mapreduce on a numa system.
In IISWC, 2009

71/80

Conclusion

Conclusion

@ Mars

MarsCUDA for NVIDIA GPU
MarsBrook for AMD GPU
MarsCPU for multicore CPU
GPU/CPU Co-processing
MarsHadoop for clusters

¢ © ¢ ¢ ¢

@ Ease of programming

@ High performance

72 /80

Conclusion

Thanks! Q&A?
http://www.cse.ust.hk/gpuqgp/Mars.html

73 /80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

74 /80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

75/80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

@ CPU: Use Cache to inmprove memory performance.

76 /80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

@ CPU: Use Cache to inmprove memory performance.

@ GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

77/80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

@ CPU: Use Cache to inmprove memory performance.

@ GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

@ GPU: the only way — wider memory bus + faster clock rate

78 /80

Conclusion

Backup 1: GPU Workload and design trade-off

Why GPUs Have High Memory bandwidth?

Memory Bandwidth oc (Clock Rate x Memory Bus width)

Why such design?

@ CPU: Use Cache to inmprove memory performance.

@ GPU Workload: 3D rendering, large dataset of polygons and
textures, too large working set to fit in cache.

@ GPU: the only way — wider memory bus + faster clock rate

@ Price(NVIDIA GTX 285 GPU with 1 GB memory) ~ Price (
Intel Core i7 CPU with 6 GB memory).

79 /80

Conclusion

Backup 2: Performance Slowdown Over Native
Implementations

MarsCUDA vs CUDA. Slowdown MarsCPU vs pthreads. Slowdown

= Tymarscupa/Tcupa = Diyieevatoy st
1.35 - 112 1
13
11
c 1.25 |
s S 108
: s
e 1.2 °
E g 1.06
? 115 o
11 b | 1.04
1.05 | H B 102 |- ﬂ
1 1
SM MM BS SSs PCA MC SM MM BS Ss PCA MC
Applications Applications

80

80

	Why Mars
	GPGPU
	MapReduce

	How it works
	Design
	Implementation

	Evaluation
	Ease of use
	High Performance

	Conclusion

