<table>
<thead>
<tr>
<th>Title</th>
<th>A ridge and corner preserving model for surface restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lai, Rongjie; Tai, Xue Cheng; Chan, Tony F.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/13175</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Society for Industrial and Applied Mathematics. This paper was published in SIAM Journal on Scientific Computing and is made available as an electronic reprint (preprint) with permission of Society for Industrial and Applied Mathematics. The paper can be found at the following official DOI: [http://dx.doi.org/10.1137/110846634]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
A RIDGE AND CORNER PRESERVING MODEL FOR SURFACE RESTORATION

Rongjie Lai†, Xue-Cheng Tai‡, and Tony F. Chan§

Abstract. One challenge in surface restoration is to design surface diffusion preserving ridges and sharp corners. In this paper, we propose a new surface restoration model based on the observation that surfaces’ implicit representations are continuous functions whose first order derivatives have discontinuities at ridges and sharp corners. Regularized by vectorial total variation on the derivatives of surfaces’ implicit representation functions, the proposed model has ridge and corner preserving properties validated by numerical experiments. To solve the proposed fourth order and convex problem efficiently, we further design a numerical algorithm based on the augmented Lagrangian method. Moreover, the theoretical convergence analysis of the proposed algorithm is also provided. To demonstrate the efficiency and robustness of the proposed method, we show restoration results on several different surfaces and also conduct comparisons with the mean curvature flow method and the nonlocal mean method.

Key words. surface restoration, vectorial total variation, Hessian, augmented Lagrangian

AMS subject classifications. 49K20, 49Q10, 90C25, 65K10

DOI. 10.1137/110846634

1. Introduction. With the rapid development of data acquisition technology, more and more three-dimensional (3D) surfaces can be easily collected and widely used in many fields, such as computer graphics, computer vision, and medical image analysis. However, 3D surfaces obtained from laser scanner, computed tomography (CT), magnetic resonance (MR), or 3D ultrasound devices are usually contaminated by some noise due to local measurement errors. Typically, these surfaces have crucial features represented as ridges and sharp corners. Thus, it is critical to process these noisy surfaces using ridge and sharp corner preserving methods.

In the last decade, several feature preserving methods have been developed for 3D surface fairing in the computer graphics literature [31, 24, 19, 36, 2]. Among all other techniques, surface diffusion methods via different curvature flows have been successfully used in surface processing. The most natural way for surface smoothing is motion by mean curvature flow (MCF) or Laplace smoothing [12, 48, 40], which is essentially the process of reducing the surface area. As a second order model, MCF is effective in removing oscillations on noisy surfaces. However, it has limitations for preserving ridges and sharp corners on surfaces. To tackle the challenge of ridge and sharp corner preserving problems, several other second order models of the anisotropic...
surface diffusions are considered in [13, 10, 32, 3, 37, 11], which can be viewed as processes of reducing weighted surface area. In addition to the above second order models, the fourth order isotropic or anisotropic flows based on minimizing the surface total curvature or weighted total curvature are discussed in [46, 47].

More recently, there has been increasing interest in studying surface processing by adapting ideas from image processing. Based on the fact that surfaces usually have similar repeated patterns, nonlocal approaches in two-dimensional (2D) imaging [7, 20] are adapted to study 3D surface smoothing in [14, 33], where numerical experiments provide ridge and sharp corner preserving results. A critical limitation of the nonlocal mean method is that the computation of the nonlocal weight function is very time consuming; thus a seminonlocal process with a small patch size is usually considered in practice. Inspired by the success of the total variation (TV) in 2D imaging, Elsey and Esedoḡlu [17] introduce an analogue of the TV denoising model for surface processing by minimizing the absolute value of the Gauss curvature as regularization. Their model can guarantee preservation of ridges and sharp corners for convex surfaces, or surfaces with local constant sign of Gauss curvature on a fine scale. For surfaces not satisfying either of these two conditions, which are also commonly seen in practice, their ridges and sharp corners might be lost using the model proposed in [17].

In this work, we propose a new model for 3D surface processing with ridge and sharp corner preserving properties based on a simple observation as follows. In image processing, the representation functions are piecewise smooth functions; thus the TV provides a powerful tool to study images with jump preserving properties [38, 42]. Comparing with representation functions for images, the implicit representation functions of curves or surfaces have their own essential differences. “Image functions” are normally discontinuous, and the salient features are contained in the discontinuities. “Implicit surface functions” are normally continuous [35], while their derivatives have discontinuities due to the ridges and sharp corners of the represented surfaces. If the jumps of the derivatives of the implicit functions can be well preserved, then the corresponding ridges and sharp corners of surfaces can also be well preserved. Therefore, a natural choice for surface processing would be to choose the TV to process the derivatives of the implicit functions of surfaces. More precisely, given a surface with implicit function representation \(\phi : D \subset \mathbb{R}^3 \rightarrow \mathbb{R} \) and its three directional derivatives \(\partial_x \phi, \partial_y \phi, \partial_z \phi \), we need to consider the TV for the vector \((\partial_x \phi, \partial_y \phi, \partial_z \phi)\). As a generalization of the TV for vector-valued images, the vectorial TV is studied in [1, 6] for color image processing. Thus, we can utilize the vectorial TV to have the jump preservation of the derivative of the implicit function \(\phi \), which leads to the ridge and sharp corner preserving property we desired for surface processing. This nice property of the proposed model will be experimentally illustrated in section 5.

As an important distinction of the proposed model, the optimization problem we proposed is convex. Thus, the global minimizer of our model will provide the desired solution, which avoids terminating the processing in artificial given iteration steps as geometric diffusion methods in [46, 47, 40, 11]. Overall, the gradient flow of the proposed model leads to a fourth order problem, which is usually extremely time consuming to approach the optimizer. To solve the proposed minimization problem efficiently, we design a fast algorithm based on the augmented Lagrangian method. With the help of auxiliary variables, the solution of the original optimization problem can be iteratively approached by computation of several easy-solving subproblems. This algorithm is inspired by a series of operator splitting and split Bregman iterations [34, 49, 23, 22, 45, 50, 44], which popularize the idea of using operator splitting to solve optimization problems. The equivalence of the split Bregman iterations to
the alternating direction method of multipliers (ADMM), Douglas–Rachford splitting, and augmented Lagrangian method can be found in [18, 39, 45, 50]. Moreover, we also show the theoretical convergence analysis of the proposed algorithm inspired by the general discussion of the augmented Lagrangian method in [21].

To summarize, this paper proposes a fourth order PDE based surface restoration model which has numerical validation of ridge and sharp corner preserving properties and also has a corresponding fast algorithm. The rest of this paper is organized as follows. In section 2, motivated by considering vectorial TV for the derivatives of the surface implicit function, we first introduce a variational model for 3D surface restoration and then explain the proposed model in a toy example. In section 3, we design fast algorithms to solve the proposed model based on the augmented Lagrangian method. Meanwhile, the theoretical convergence analysis is also provided. After that, the numerical implementations are discussed in section 4. To demonstrate the robustness and efficiency of the proposed model and algorithms, we report experimental results and comparisons with previous methods in section 5. In addition, we also illustrate the potential applications of the proposed model to surface processing in medical imaging. Finally, conclusions are made in section 6.

2. A fourth order variational model for surface restoration. The TV model plays an important role in image processing due to its edge preserving property. By observing that the derivatives of the surface implicit representation functions are discontinuous on ridges and sharp corners, we propose a noisy surface restoration model with the regularization as the vectorial TV of the first order derivatives of the surface implicit functions.

2.1. Motivation and model. In the pioneering work [38], Rudin, Osher, and Fatemi introduce the Rudin–Osher–Fatemi (ROF) denoising model for gray-scale/scalar image $u_0 : \Omega \to \mathbb{R}$ based on the TV as follows:

$$\min_u \int_{\Omega} |\nabla u| + \frac{\eta}{2} \int_{\Omega} (u - u_0)^2. \tag{2.1}$$

Due to the edge preserving properties of the TV, the TV related models have had remarkable success on image processing. In the case of color image $\vec{u} = (u^1, \ldots, u^m) : \Omega \to \mathbb{R}^m$, the above ROF model can be naturally generalized as the following color TV-L2 model [1, 6] (also related to [5]):

$$\min_{\vec{u}} \int_{\Omega} \sqrt{\|\nabla u^1\|^2 + \cdots + \|\nabla u^m\|^2} \frac{\eta}{2} \int_{\Omega} (\vec{u} - \vec{u}_0)^2. \tag{2.2}$$

The regularization referred as vectorial TV has also been studied in [25, 15] for color image processing.

In the problem of surface processing, one of the major challenges is diffusing surfaces with ridge and sharp corner preserving properties. Compared with image functions, an essential distinction of the implicit function representations for surfaces is that surface representation functions are not piecewise continuous but continuous. However, derivatives of the implicit functions may have discontinuities due to the ridges and sharp corners of surfaces. If the jumps of the derivatives of the implicit functions can be well preserved, then the corresponding ridges and sharp corners of surfaces can also be well preserved. Therefore, it is natural to consider the above vectorial TV for the derivatives of implicit functions.

More precisely, let \mathcal{M} be a closed surface in \mathbb{R}^3 with implicit signed distance function representation ϕ [35]. Namely, $\mathcal{M} = \phi^{-1}(0) = \{(x_1, x_2, x_3) \in \Omega \subset \mathbb{R}^3 | \phi(x_1, x_2, x_3)$
Then ϕ is a continuous function with possible discontinuity of its first order derivatives (ϕ_x, ϕ_y, ϕ_z) if M has ridges or sharp corners. We consider a surface restoration model regularized by the vectorial TV for the vector field (ϕ_x, ϕ_y, ϕ_z) as follows:

$$\min_{\phi} \int_{\Omega} \sqrt{\|\nabla \phi_x\|^2 + \|\nabla \phi_y\|^2 + \|\nabla \phi_z\|^2} + \frac{\eta}{2} \int_{\Omega} (\phi - \phi_0)^2$$

$$= \min_{\phi} \int_{\Omega} \left(\frac{3}{\alpha, \beta = 1} \left(\frac{\partial^2 \phi}{\partial x_{\alpha} \partial x_{\beta}} \right)^2 \right)^{1/2} + \frac{\eta}{2} \int_{\Omega} (\phi - \phi_0)^2. $$

(2.3)

If we denote the Hessian matrix of ϕ by $H(\phi) = \left(\frac{\partial^2 \phi}{\partial x_{\alpha} \partial x_{\beta}} \right)_{3 \times 3}$ and its Frobenius norm by $|H(\phi)| = \sqrt{\sum_{\alpha, \beta = 1}^{3} \left(\frac{\partial^2 \phi}{\partial x_{\alpha} \partial x_{\beta}} \right)^2}$, then we can write the above model as the following simple expression:

$$\min_{\phi} \int_{\Omega} |H(\phi)| + \frac{\eta}{2} \int_{\Omega} (\phi - \phi_0)^2. $$

(2.4)

Moreover, this vectorial TV model for the first order derivatives needs only one step processing instead of two-step methods as in [30, 47] with the first step of processing the derivatives of the surface and the second step of recovering the surface from the derivatives.

2.2. Discretization

In practice, we assume the implicit representation ϕ is defined on regular $N_1 \times N_2 \times N_3$ grids with grid width h. Let us denote V as the Euclidean space $\mathbb{R}^{N_1 \times N_2 \times N_3}$. Then, the Hessian matrix of ϕ is defined on $W = V \times \cdots \times V$. For convenience, we use the following notation for any $\phi \in V, P = (p_{\alpha \beta})_{3 \times 3}, Q = (q_{\alpha \beta})_{3 \times 3} \in W$ in the rest of this paper:

$$|Q|_W = \sum_{i,j,k} \left(\sum_{\alpha, \beta = 1}^{3} q_{\alpha \beta}(i, j, k) \right)^{1/2}, \quad \|\phi\|^2_V = \sum_{i,j,k} \phi^2(i, j, k),$$

$$\langle Q, P\rangle_W = \sum_{i,j,k} \left(\sum_{\alpha, \beta = 1}^{3} q_{\alpha \beta}(i, j, k)p_{\alpha \beta}(i, j, k) \right), \quad \|Q\|^2_W = \langle Q, Q\rangle_W.$$
The corresponding discretization of second order derivatives is given by \((\alpha, \beta = 1, 2, 3)\)

\[
\partial_{x_\alpha x_\beta}^+ \phi(i, j, k) = (\partial_{x_\alpha}^- (\partial_{x_\beta}^+ \phi))(i, j, k), \quad \partial_{x_\alpha x_\beta}^- \phi(i, j, k) = (\partial_{x_\alpha}^+ (\partial_{x_\beta}^- \phi))(i, j, k),
\]

\[
\partial_{x_\alpha x_\beta} \phi(i, j, k) = (\partial_{x_\alpha}^- (\partial_{x_\beta}^- \phi))(i, j, k), \quad \partial_{x_\alpha x_\beta}^+ \phi(i, j, k) = (\partial_{x_\alpha}^+ (\partial_{x_\beta}^+ \phi))(i, j, k).
\]

We denote the discretization of Hessian \(H : V \rightarrow W\) as follows:

\[
(2.5) \quad H(\phi) = \begin{pmatrix}
\partial_{x_1 x_1}^+ \phi & \partial_{x_1 x_2}^+ \phi & \partial_{x_1 x_3}^+ \phi \\
\partial_{x_2 x_1}^+ \phi & \partial_{x_2 x_2}^+ \phi & \partial_{x_2 x_3}^+ \phi \\
\partial_{x_3 x_1}^+ \phi & \partial_{x_3 x_2}^+ \phi & \partial_{x_3 x_3}^+ \phi
\end{pmatrix}.
\]

Then, the discretization of the surface restoration model (2.4) can be written as

\[
(2.6) \quad \min_{\phi \in V} \mathcal{E}(\phi) = |H(\phi)|_W + \frac{\eta}{2} \|\phi - \phi_0\|^2_W.
\]

We write \(\mathcal{R}_{L1} : W \rightarrow \mathbb{R}, \mathcal{R}_{L1}(Q) = |Q|_W\); then \(R\) is a convex function defined on \(W\). Thus, \(\mathcal{E}(\phi) = \mathcal{R}_{L1}(H(\phi)) + \frac{\eta}{2} \|\phi - \phi_0\|^2_W\) is also a convex function. In addition, it is easy to see that \(\mathcal{E}\) is continuous and coercive. Therefore, the following results can be obtained from a standard result in convex optimization [16].

Theorem 2.1. The problem (2.6) has a unique solution \(\phi^*\) satisfying

\[
(2.7) \quad 0 \in \eta(\phi^* - \phi_0) - H^*(\partial \mathcal{R}_{L1}(H\phi^*)),
\]

where \(\partial \mathcal{R}_{L1}(H\phi^*)\) is the subdifferential of \(\mathcal{R}_{L1}\) at \(H\phi^*\) and \(H^*\) is the dual operator of \(H\).

2.3. Discussion about the proposed model. To clearly explain in what sense the proposed model preserves ridges and sharp corners, we first check the model for a one-dimensional (1D) curve example, the graph of \(h(x) = 1 - |x|\). Remember that the regularization of our model is the TV of the derivative. A well-known result for the TV-L2 model is that the output will preserve jumps but lose contrast [43, 4, 42]. In our case, the jump is the sharp corner at \(x = 0\), and the contrast is the slope of \(h(x)\). We can expect that our model in the 1D case will keep the corner at \(x = 0\) and shrink the edge of the corner. However, the MCF in this case will smooth out the sharp corner. Thus, we expect the proposed model preserves ridges and sharp corners. In this special example, we consider all surfaces given as graphs of function \(f(x, y)\) on \([-1, 1]^2\) with implicit representation \(\phi(x, y, z) = f(x, y) - z\). Then the proposed model (2.4) can be written as

\[
\phi^* = \arg \min_{\phi} \int \sqrt{\|\nabla \phi\|^2 + \|\nabla \phi\|^2 + \|\nabla \phi\|^2} + \frac{\eta}{2} \int (\phi - \phi_0)^2
\]

\[
(2.8) \quad \Rightarrow f^* = \arg \min_f \int_{[-1, 1]^2} \sqrt{f_{xx}^2 + f_{xy}^2 + f_{yx}^2 + f_{yy}^2} + \frac{\eta}{2} \int_{[-1, 1]^2} (f - f_0)^2.
\]
Fig. 1. Energy curves of E^c_η, E^ϵ_η, and E_η via different value of η are color-coded as red, black, and blue curves, respectively.

This is exactly the Lysker–Lundervold–Tai (LLT) model proposed in [29] for image processing. In fact, the second order norm in the above minimization has also been used in Chambolle and Lions [8] together with the TV norm in a setting for image decomposition. The LLT model has been analyzed in a number of papers [26, 27, 28].

Here, we would like to first analyze the minimizer f^* in the case that $f_0 = f_c$. Since the closed-form solution is not straightforward to obtain even for this simple case, we numerically illustrate the relation of f^* and η to demonstrate its ridge and shape corner preserving properties.

By choosing the grid size $h = 0.01$, we write the discretized energy $E_\eta(f) = |H(f)|_W + \frac{\eta}{2} \| f - f_c \|_V^2$ using the similar notation introduced in section 2.2. A straightforward calculation indicates that a smoothed version of f_c given by $f_\epsilon(x, y, z) = 1 - \sqrt{x^2 + \epsilon^2} - \sqrt{y^2 + \epsilon^2}$ may have a smaller energy $E_\eta(f_\epsilon)$ than $E_\eta(f_c)$. This might give an intuition that the proposed model is energetically favorable to choose f_ϵ, which will lead to the ridge and corner smoothing instead of preserving. However, a more careful numerical calculation shows that f_ϵ never attains the global minimal value for the convex energy E_η. If we write $E^c_\eta = E_\eta(f_c), E^\epsilon_\eta = \min_\epsilon E_\eta(f_\epsilon)$, and $E_\eta = \min_f E_\eta(f)$, a comparison among these three values is reported in Figure 1 with different values of η. It is clear to see that $E^c_\eta \geq E^\epsilon_\eta \geq E_\eta$. In other words, the ridge and corner smoothed version f_ϵ is not the minimizer of the proposed model for all test values η. In Figure 2, we report resulting surfaces using $\eta = 0.5, 10, 20$. One can observe that the larger η is chosen, then the smaller difference we have between the output f^* and f_c, while $f^*_\epsilon = \arg \min_\epsilon E_\eta(f_\epsilon)$ always smooths out ridges and corners for different values of $\eta = 0.5, 10, 20$. To clearly show the ridge preserving property, we project the level contours of resulting surfaces from f^* and f^*_ϵ to the 2D plane and illustrate comparisons with the clean surface f_c in the second and third rows of Figure 2. One can observe that a small value of η will lead to ridge and corner smoothing although the input surface is completely noise-free. However, a suitable scale of η in the proposed model can successfully preserve the ridges and corners of the input surface. A careful check of the last four zoomed-in images in Figure 2 will reveal that, although the resulting f^* are not exactly the same as the input clean surface f_c, differences of ridges and corners of f^* and f_c are close enough such that the sharpness of the ridges and corners are preserved while the angles of f^* may have tiny shrinkage. However, f^*_ϵ cannot preserve ridges and corners for all test values $\eta = 0.5, 10, 20$. In this sense, we say f^* preserve ridges and corners of f_c.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Fig. 2. Numerical test of (2.8) with \(f_\sigma = 1 - |x| - |y| \) and \(\eta = 0.5, 10, 20 \). The first row: Output surfaces \(f^* \) and corresponding red color-coded level contours using \(\eta = 0.5, 10, 20 \), respectively. The second row: Level contours comparison of the resulting surfaces \(f^* \) with the input clean surface and resulting surface \(f^*_\sigma \). The third row: Zoomed-in images of the second row.

To further test the proposed model for noisy surface restoration, we consider a noise-contaminated surface \(M_\sigma = \{(x, y) \in [-1, 1]^2 \mid (x, y, f_\sigma(x, y))\} \), where \(f_\sigma = f_c + \sigma \star \xi \) and \(\xi \) satisfies the standard normal distribution \(\mathcal{N}(0, 1) \). In Figure 3, we illustrate a preliminary result of the above model using \(\eta = 20 \) with a noisy input surface \(f_c \) with \(\sigma = 0.01 \). Figures 3(b) and (c) illustrate a promising surface restoration result with well-preserved ridges and sharp corners.

3. Fast algorithms using augmented Lagrangian methods

Because of the second order derivatives and the nondifferentiability of absolute value in model (2.4), the gradient descent approach requires extreme caution when choosing the time step, and it is highly time consuming. Instead of using the gradient descent approach, dual methods have been proposed in [9, 41]. More recently, Wu and Tai [50] propose another fast algorithm to solve the 2D LLT [29] for image processing based on augmented Lagrangian methods. Here, we adapt the augmented Lagrangian method in [50] to solve the proposed surface restoration model (2.4) in three dimensions. More importantly, we theoretically prove the convergence of the proposed algorithm based on the augmented Lagrangian method.

If we introduce an auxiliary variable \(Q \) for \(H(\phi) \), then the discretized variational problem (2.6) is equivalent to the following constrained problem:

\[
\min_{\phi \in V, Q \in W} \mathcal{E}_2(\phi, Q) = |Q|_W + \frac{\eta}{2} \|\phi - \phi_0\|_V^2 \quad \text{s.t.} \quad Q = H(\phi).
\]

To solve the above constrained problem, we define the augmented Lagrangian
we get the output surface restoration result and the corresponding contours. A comparison of contours from the input noisy surface, the output restoration result, and the clean surface with blue, red, and black color, respectively.

\[
\mathcal{L}(\phi, Q; \Lambda) = |Q|_W + \frac{\eta}{2} \|\phi - \phi_0\|_V^2 + \frac{r}{2} \|Q - H(\phi)\|_W^2 + \langle \Lambda, Q - H(\phi) \rangle_W,
\]

whose corresponding saddle-point problem can be described as follows:

\[
\begin{align*}
\text{Find} & \quad (\phi^*, Q^*; \Lambda^*) \in \mathcal{V} \times \mathcal{W} \times \mathcal{W} \\
\text{s.t.} & \quad \mathcal{L}(\phi^*, Q^*; \Lambda^*) \leq \mathcal{L}(\phi^*, Q^*; \Lambda^*) \leq \mathcal{L}(\phi^*, Q^*; \Lambda^*) \quad \forall (\phi, Q; \Lambda).
\end{align*}
\]

Theoretically, the following statement about the above saddle-point problem holds.

Theorem 3.1. \(\phi^* \in \mathcal{V}\) is a solution of the problem (2.6) if and only if there exist \(Q^*, \Lambda^* \in \mathcal{W}\) such that \((\phi^*, Q^*; \Lambda^*)\) is a solution of the saddle point problem (3.3).

Proof. Suppose \((\phi^*, Q^*; \Lambda^*)\) is a solution of the saddle point problem (3.3). Then \(Q^* = H(\phi^*)\) from the first inequality of (3.3). By using the second inequality of (3.3), we get

\[
|H(\phi^*)|_W + \frac{\eta}{2} \|\phi^* - \phi_0\|_V^2 \leq |Q|_V + \frac{\eta}{2} \|\phi - \phi_0\|_V^2 + \frac{r}{2} \|Q - H(\phi)\|_W^2 + \langle \Lambda^*, Q - H(\phi) \rangle_W.
\]

By taking \(Q = H(\phi)\), we have

\[
|H(\phi^*)|_W + \frac{\eta}{2} \|\phi^* - \phi_0\|_V^2 \leq |H(\phi^*)|_W + \frac{\eta}{2} \|\phi - \phi_0\|_V^2 \quad \forall \phi \in \mathcal{V}.
\]

On the other hand, if \(\phi^*\) is a solution of the problem (2.6), we choose \(Q^* = H(\phi^*)\). According to Theorem 2.1, there exists a \(\Lambda^* \in \partial \mathcal{R}_L(H(\phi^*))\) such that \(H^*(\Lambda^*) = \eta(\phi^* - \phi_0)\). To verify \((\phi^*, Q^*; \Lambda^*)\) is a saddle point of the problem (3.3), we need to prove

\[
\mathcal{L}(\phi^*, Q^*; \Lambda) \leq \mathcal{L}(\phi^*, Q^*; \Lambda^*) \leq \mathcal{L}(\phi^*, Q^*; \Lambda^*) \quad \forall (\phi, Q; \Lambda) \in \mathcal{V} \times \mathcal{W} \times \mathcal{W}.
\]
This first inequality is easy to check since $Q^* = H(\phi^*)$. To verify the second inequality, we need only illustrate

\begin{equation}
|Q^*|_W + \frac{\eta}{2}||\phi^* - \phi_0||_V^2 \leq |Q|_W + \frac{\eta}{2}||\phi - \phi_0||_V^2 + \frac{r}{2}||Q - H(\phi)||_W^2
+ \langle \Lambda^*, Q - H(\phi) \rangle_W.
\end{equation}

Due to the construction of Q^* and Λ^*, we have the following inequalities:

\begin{equation}
\frac{\eta}{2}||\phi - \phi_0||_V^2 - \frac{\eta}{2}||\phi^* - \phi_0||_V^2 + \langle \Lambda^*, H(\phi^* - \phi) \rangle_W \geq 0 \quad \forall \phi \in V,
\end{equation}

\begin{equation}
|Q|_W - |Q^*|_W + \langle \Lambda^*, Q - Q^* \rangle_W \geq 0 \quad \forall Q \in W.
\end{equation}

Then the inequality (3.6) can be obtained directly for the summation of (3.7) and (3.8). This completes the proof. \[\square\]

According to Theorem 3.1, a solution of the variational problem (2.6) can be obtained by solving the saddle-point problem (3.3). We can iteratively approach a solution of (3.3) by solving a series of minimization problems which lead to the first algorithm.

Algorithm 1: Augmented Lagrangian method for the variational problem (2.6).

1. Initialization: $Q^0 = H(\phi_0)$, $\Lambda^1 = 0$.
2. Update ϕ, Q:

\begin{equation}
(\phi^n, Q^n) = \arg\min_{\phi, Q} \mathcal{L}(\phi, Q; \Lambda^n).
\end{equation}

3. Update Lagrange multipliers:

\begin{equation}
\Lambda^{n+1} = \Lambda^n + r(Q^n - H(\phi^n)).
\end{equation}

The solution of the minimization problem (3.9) can be computed by the alternating minimization method. We here particularly choose one alternating step and

Algorithm 2: Augmented Lagrangian method for the variational problem (2.6).

1. Initialization: $Q^0 = H(\phi_0)$, $\Lambda^1 = 0$.
2. Update ϕ:

\begin{equation}
\phi^n = \arg\min_{\phi} \mathcal{L}(\phi, Q^{n-1}; \Lambda^n).
\end{equation}

3. Update Q:

\begin{equation}
Q^n = \arg\min_{Q} \mathcal{L}(\phi^n, Q; \Lambda^n).
\end{equation}

4. Update Lagrange multipliers:

\begin{equation}
\Lambda^{n+1} = \Lambda^n + r(Q^n - H(\phi^n)).
\end{equation}
obtain the second algorithm. Moreover, similar as the algorithms of augmented Lagrangian provided by Glowinski and Le Tallec in [21], we have the following theorem about the convergence analysis of the proposed Algorithm 2.

Theorem 3.2 (convergence analysis). Assume \((\phi^*, Q^*; \Lambda^*)\) is a saddle point of (3.3); then the asymptotic behaviors of \(\phi_n, Q_n, \) and \(\Lambda_n\) satisfy

\[
\lim_{n \to \infty} \phi^n = \phi^*, \quad \lim_{n \to \infty} Q^n = Q^*, \quad \lim_{n \to \infty} \Lambda^n = \Lambda^*.
\]

Therefore, \(\lim_{n \to \infty} \mathcal{L}(\phi^n, Q^n; \Lambda^n) = \mathcal{L}(\phi^*, Q^*; \Lambda^*) = \mathcal{E}_1(\phi^*), \) and \(\phi^n\) will converge to the solution of (2.6).

Proof. Define all errors as follows:

\[
e_n = \phi^n - \phi^*, \quad e_Q^n = Q^n - Q^*, \quad e_{\Lambda}^n = \Lambda^n - \Lambda^*.
\]

According to Theorem 3.1, we have \(Q^* = H(\phi^*).\) Therefore, we have

\[
e_{\Lambda}^{n+1} = e_{\Lambda}^n + r(e_Q^n - He_{\phi}^n)
\]

\[
\implies ||e_{\Lambda}^n||_W^2 - ||e_{\Lambda}^{n+1}||_W^2 = -2r(e_{\Lambda}^n, e_{\Lambda}^n, e_Q^n - He_{\phi})_W - r^2||e_{\Lambda}^n - He_{\phi}^n||_W.
\]

Since \((\phi^*, Q^*; \Lambda^*)\) is a saddle-point of (3.3), we have

\[
\phi^* = \arg \min_{\phi \in V} \mathcal{L}(\phi, Q^*; \Lambda^*) \quad \text{and} \quad Q^* = \arg \min_{Q \in W} \mathcal{L}(\phi^*, Q; \Lambda^*).
\]

Therefore, for any \(\phi \in V, Q \in W,

\[
\phi^n = \arg \min_{\phi \in V} \mathcal{L}(\phi, Q^{n-1}; \Lambda^n) \quad \text{and} \quad Q^n = \arg \min_{Q \in W} \mathcal{L}(\phi^n, Q; \Lambda^n).
\]

Similarly, from the construction of \(\phi^n\) and \(Q^n\), we have

\[
(\phi^n, Q^n; \Lambda^n) = \arg \min_{\phi, Q} \mathcal{L}(\phi, Q; \Lambda).
\]

Let \(\phi = \phi^n\) in (3.17), \(\phi = \phi^*\) in (3.20), respectively, and then add them together:

\[
(e_{\Lambda}^n, He_{\phi}^n)_W + r(e_{\Lambda}^{n-1} - He_{\phi}^n, He_{\phi})_W \geq 0.
\]
Let \(Q = Q^n \) in (3.18), \(Q = Q^* \) in (3.21), respectively, and then add them together:

\[
(3.23) \quad \langle e^n_A - e^n_Q \rangle W + r(-e^n_Q + He^n_Q) W \geq 0.
\]

We add (3.22) and (3.23) together:

\[
(3.24) \implies -\langle e^n_A, e^n_Q - He^n_Q \rangle W - r\|e^n_Q - He^n_Q\|^2 W + r\langle He^n_Q, e^n_Q - e^n_Q \rangle W \geq 0.
\]

By combining (3.15) and (3.24), we get

\[
(3.25) \quad \|e^n_A\|^2 W - |e^{n+1}_A| W^2 \geq r^2\|e^n_Q - He^n_Q\|^2 W + 2r^2(He^n_Q, e^n_Q - e^n_Q) W.
\]

We further analyze \(\langle He^n_Q, e^n_Q - e^n_Q \rangle W \) by expanding it as

\[
(3.26) \quad \langle He^n_Q, e^n_Q - e^n_Q \rangle W = \langle He^n_Q - He^n_Q, e^n_Q - e^n_Q \rangle W + \langle He^n_Q - He^n_Q, e^n_Q - e^n_Q \rangle W + \langle e^n_Q - e^n_Q, e^n_Q - e^n_Q \rangle W.
\]

Notice that \(Q^{n+1} = \arg \min_{\phi \in V} L(\phi^{n+1}, \phi; \Lambda^{n+1}) \); we can have an inequality similar to (3.21):

\[
(3.27) \quad |Q| W - |Q^{n+1}| W + \langle \Lambda^{n+1}, Q - Q^{n+1} \rangle W + r(Q^{n+1} - H\phi^{n+1}, Q - Q^{n+1}) W \geq 0 \quad \forall Q \in W.
\]

Let \(Q = Q^n \) in (3.27), \(Q = Q^{n+1} \) in (3.21), respectively, and then add them together:

\[
(3.28) \quad \langle \Lambda^{n+1} - \Lambda^n, Q^n - Q^{n+1} \rangle W + r(Q^n - Q^n + H(\phi^n - \phi^{n+1}), Q^n - Q^{n+1}) W \geq 0,
\]

\[
\Rightarrow \langle \Lambda^n - \Lambda^{n+1}, Q^n - Q^{n+1} \rangle W + r(Q^n - Q^n - Q^{n+1}) W - r(H(\phi^n - \phi^{n+1}), Q^n - Q^{n+1}) W \leq 0.
\]

Since \(\Lambda^n - \Lambda^{n+1} = r(Q^n - Q^{n+1} - H\phi^{n+1}), Q^n - Q^{n+1} = e^n_Q - e^{n+1}_Q \), and \(\phi^n - \phi^{n+1} = e^n_Q - e^{n+1}_Q \),

\[
(3.29) \quad \langle He^{n+1}_Q - He^n_Q, e^n_Q - e^n_Q \rangle W + \langle He^n_Q - He^{n+1}_Q, e^n_Q - e^{n+1}_Q \rangle W \geq |e^n_Q - e^{n+1}_Q| W^2.
\]

By combining (3.28), (3.25), and (3.26), we get

\[
|e^n_A| W^2 - |e^{n+1}_A| W^2 \geq r^2\|e^n_Q - He^n_Q\|^2 W + 2r^2\|e^n_Q - e^{n+1}_Q\|^2 W + (e^n_Q, e^n_Q - e^{n+1}_Q) W)
\]

\[
= r^2\|e^n_Q - He^n_Q\|^2 W + r^2\|e^n_Q\|^2 W - |e^n_Q - e^{n+1}_Q| W^2 + (e^n_Q, e^n_Q - e^{n+1}_Q) W)
\]

\[
= r^2\|Q^n - H\phi^n\|^2 W + r^2\|e^n_Q\|^2 W - |e^{n+1}_Q| W^2 + (Q^n - Q^{n+1}) W^2.
\]

This implies

\[
(3.29) \quad (|e^n_A| W^2 + r^2\|e^n_Q\|^2 W) - (|e^{n+1}_A| W^2 + r^2\|e^{n+1}_Q\|^2 W)
\]

\[
\geq r^2\|Q^n - H\phi^n\|^2 W + r^2\|Q^n - Q^{n+1}\|^2 W.
\]
By combining (3.35) with (3.30) and (3.33), we get
\[(3.36) \]
\[
\lim_{n \to \infty} \phi^n = \phi^*, \quad \lim_{n \to \infty} Q^n = Q^*.
\]
In addition, by the construction of \(\Lambda^n \), it is easy to have \(\lim_{n \to \infty} \Lambda^n = \Lambda^* \). This completes the proof. \(\square \)
Theorem 3.2 clearly indicates the convergence of the Algorithm 2. Based on this theoretical guarantee, we can solve the variational model (2.4) by approaching the solution of its discrete model (2.6). Numerically, we need to solve two minimization problems in Algorithm 2, which will be discussed in detail in the next section.

4. Numerical implementation. According to the Algorithm 2, we need to solve the two minimization problems (3.11) and (3.12). Let us define an operator $H^* : \mathcal{W} \to \mathcal{Y}$ by

$$H^*((q_{\alpha \beta})_{3 \times 3}) = \partial_{x_1 x_1}^+ q_{11} + \partial_{x_1 x_2}^- q_{12} + \partial_{x_1 x_3}^- q_{13} + \partial_{x_2 x_1}^+ q_{21} + \partial_{x_2 x_2}^+ q_{22} + \partial_{x_2 x_3}^- q_{23} + \partial_{x_3 x_1}^- q_{31} + \partial_{x_3 x_2}^- q_{32} + \partial_{x_3 x_3}^+ q_{33}. \quad (4.1)$$

Then it is easy to verify that $\langle H(\phi), Q \rangle_\mathcal{W} = \langle \phi, H^*(Q) \rangle_\mathcal{Y}$. Namely, H^* is the adjoint operator of H. The minimizer of the problems (3.11) is the same as the minimizer of the following problem:

$$\phi^n = \arg\min_{\phi} \mathcal{L}(\phi, Q^{n-1}; \Lambda^n) \quad (4.2)$$

$$= \arg\min_{\phi} \left(\frac{\eta}{2} \|\phi - \phi_0\|^2_\mathcal{Y} + \frac{r}{2} \|Q^{n-1} - H(\phi)\|^2_\mathcal{W} - \langle \Lambda^n, H(\phi) \rangle_\mathcal{W} \right),$$

whose minimizer ϕ^n satisfies the Euler–Lagrange equation

$$\eta(\phi^n - \phi_0) + rH^* H(\phi^n) - rH^*(Q^{n-1}) - H^*(\Lambda^n) = 0, \quad (4.3)$$

$$\eta + rH^* H(\phi^n) = rH^*(Q^{n-1}) + H^*(\Lambda^n) + \eta \phi_0.$$

Since the periodic boundary condition is imposed, (4.3) can be efficiently solved using the fast Fourier transform (FFT). If we write \mathcal{F} as the discrete Fourier transform, then

$$\mathcal{F}\partial_{x_1}^+ \phi(i, j, k) = (e^{\sqrt{-1}\theta_1} - 1)\mathcal{F}\phi(i, j, k), \quad \mathcal{F}\partial_{x_1}^- \phi(i, j, k) = (1 - e^{-\sqrt{-1}\theta_1})\mathcal{F}\phi(i, j, k),$$

$$\mathcal{F}\partial_{x_2}^+ \phi(i, j, k) = (e^{\sqrt{-1}\theta_2} - 1)\mathcal{F}\phi(i, j, k), \quad \mathcal{F}\partial_{x_2}^- \phi(i, j, k) = (1 - e^{-\sqrt{-1}\theta_2})\mathcal{F}\phi(i, j, k),$$

$$\mathcal{F}\partial_{x_3}^+ \phi(i, j, k) = (e^{\sqrt{-1}\theta_3} - 1)\mathcal{F}\phi(i, j, k), \quad \mathcal{F}\partial_{x_3}^- \phi(i, j, k) = (1 - e^{-\sqrt{-1}\theta_3})\mathcal{F}\phi(i, j, k),$$

where

$$\theta_1 = \frac{2\pi}{N_1} i, \quad i = 1, \ldots, N_1, \quad \theta_2 = \frac{2\pi}{N_2} j, \quad j = 1, \ldots, N_2, \quad \theta_3 = \frac{2\pi}{N_3} k, \quad k = 1, \ldots, N_3.$$

By applying the FFT on both sides of (4.3), we get

$$(\eta + 4r(\cos \theta_1 + \cos \theta_2 + \cos \theta_3 - 3)^2)\mathcal{F}\phi(i, j, k) = \mathcal{F}g(i, j, k), \quad (4.4)$$

where $g = rH^*(Q^{n-1}) + H^*(\Lambda^n) + \eta \phi_0$.

On the other hand, the minimizer of the problems (3.12) is the same as the minimizer of the following problem:

$$Q^n = \arg\min_Q \mathcal{L}(\phi^n, Q; \Lambda^n) \quad (4.5)$$

$$= \arg\min_Q \|Q\|_\mathcal{W} + \frac{r}{2} \|Q - H(\phi^n)\|_\mathcal{W}^2 + \langle \Lambda^n, Q \rangle_\mathcal{W}$$

$$= \arg\min_Q \|Q\|_\mathcal{W} + \frac{r}{2} \left\| Q - \left(H(\phi^n) - \frac{\Lambda^n}{r} \right) \right\|_\mathcal{W}^2,$$
whose solution is analytically given by [49]:

\[Q^m(i, j, k) = \max \left\{ 0, 1 - \frac{1}{r^m(i, j, k)} \right\} B^m(i, j, k), \]

where \(B^m = H(\phi^m) - A^m \).

In summary, by utilizing formulas (4.4) and (4.6) in Algorithm 2, we can easily compute the solution to the variational model (2.4). As the common property of the augmented Lagrangian and operator splitting methods, the original nonlinear and high order variational model (2.4) can be split into several subproblems, which can be solved either with analytical forms or by fast algorithms. Therefore, we can expect that the proposed augmented Lagrangian algorithm for our model will be solved efficiently. In the next section, we will show several numerical results to demonstrate the proposed model and Algorithm 2 for 3D surface restoration.

5. Numerical results. In this section, we illustrate experimental results on several synthetic surfaces using the proposed model and algorithm. We first design a numerical experiment to show the parameter dependence of the proposed method. In order to demonstrate the efficiency and robustness of the proposed method, we also conduct numerical comparisons with the MCF method [40] and nonlocal mean method [14]. In addition, we indicate the possible applications of our method to surface processing in 3D medical imaging. All experiments are implemented by C++ in a PC with a 4G RAM and a 2.66 GHz CPU.

Given a clean surface \(M_c \) represented by its signed distance function \(\phi_{M_c} : \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \times \mathbb{R}^{N_3} \rightarrow \mathbb{R} \), we consider a synthetic noise-contaminated surface \(M_n \) implicitly represented by \(\phi_0 = \phi_{M_c} + \sigma \xi \), where \(\xi \) satisfies the standard normal distribution \(\mathcal{N}(0, 1) \). Using the proposed Algorithm 2, a sequence \(\{ \phi^k \mid k = 1, 2, \ldots \} \) can be obtained to approximate the minimizer of the model (2.4). We fix a small number \(\epsilon \) as the tolerance and stop the iteration at the \(k \)th step if \(\phi^k \) satisfies

\[\frac{1}{N_1 \cdot N_2 \cdot N_3} \| \phi^k - \phi^{k-1} \| < \epsilon. \]

In the first numerical experiment, we test the parameter dependence of the proposed model (2.4). The parameter \(r \) in Algorithm 2 comes from the augmented Lagrangian method. The scale of \(r \) controls the difference between the auxiliary variable \(Q \) and \(H(\phi) \). According to Theorem 3.2, the proposed Algorithm 2 will converge for any positive number \(r \). However, the rate of convergence will depend on the choice of \(r \). Another parameter \(\eta \) controls the weight of the fidelity term in the energy functional. The smaller \(\eta \) is chosen, the smoother output surface will be obtained. As all variational methods for denoising problems, the choice of \(\eta \) is dependent on the scale of noise of the input surface.

Figure 4 reports experiments for testing the parameter dependence of the proposed surface restoration model. In our experiment, we fix the stopping criteria \(\epsilon = 10^{-8} \) and use a noisy contaminated surface, an octa-flower surface with size \(124 \times 123 \times 90 \), shown in the first row of Figure 4, and then we test the proposed Algorithm 2 in two sets of parameters. First, we fix \(\eta = 10 \) and set \(r = 1, 10, 50, 100 \) to test the effect of the parameter \(r \). The error and energy evolution curves via iteration numbers are shown in the first two images in the second row of Figure 4, and

\[\text{The octa-flower surface and other three synthetic surfaces are obtained from the publicly available database SHARP3D.} \]
the corresponding surface restoration results are shown in the third row of Figure 4. From our results, it is clear to see that different choices of \(r \) will provide similar surface restoration results, while the algorithm may have different rates of convergence in terms of different values of \(r \). Second, we fix \(r = 10 \) and set \(\eta = 1, 10, 50, 100 \) to test the effect of the parameter \(\eta \). According to the error, energy evolution curves, and restoration results shown in Figure 4, we can observe that the scale of \(\eta \) will control the smoothness of the restoration results. The smaller \(\eta \) will provide the smoother output surface. A suitable choose of \(\eta \) will provide a ridge and corner preserving restoration result, which is compatible with the analysis discussed in section 2.3. According the energy evolution curves shown in Figure 4, it can also be observed that

Fig. 4. Parameter dependence of the proposed model. The first row: The clean surface and the input surface contaminated by Gaussian white noise \((\sigma = 0.1) \). The second row: Numerical error of Lagrangian multipliers \(\log(||Q - H(\phi)||^2_W) \) and energy evolution curves via iteration numbers. The third row: Surface restoration results by fixing \(\eta = 10 \) and choosing \(r = 1, 10, 50, 100 \), respectively. The fourth row: Surface restoration results by fixing \(r = 10 \) and choosing \(\eta = 1, 10, 50, 100 \), respectively.
the proposed algorithm does provide an efficient approach to solving the proposed fourth order model. Although different combinations of the parameters are chosen, only small numbers of iterations are needed such that the auxiliary variable Q converges to $H(Q)$, the energy converges to steady states, and satisfactory results are produced in all experiments.

In the second experiment, we compare our method with the MCF method [40] and nonlocal mean method [14]. To test the restoration results for all three methods, we synthesize noise-contaminated surfaces. Given a clean surface M_c with signed distance function representation ϕ_{M_c}, Gaussian white noise is added to ϕ_{M_c} to have the input noisy surface ϕ^0. The output ϕ^k from all three methods will not only smooth out M_n as the zero level set of ϕ^0 but also smooth out each layer of ϕ^0 near M_n. Thus, we measure the difference between ϕ^k and ϕ_{M_c} in a narrow band of M_c to have a quantitative description of the restoration result. In other words, we propose the following signal-to-noise ratio (SNR):

$$\begin{align*}
SNR_{\text{in}} &= 10 \log_{10} \frac{\int_{D_\epsilon} \phi_{M_c}^2 \, dx}{\int_{D_\epsilon} (\phi_{M_c} - \phi^0)^2 \, dx}, \\
SNR_{\text{out}} &= 10 \log_{10} \frac{\int_D \phi_{M_c}^2 \, dx}{\int_D (\phi_{M_c} - \phi^k)^2 \, dx},
\end{align*}$$

where D_ϵ is the narrow band of M_c within twice the grid width.

Four clean surfaces used in our experiment are plotted in Figure 5. We contaminate these four surfaces with two scales, $\sigma = 0.1$ and $\sigma = 0.15$, of Gaussian noise as the input surfaces illustrated in the first column of Figures 6 and 7. For all three methods, parameters are tuned to produce the best possible results. We choose $\eta = 10, r = 5$, and $\epsilon = 10^{-8}$ in our method and set time step $dt = 0.0001$ in the MCF method. The code of a nonlocal mean method is obtained from the authors in [14], where computation is conducted in a surface narrow band to save computation time and the patch size is chosen to be $11 \times 11 \times 11$. We would like to point out that a larger patch size in the nonlocal mean method will slightly improve the restoration results, but the computation will be extremely time consuming. Thus we report only results using patch size $11 \times 11 \times 11$. We choose the weight for the similarity function as $c = 0.85$ in the case of $\sigma = 0.1$ and $c = 1$ in the case of $\sigma = 0.15$. Figures 6 and 7 report the surface restoration results obtained from these three methods. The
quantitative comparison is listed in the Table 1. As predicted by the theory, MCF will smooth out ridges and sharp corners, which cannot provide satisfactory surface restoration results. The nonlocal mean method will provide much better behavior for preserving ridges and sharp corners. However, the processing to compute nonlocal weight is time consuming even though it is conducted only in the narrow band. Our proposed method simultaneously has computational efficiency and properties of preserving ridges and sharp corners. In addition, we would like to point out that the efficiency of the proposed algorithm can be further improved by processing on the surface narrow band.

Finally, we illustrate a potential application of our method to medical image processing. 3D surfaces collected from CT, MR, or 3D ultrasound devices are usually
contaminated by certain noise due to local measurement error, which will further affect the surface analysis afterward. In addition, these medical data have crucial features represented as ridges and sharp corners which need to be preserved. In Figure 8, we demonstrate our method on surface restorations in medical imaging. From the second row of Figure 8, it is clear to see that our method provides promising results with ridge and sharp corner preserving properties.

6. Conclusion. In this work, we propose a ridge and sharp corner preserving model for 3D surface restoration based on vectorial TV for the derivatives of the surface implicit representation functions. Moreover, an efficient numerical algorithm is proposed to solve the minimization problem based on the augmented Lagrangian.
Table 1
Comparison of the proposed method with the MCF method and the nonlocal mean method (NL).

<table>
<thead>
<tr>
<th></th>
<th>SNR_in</th>
<th>Proposed method ($\eta = 10, r = 5$)</th>
<th>MCF ($dt = 0.0001$)</th>
<th>NL ($c = 0.85$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SNR_{out}</td>
<td>iterations</td>
<td>time(s)</td>
<td>SNR_{out}</td>
</tr>
<tr>
<td>sharp sphere</td>
<td>7.23</td>
<td>32</td>
<td>29.43</td>
<td>21.49</td>
</tr>
<tr>
<td>twirl</td>
<td>7.33</td>
<td>34</td>
<td>44.18</td>
<td>18.77</td>
</tr>
<tr>
<td>block</td>
<td>7.45</td>
<td>36</td>
<td>56.40</td>
<td>22.54</td>
</tr>
<tr>
<td>octa flower</td>
<td>10.78</td>
<td>29</td>
<td>21.74</td>
<td>21.01</td>
</tr>
<tr>
<td></td>
<td>SNR_{in}</td>
<td>Proposed method ($\eta = 10, r = 5$)</td>
<td>MCF ($dt = 0.0001$)</td>
<td>NL ($c = 1$)</td>
</tr>
<tr>
<td></td>
<td>SNR_{out}</td>
<td>iterations</td>
<td>time(s)</td>
<td>SNR_{out}</td>
</tr>
<tr>
<td>sharp sphere</td>
<td>3.74</td>
<td>30</td>
<td>26.89</td>
<td>20.57</td>
</tr>
<tr>
<td>twirl</td>
<td>3.82</td>
<td>33</td>
<td>46.08</td>
<td>18.13</td>
</tr>
<tr>
<td>block</td>
<td>3.94</td>
<td>34</td>
<td>50.60</td>
<td>21.74</td>
</tr>
<tr>
<td>octa flower</td>
<td>7.25</td>
<td>29</td>
<td>21.45</td>
<td>20.56</td>
</tr>
</tbody>
</table>

Fig. 8. The first row: Noisy surfaces. The second row: Results obtained by the proposed method.

method. Meanwhile, we theoretically prove the convergence of the proposed algorithm. To demonstrate the robustness and efficiency of the proposed method, we compare our method with an MCF method and a nonlocal mean method. In addition, we also illustrate possible applications of the proposed method to surface restoration in medical imaging.

Acknowledgments. We would like to thank Professor S. Osher and Professor B. Dong for the valuable discussion and the nonlocal mean code. Last but not least, we also thank the anonymous referees for their valuable comments and suggestions.

REFERENCES

