University of Massachusetts Medical School eScholarship@UMMS

PEER Liberia Project

UMass Medical School Collaborations in Liberia

2019-2

Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics

Jonggyu Baek University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer Part of the <u>Biostatistics Commons</u>, <u>Family Medicine Commons</u>, <u>Infectious Disease Commons</u>, <u>Medical Education Commons</u>, and the <u>Public Health Commons</u>

Repository Citation

Baek, Jonggyu, "Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics" (2019). PEER Liberia Project. 10. https://escholarship.umassmed.edu/liberia_peer/10

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Department of Quantitative Health Sciences

Introduction to Biostatistics

2/26/2019

Jonggyu Baek, PhD

Outline

• Purpose

Introduction to biostatistics

• Descriptive Statistics

Department of Quantitative Health Sciences

Purpose of the course

- Basic principles and applications of statistics to problems in clinical and public health settings.
- Will cover tools for statistical inference: t-test, chisquare tests, ANOVA, Linear regression.
- Interpretation and presentation of the results
- Introductory foundation for the implementation of those techniques using R or R studio software.

Department of Quantitative Health Sciences

References

Multiple authors, Openstax College
 Introductory Statistics

Publisher: OpenStx, Pubdate: 2013

https://open.umn.edu/opentextbooks/textbooks/introducto ry-statistics-2013

- Quick-R: <u>https://www.statmethods.net/</u>
- UCLA statistical computing: <u>https://stats.idre.ucla.edu/</u>

What is Statistics?

- **Statistics** is the **science** of learning from **data**, and of measuring, controlling, and communicating uncertainty; and it thereby provides the navigation essential for controlling the course of scientific and societal advances (*Davidian, M. and Louis, T. A., 10.1126/science.1218685*).
- Statistics is also an ART ...

of conducting a study, analyzing the data, and derive useful conclusions from numerical outcomes about real life problems...

What is Biostatistics?

- **Biostatistics** is the application of statistics in medical research, e.g.:
 - Clinical trials
 - Epidemiology
 - Pharmacology
 - Medical decision making
 - Comparative Effectiveness Research
 - etc.

Statistical Analysis

Key steps for a complete and accurate statistical analysis:

- State a valid research question
- Collect information (DATA) for answering this question
- Validate/clean/organize the collected information
- Exploratory Data Analysis (EDA)
- Analyze this information
- Translate numerical results into answers
- Interpret results and derive conclusions
- Present the results and communicate with people

Terms in Biostatistics

- Data :
 - all the information we collect to answer the research question
- Variables :
 - Outcome, treatment, study population characteristics
- Subjects :
 - units on which characteristics are measured
- Observations :
 - data elements
- Population :
 - all the subjects of interest
- Sample :
 - a subset of the population for which data are collected

Reference: Introductory Statistics, page 45-46

Sample from Population

	Population	Sample	
Descriptive Measure	Parameter	statistic	Summary of a characteristic
Size	Ν	n	Total # of subjects
Mean	μ	$\overline{\mathbf{X}}$	Average
Variance	σ^2	<i>s</i> ²	Variance

Impossible/impractical to analyze the entire population \rightarrow

 \rightarrow thus we only analyze a sample

Statistical Inference

Collect and analyze data from samples \rightarrow

\rightarrow Calculate summary statistics \rightarrow

→ Make Inference about unknown population parameters (e.g., population average from sample mean)

Department of Quantitative Health Sciences

University of Massachusetts UMASS Medical School

The Framingham Heart Study

https://www.framinghamheartstudy.org/fhs-about/history/epidemiologicalbackground/

- ... "a long term prospective study of the etiology of cardiovascular disease among a population of free living subjects in the community of Framingham, Massachusetts."...
- Identifying risk factors for cardiovascular disease (CVD)
- N=4,434 participants (subset of the original sample)
- Follow-up period: 1956 1968
- Longitudinal data: measurements approximately every 6 years
- 1 to 3 observations for each participant (total 11,627 obs)

The Framingham Heart Study

- Information:
 - ID
 - Age
 - Sex
 - Period (1st, 2nd, or 3rd exam)
 - Systolic Blood Pressure (mmHg)
 - Diastolic Blood Pressure (mmHg)
 - Use of Anti-hypertensive medication at exam (yes/no)
 - Current smoking status (yes/no)
 - Average number of cigarettes smoked/day
 - Prevalent coronary Heart disease (yes/no)
 - ... etc

University of Department of Quantitative Massachusetts Medical School The Framingham Heart Study **Department of Quantitative Health Sciences**

🗷 R	3 RStudio											
File	Edit C	ode View	Plots Se	ssion Bu	uild Debu	g Profile	Tools Help					
• •	오 🔹 🗐 🚔 🖬 📄 🖾 🍡 Go to file/function 🔤 🔡 👻 Addins 👻											
0												
^	sex 🌐	randid 🗦	totchol 🗦	age 🍦	sysbp 🗦	diabp 🗦	cursmoke $\hat{}$	cigpday 🗦	bmi 🍦	diabetes $\hat{}$	bpmeds $\hat{}$	heartrte
1	1	2448	195	39	106.0	70.0	0	0	26.97	0	0	^
2	1	2448	209	52	121.0	66.0	0	0	NA	0	0	
3	2	6238	250	46	121.0	81.0	0	0	28.73	0	0	
4	2	6238	260	52	105.0	69.5	0	0	29.43	0	0	
5	2	6238	237	58	108.0	66.0	0	0	28.50	0	0	
6	1	9428	245	48	127.5	80.0	1	20	25.34	0	0	
7	1	9428	283	54	141.0	89.0	1	30	25.34	0	0	
8	2	10552	225	61	150.0	95.0	1	30	28.58	0	0	
9	2	10552	232	67	183.0	109.0	1	20	30.18	0	0	
10	2	11252	285	46	130.0	84.0	1	23	23.10	0	0	
11	2	11252	343	51	109.0	77.0	1	30	23.48	0	0	
12	2	11252	NA	58	155.0	90.0	1	30	24.61	0	0	
13	2	11263	228	43	180.0	110.0	0	0	30.30	0	0	
14	2	11263	230	49	177.0	102.0	0	0	31.36	0	1	
15	2	11263	220	55	180.0	106.0	0	0	31.17	1	1	
16	2	12629	205	63	138.0	71.0	0	0	33.11	0	0	
17	2	12629	220	70	149.0	81.0	0	0	36.76	0	0	
18	2	12806	313	45	100.0	71.0	1	20	21.68	0	0	
19	2	12806	NA	51	109.5	72.5	1	30	22.19	0	0	
20	2	12806	320	57	110.0	46.0	1	30	22.02	0	0	
21	1	14367	260	52	141.5	89.0	0	0	26.36	0	0	
22	1	14367	292	58	132.0	90.0	0	0	25.39	0	0	
23	1	14367	280	64	168.0	100.0	0	0	25.72	0	0	
24	1	16365	225	43	162.0	107.0	1	30	23.61	0	0	
<	4	10005	250	40	147.0	102.0	^	•	27.50	•	4	>

Showing 1 to 26 of 11,627 entries

- Data :
- Variables :
- Subjects :
- Observations :
- Population :
- Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
- Subjects :
- Observations :
- Population :
- Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
- Observations :
- Population :
- Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
 - participants (each one with unique ID number "randid")
- Observations :
- Population :
- Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
 - participants (each one with unique ID number "randid")

• Observations :

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.

• Population :

• Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
 - participants (each one with unique ID number "randid")

• Observations :

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.
- Population :
 - … "a population of free living subjects in the community of Framingham, Massachusetts."…
- Sample :

- Data :
 - all the collected information for the purposes of this study
- Variables :
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
 - participants (each one with unique ID number "randid")

• Observations :

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.
- Population :
 - … "a population of free living subjects in the community of Framingham, Massachusetts."…
- Sample :
 - Subset of the population of size n=4,434

Department of Quantitative Health Sciences

Classification of Variables

Reference: Introductory Statistics, Chapter 1.3

Classification of Variables: Example The Framingham Heart Study

- Discrete Variables:
 - Nominal:
 - Ordinal:
- Continuous Variables:

Department of Quantitative Health Sciences

Massachusetts Medical School The Framingham Heart Study

📵 R	RStudio												
File	File Edit Code View Plots Session Build Debug Profile Tools Help												
ο.	💁 🗸 🥸 🖌 🔚 🔚 📥 🕐 Go to file/function 🛛 🗄 👻 Addins 👻												
0	Lec1.R × dat1 ×												
-	sex ‡	randid [‡]	totchol $^{\diamond}$	age 🍦	sysbp 🔅	diabp 🗦	cursmoke $^{\diamond}$	cigpday 🔅	bmi 🗦	diabetes $\ ^{\diamond}$	bpmeds $\stackrel{\diamond}{}$	heartrte	
1	1	2448	195	39	106.0	70.0	0	0	26.97	0	0	^	
2	1	2448	209	52	121.0	66.0	0	0	NA	0	0		
3	2	6238	250	46	121.0	81.0	0	0	28.73	0	0		
4	2	6238	260	52	105.0	69.5	0	0	29.43	0	0		
5	2	6238	237	58	108.0	66.0	0	0	28.50	0	0		
6	1	9428	245	48	127.5	80.0	1	20	25.34	0	0		
7	1	9428	283	54	141.0	89.0	1	30	25.34	0	0		
8	2	10552	225	61	150.0	95.0	1	30	28.58	0	0		
9	2	10552	232	67	183.0	109.0	1	20	30.18	0	0		
10	2	11252	285	46	130.0	84.0	1	23	23.10	0	0		
11	2	11252	343	51	109.0	77.0	1	30	23.48	0	0		

Classification of Variables: Example The Framingham Heart Study

- Discrete Variables:
 - Nominal: "sex", "cursmoke", etc.
 - Ordinal: "period"
- Continuous Variables:
 - "sysbp", "bmi", etc

Descriptive statistics for Discrete variables

- Frequency (f): Number (#) of subjects in each category.
- Relative frequency ($\frac{f}{n} \cdot 100$): Proportion (%) of subjects in each category.

Example: calculate number/proportion of subjects in each period

Period	Frequency (f)	Relative Frequency (%)	Cumulative Relative Frequency (%)
1	4434	$\frac{4434}{11627}$ · 100 = 38.1	38.1
2	3930	33.8	71.9
3	3260	28.1	100
Total	11627	100	

Descriptive statistics for Discrete variables

- Frequency (f): Number (#) of subjects in each category.
- Relative frequency ($\frac{f}{n} \cdot 100$): Proportion (%) of subjects in each category.

Example: calculate number/proportion of subjects in each period in R

Graphical Methods for Discrete variables

• **Bar plots :** indicate frequency or relative frequency distribution

```
barplot(tab1, xlab="Period", ylab = "Frequency")
barplot(rel_tab1, xlab="Period", ylab="Proportion")
```


Descriptive statistics for Discrete variables

• Frequency and relative frequency $(\frac{f}{n} \cdot 100)$ by groups Example: calculate number/proportion of subjects in each period in R by sex (female if sex=2)

```
## period by sex ##
tab2 = table(dat1$period. dat1$sex)
tab2
rel_tab2 = prop.table(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
rel tab2
cbind(tab2, rel_tab2)
> ## period by sex ##
> tab2 = table(dat1$period, dat1$sex)
> tab2
       1
            2
  1 1944 2490
  2 1691 2239
  3 1387 1876
> rel_tab2 = prop.table(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
> rel_tab2
           1
                     2
  1 38,70968 37,69871
  2 33.67184 33.89856
  3 27.61848 28.40273
>
> cbind(tab2, rel_tab2)
     1
          2
                   1
1 1944 2490 38.70968 37.69871
2 1691 2239 33.67184 33.89856
3 1387 1876 27.61848 28.40273
```

Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.

Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.
 Mean Median Quartiles Mode Min Max 	 Range Variance Standard Deviation Interquartile range (IQR) Mean Absolute Deviation (MAD) Coefficient of variation

Measures of Location¹: Meant (\bar{x})

Definition	Formula
Average value.A typical value for the variable of interest.	$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{X}_{i}}{n}$

- Sample of n=7
- X= Systolic Blood Pressure in mmHg:

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

Measures of Location¹: Meant (\overline{x})

Definition	Formula
 Average value. A typical value for the variable of interest. 	$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{X}_{i}}{n}$

- Sample of n=7
- X= Systolic Blood Pressure in mmHg:

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{X_{1} + X_{2} + X_{3} + \dots + X_{7}}{n} = \frac{121 + 110 + 114 + \dots + 130}{7} = \frac{865}{7} = 123.57 \approx 123.6$$

Measures of Location^u:^{ntitative Health Sciences} Median

	Definition	Formula
•	The middle value of the variable of interest. 50% of the collected values are less and 50% are greater than the median.	• If n odd: the $\frac{(n+1)}{2}^{th}$ observation
		 If n even: mean of the ^{nth}/₂ and the (ⁿ/₂ + 1)th observations in the ordered sample

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	Х ₍₃₎	X ₍₄₎	X ₍₅₎	X (6)	X ₍₇₎
	100	110	114	121	130	130	160

Measures of Location^u:^{Intitative Health Sciences} Median

	Definition	Formula
•	The middle value of the variable of interest. 50% of the collected values are less and 50% are greater than the median.	• If n odd: the $\frac{(n+1)^{th}}{2}$ observation
		 If n even: mean of the (ⁿ/₂)th and the (ⁿ/₂ + 1)th observations in the ordered sample

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	Х ₍₃₎	X ₍₄₎	Х ₍₅₎	X ₍₆₎	X ₍₇₎
	100	110	114	121	130	130	160

n=7 \rightarrow odd # \rightarrow median: $\frac{(7+1)}{2}$ = 4th observation in the ordered sample

$$\rightarrow$$
 median = X₍₄₎ = 121

CTS605A - Lecture Notes, Jonggyu Baek, PhD

Measures of Location¹:^{ntitative Health Sciences} Median

Unordered	X ₁	X ₂	X ₃	X ₄	X 5	X ₆
	121	110	114	100	160	130
Ordered	X (1)	X ₍₂₎	Х ₍₃₎	X ₍₄₎	X ₍₅₎	Х ₍₆₎
	100	110	114	121	130	130

Measures of Location¹:^{ntitative Health Sciences} Median

n=6 → even # → median: mean of the $(\frac{6}{2})=3^{\text{th}}$ and the $(\frac{6}{2}+1)=4^{\text{th}}$ observations in the ordered sample → median = $\frac{X_{(3)}+X_{(4)}}{2} = \frac{114+121}{2} = 117.5$

Measures of Location^u:^{ntitative Health Sciences} Quartiles

- First (**Q**₁): 25% of the collected values are less than Q₁.
- Second (**Q**₂): 50% of the collected values are less than Q₂ (median).
- Third (\mathbf{Q}_3) : 75% of the collected values are less than \mathbf{Q}_3 .

Measures of Location^u:^{ntitative Health Sciences} **Percentiles**

- $\mathbf{q}_{\mathbf{p}}$: p% of the collected values are less than $\mathbf{q}_{\mathbf{p}}$.
- E.g., q₁ is that value of the population (or sample) with 1% of the observed values being less and 99% being grater than it.

Measures of Location¹:^{ntitative Health Sciences} Mode / Min / Max

- **Min**: the minimum of the collected values $(X_{(1)})$.
- **Max**: the maximum of the collected values (X_(n)).
- Mode: the most frequent of the collected values.

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	Х ₍₆₎	X ₍₇₎
	100	110	114	121	130	130	160

Measures of Location¹:^{ntitative Health Sciences} Mode / Min / Max

- **Min**: the minimum of the collected values $(X_{(1)})$.
- **Max**: the maximum of the collected values (**X**_(n)).
- Mode: the most frequent of the collected values.

Measures of Dispersion: titative Health Sciences Variance (s²)

	Definition	Formula
•	Average squared deviation from the mean.	$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$

• $\overline{\mathbf{X}} = 123.6$

X ₁	X ₂	X ₃	X ₄	X ₅	X 6	X ₇
121	110	114	100	160	130	130

Measures of Dispersion: titative Health Sciences Variance (s²)

	Definition	Formula
•	Average squared deviation from the	$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{2}$
		n-1

• $\overline{\mathbf{X}} = 123.6$

X ₁	X ₂	X ₃	X ₄	X 5	X 6	X ₇
121	110	114	100	160	130	130

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{(X_{1} - \overline{X})^{2} + \dots + (X_{7} - \overline{X})^{2}}{n-1} = \frac{(121 - 123.6)^{2} + \dots + (130 - 123.6)^{2}}{7-1} = \frac{(121 - 123.6)^{2} + \dots + (130 - 123.6)^{2}}{7-1} = \frac{(121 - 123.6)^{2} + \dots + (130 - 123.6)^{2}}{7-1}$$

$$=\frac{2247.72}{6}=374.62\approx374.6$$

CTS605A - Lecture Notes, Jonggyu Baek, PhD

Other Measures of Dispersion:

Definition	Formula
 Standard deviation 	$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$
Mean Absolute Deviation (MAD)	$MAD = \frac{\sum_{i=1}^{n} X_i - \overline{X} }{n}$
Range	Max – Min
 Interquartile Range (IQR) 	$Q_{3} - Q_{1}$
Coefficient of variation	$\frac{s}{\overline{X}}$


```
> ## the overall summary stat for sysbp ##
> describe(dat1$sysbp)
                     sd median trimmed mad min max range skew kurtosis
  vars
               mean
                                                                          se
     1 11627 136.32 22.8
                           132 134.34 20.76 83.5 295 211.5 0.94
                                                                   1.37 0.21
X1
>
> ## the summary stat for sysbp by sex ##
> describeBy(dat1$sysbp, dat1$sex)
Descriptive statistics by group
group: 1
          n mean sd median trimmed mad min max range skew kurtosis
  vars
                                                                         se
     1 5022 135.07 20.3 132 133.37 19.27 83.5 235 151.5 0.86
                                                                  0.93 0.29
X1
group: 2
                     sd median trimmed
                                        mad min max range skew kurtosis se
  vars
          n
              mean
     1 6605 137.28 24.49 133 135.15 22.24 83.5 295 211.5 0.93
X1
                                                                   1.28 0.3
```

SEX = 1 for male, 2 for female

Std.dev = $Var(X_i)$ to explain variation of sysbp

SE.mean = $\sqrt{Var(\bar{X})}$ to explain variation of MEAN sysbp CTS605A - Lecture Notes, Jonggyu Baek, PhD

Graphical Methods for Continuous variables

Histogram : indicate the distribution of the values of a continuous variable.

```
## Histogram of sysbp by sex ##
dat_m = subset(dat1, sex==1) ## get a subset for male
dat_f = subset(dat1, sex==2) ## get a subset for female
par(mfrow = c(1,2)) ## to draw two plots side by side
hist(dat_m$sysbp, main="Histogram of sysbp for male")
hist(dat_f$sysbp, main="Histogram of sysbp for female")
```

Graphical Methods for Continuous variables

Box - Plot : indicate the distribution of the values of a continuous variable, pointing out the following quantities:

Department of Quantitative Health Sciences

Outliers

- Observations above Q3 + 1.5IQR or below Q1 – 1.5IQR are called, "outliers", in the box plot.
- Outliers are not caused by typo or errors.
- Outliers are simply part of data, which can not be ignored.
- Outliers explain how many extreme values are located at tails of a distribution.

47

Graphical Methods for Continuous variables

• **Box-Plot :** the distribution of the values of a continuous variable.

A box plot of sysbp by sex
par(mfrow = c(1,1))
boxplot(sysbp ~ sex, data=dat1, main="Box plot of sysbp by sex")

Box plot of sysbp by sex

