Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics

Jonggyu Baek
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer
Part of the Biostatistics Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Public Health Commons

Repository Citation

Baek, Jonggyu, "Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics" (2019). PEER Liberia Project. 10.
https://escholarship.umassmed.edu/liberia_peer/10 Massachusetts

Department of Quantitative Health Sciences

 UMASS. Medical School
Introduction to Biostatistics

2/26/2019

Jonggyu Baek, PhD

Outline

- Purpose
- Introduction to biostatistics
- Descriptive Statistics

Purpose of the course

- Basic principles and applications of statistics to problems in clinical and public health settings.
- Will cover tools for statistical inference: t-test, chisquare tests, ANOVA, Linear regression.
- Interpretation and presentation of the results
- Introductory foundation for the implementation of those techniques using R or R studio software.

References

- Multiple authors, Openstax College Introductory Statistics
Publisher: OpenStx, Pubdate: 2013
https://open.umn.edu/opentextbooks/textbooks/introducto ry-statistics-2013
- Quick-R: https://www.statmethods.net/
- UCLA statistical computing: https://stats.idre.ucla.edu/

What is Statistics?

- Statistics is the science of learning from data, and of measuring, controlling, and communicating uncertainty; and it thereby provides the navigation essential for controlling the course of scientific and societal advances (Davidian, M. and Louis, T. A., 10.1126/science.1218685).
- Statistics is also an ART ...
of conducting a study, analyzing the data, and derive useful conclusions from numerical outcomes about real life problems...

What is Biostatistics?

- Biostatistics is the application of statistics in medical research, e.g.:
- Clinical trials
- Epidemiology
- Pharmacology
- Medical decision making
- Comparative Effectiveness Research
- etc.

Statistical Analysis

Key steps for a complete and accurate statistical analysis:

- State a valid research question
- Collect information (DATA) for answering this question
- Validate/clean/organize the collected information
- Exploratory Data Analysis (EDA)
- Analyze this information
- Translate numerical results into answers
- Interpret results and derive conclusions
- Present the results and communicate with people

Terms in Biostatistics

- Data :
- all the information we collect to answer the research question
- Variables:
- Outcome, treatment, study population characteristics
- Subjects :
- units on which characteristics are measured
- Observations :
- data elements
- Population :
- all the subjects of interest
- Sample :
- a subset of the population for which data are collected

Sample from Population

	Population	Sample	
Descriptive Measure	Parameter	statistic	Summary of a characteristic
Size	N	n	Total \# of subjects
Mean	μ	$\overline{\mathrm{x}}$	Average
Variance	σ^{2}	s^{2}	Variance

Impossible/impractical to analyze the entire population \rightarrow
$\rightarrow \quad$ thus we only analyze a sample

Statistical Inference

Collect and analyze data from samples \rightarrow

\rightarrow Calculate summary statistics \rightarrow

\rightarrow Make Inference about unknown population parameters (e.g., population average from sample mean)

The Framingham Heart Study

https://www.framinghamheartstudy.org/fhs-about/history/epidemiological-

background/

- ... "a long term prospective study of the etiology of cardiovascular disease among a population of free living subjects in the community of Framingham, Massachusetts." ...
- Identifying risk factors for cardiovascular disease (CVD)
- $\mathrm{N}=4,434$ participants (subset of the original sample)
- Follow-up period: 1956-1968
- Longitudinal data: measurements approximately every 6 years
- 1 to 3 observations for each participant (total 11,627 obs)

The Framingham Heart Study

- Information:
- ID
- Age
- Sex
- Period ($1^{\text {st }}, 2^{\text {nd }}$, or $3^{\text {rd }}$ exam)
- Systolic Blood Pressure (mmHg)
- Diastolic Blood Pressure (mmHg)
- Use of Anti-hypertensive medication at exam (yes/no)
- Current smoking status (yes/no)
- Average number of cigarettes smoked/day
- Prevalent coronary Heart disease (yes/no)
- ... etc

The Framingham Heart Study

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- Variables :
- Subjects :
- Observations :
- Population :
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables :
- Subjects :
- Observations :
- Population :
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables :
- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects:
- Observations :
- Population :
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables :
- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
- participants (each one with unique ID number "randid")
- Observations :
- Population :
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables :
- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects :
- participants (each one with unique ID number "randid")
- Observations :
- Each element of the dataset, e.g. for participant with "randin" $=9428$:
- "period"=2, "totchol"=283, "age"=54, ... etc.
- Population :
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables :
- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects:
- participants (each one with unique ID number "randid")
- Observations :
- Each element of the dataset, e.g. for participant with "randin" $=9428$:
- "period"=2, "totchol"=283, "age"=54, ... etc.
- Population :
- ... "a population of free living subjects in the community of Framingham, Massachusetts."...
- Sample :

Statistical Concepts: Example 1 The Framingham Heart Study

- Data :
- all the collected information for the purposes of this study
- Variables:
- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects:
- participants (each one with unique ID number "randid")
- Observations :
- Each element of the dataset, e.g. for participant with "randin" $=9428$:
- "period"=2, "totchol"=283, "age"=54, ... etc.
- Population :
- ... "a population of free living subjects in the community of Framingham, Massachusetts."...
- Sample :
- Subset of the population of size $n=4,434$

Classification of Variables

Classification of Variables: Example The Framingham Heart Study

- Discrete Variables:
- Nominal:
- Ordinal:
- Continuous Variables:

The Framingham Heart Study

Classification of Variables: Example The Framingham Heart Study

- Discrete Variables:
- Nominal: "sex", "cursmoke", etc.
- Ordinal: "period"
- Continuous Variables:
- "sysbp", "bmi", etc

Descriptive statistics for Discrete variables

- Frequency (f): Number (\#) of subjects in each category.
- Relative frequency $\left(\frac{f}{\mathbf{n}} \cdot \mathbf{1 0 0}\right)$: Proportion (\%) of subjects in each category.

Example: calculate number/proportion of subjects in each period

Period	Frequency (f)	Relative Frequency $(\%)$	Cumulative Relative Frequency (\%)
1	4434	$\frac{4434}{11627} \cdot 100=38.1$	38.1
2	3930	33.8	71.9
3	3260	28.1	100
Total	11627	100	

Descriptive statistics for Discrete variables

- Frequency (f): Number (\#) of subjects in each category.
- Relative frequency $\left(\frac{\mathbf{f}}{\mathbf{n}} \cdot \mathbf{1 0 0}\right)$: Proportion (\%) of subjects in each category.

Example: calculate number/proportion of subjects in each period in \mathbf{R}

```
## frequency and relative frequency of period ##
tab1 = table(dat1$period)
n = sum(tab1)
re1_tab1 = tab1/n*100 ## alternative way: prop.table(tab1)*100
cum_tab1 = cumsum(re1_tab1)
cbind(tab1, re1_tab1, cum_tab1)
    > cbind(tab1, re1_tab1, cum_tab1)
        tab1 re1_tab1 cum_tab1
    14434 38.13537 38.13537
    2 3930 33.80064 71.93601
    3 3263 28.06399 100.00000
```


Graphical Methods for Discrete variables

- Bar plots : indicate frequency or relative frequency distribution

```
barp1ot(tab1, x1ab="Period", y1ab = "Frequency")
barplot(re1_tab1, xlab="Period", ylab="Proportion")
```


Descriptive statistics for Discrete variables

- Frequency and relative frequency $\left(\frac{f}{n} \cdot 100\right)$ by groups Example: calculate number/proportion of subjects in each period in R by sex (female if sex=2)

```
## period by sex ##
tab2 = table(dat1$period, dat1$sex)
tab2
re1_tab2 = prop.tab1e(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
rel_tab2
cbind(tab2, re1_tab2)
> ## period by sex ##
> tab2 = table(dat1$period, dat1$sex)
> tab2
    1 2
    11944 2490
    2 1691 2239
    313871876
> rel_tab2 = prop.table(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
> rel_tab2
    rrra
    2 33.67184 33.89856
    3 27.61848 28.40273
> cbind(tab2, re1_tab2)
    1
2 1691 2239}333.67184 33.8985
31387 1876 27.61848 28.40273
```


Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.

Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.
- Mean	- Range
- Median	- Variance
- Muartiles	- Standard Deviation
- Min	- Interquartile range (IQR)
- Max	- Mean Absolute Deviation (MAD)

Measures of Location : Mean ($\overline{\mathrm{x}}$)

Definition	Formula
- Average value.	
- A typical value for the variable of interest.	$\overline{\mathrm{X}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}}{\mathrm{n}}$

- Sample of $n=7$
- $\mathrm{X}=$ Systolic Blood Pressure in mmHg:

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}	X $_{5}$	X $_{6}$	X $_{7}$
121	110	114	100	160	130	130

Measures of Location : Mean ($\overline{\mathrm{x}}$)

Definition	Formula
- Average value.	$\overline{\sum_{\mathrm{i}}} \mathrm{n}=\frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{n}}$

- Sample of $n=7$
- $\mathrm{X}=$ Systolic Blood Pressure in mmHg:

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}	X $_{5}$	X $_{6}$	X $_{7}$
121	110	114	100	160	130	130

$\overline{\mathrm{X}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}}{\mathrm{n}}=\frac{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\cdots+\mathrm{X}_{7}}{\mathrm{n}}=\frac{121+110+114+\cdots+130}{7}=\frac{865}{7}=123.57 \approx 123.6$

Measures of Location : Median

Definition				Formula			
- The middle value of the variable of interest. - 50% of the collected values are less and 50% are greater than the median.				- If n odd: the ${\frac{(\mathrm{n}+1)^{t h}}{2}}^{\text {th }}$ observation - If n even: mean of the $\frac{\mathrm{n}^{\text {th }}}{2}$ and the $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ observations in the ordered sample			
Unordered	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
	121	110	114	100	160	130	130
Ordered	$\mathrm{X}_{(1)}$	$\mathrm{X}_{(2)}$	$\mathrm{X}_{(3)}$	$\mathrm{X}_{(4)}$	$\mathrm{X}_{(5)}$	$\mathrm{X}_{(6)}$	$\mathrm{X}_{(7)}$
	100	110	114	121	130	130	160

Measures of Location : Median

Definition				Formula			
- The middle value of the variable of interest. - 50% of the collected values are less and 50% are greater than the median.				- If n odd: the $\frac{(\mathrm{n}+1)}{2}$ th observation - If n even: mean of the $\left(\frac{\mathrm{n}}{2}\right)^{\text {th }}$ and the $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ observations in the ordered sample			
Unordered	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
	121	110	114	100	160	130	
Ordered	$\mathrm{X}_{(1)}$	$\mathrm{X}_{(2)}$	$\mathrm{X}_{(3)}$	$\mathrm{X}_{(4)}$	X_{151}	"(6)	$\mathrm{X}_{(7)}$
	100	110	114	121	130	130	160

$\mathrm{n}=7 \rightarrow$ odd $\# \rightarrow$ median: $\frac{(7+1)}{2}=4^{\text {th }}$ observation in the ordered sample

$$
\rightarrow \underset{\text { Jonggyu Baek, PhD }}{\text { median }}=X_{(4)}=121
$$

Measures of Location : Median

Unordered	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
	121	110	114	100	160	130
Ordered	$\mathrm{X}_{(1)}$	$\mathrm{X}_{(2)}$	$\mathrm{X}_{(3)}$	$\mathrm{X}_{(4)}$	$\mathrm{X}_{(5)}$	$\mathrm{X}_{(6)}$
	100	110	114	121	130	130

Measures of Location : Median

Unordered	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
	121	110	114	100	160	130
Ordered	$\mathrm{X}_{(1)}$	$\mathrm{X}_{(2)}$	$\mathrm{X}_{(3)}$	$\mathrm{X}_{(4)}$	$\mathrm{X}_{(5)}$	$\mathrm{X}_{(6)}$
	100	110	114	121	130	130

$\mathrm{n}=6 \rightarrow$ even $\# \rightarrow$ median: mean of the $\left(\frac{6}{2}\right)=3^{\text {th }}$ and the $\left(\frac{6}{2}+1\right)=4^{\text {th }}$ observations in the ordered sample
\rightarrow median $=\frac{\mathrm{X}_{(3)}+\mathrm{X}_{(4)}}{2}=\frac{114+121}{2}=117.5$

Measures of Location : Quartiles

Definition

- First $\left(\mathbf{Q}_{\mathbf{1}}\right): 25 \%$ of the collected values are less than Q_{1}.
- Second $\left(\mathbf{Q}_{2}\right): 50 \%$ of the collected values are less than Q_{2} (median).
- Third $\left(\mathbf{Q}_{\mathbf{3}}\right): 75 \%$ of the collected values are less than Q_{3}.

Measures of Location : Percentiles

Definition

- $\mathbf{q}_{\mathrm{p}}: p \%$ of the collected values are less than q_{p}.
- E.g., q_{1} is that value of the population (or sample) with 1% of the observed values being less and 99% being grater than it.

Measures of Location : Mode / Min / Max

Definition

- Min: the minimum of the collected values $\left(X_{(1)}\right)$.
- Max: the maximum of the collected values $\left(\mathbf{X}_{(n)}\right)$.
- Mode: the most frequent of the collected values.

Unordered	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
	121	110	114	100	160	130	130
Ordered	$X_{(1)}$	$X_{(2)}$	$X_{(3)}$	$X_{(4)}$	$X_{(5)}$	$X_{(6)}$	$X_{(7)}$
	100	110	114	121	130	130	160

Measures of Location : Mode / Min / Max

Definition

- Min: the minimum of the collected values $\left(X_{(1)}\right)$.
- Max: the maximum of the collected values $\left(\mathbf{X}_{(n)}\right)$.
- Mode: the most frequent of the collected values.

$$
\text { Mode = } 130
$$

Measures of Dispersion: Variance ($\mathbf{s}^{\mathbf{2}}$)

Definition	Formula
- Average squared deviation from the mean.	$S^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}$

- $\overline{\mathrm{X}}=123.6$

\mathbf{X}_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
121	110	114	100	160	130

Measures of Dispersion: Variance ($\mathbf{s}^{\mathbf{2}}$)

Definition	Formula
- Average squared deviation from the mean.	$S^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}$

- $\overline{\mathrm{X}}=123.6$

\mathbf{X}_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
121	110	114	100	160	130

$$
S^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}=\frac{\left(\mathrm{X}_{1}-\overline{\mathrm{X}}\right)^{2}+\cdots+\left(\mathrm{X}_{7}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}=\frac{(121-123.6)^{2}+\cdots+(130-123.6)^{2}}{7-1}=
$$

$$
=\frac{2247.72}{6}=374.62 \approx 374.6
$$

Other Measures of Dispersion:

Definition	Formula
- Standard deviation	$\mathrm{s}=\sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}}$
- Mean Absolute Deviation (MAD)	$\mathrm{MAD}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left\|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right\|}{\mathrm{n}}$
- Range	Max -Min
- Interquartile Range (IQR)	$\mathrm{Q}_{3}-\mathrm{Q}_{1}$
- Coefficient of variation	$\overline{\bar{X}}$

Descriptive Statistics for Continuous Variables Example: The Framingham Heart Study

```
> ## the overal1 summary stat for sysbp ##
> describe(dat1$sysbp)
    vars 
>
> ## the summary stat for sysbp by sex ##
> describeBy(dat1$sysbp, dat1$sex)
    Descriptive statistics by group
group: 1
    vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 1 5022 135.07 20.3 13 132 133.37 19.27 83.5 235 151.5 0.86 % 0.93 0.29
group: 2
    vars n mean sd median trimmed mad min max range skew kurtosis se
```


SEX = 1 for male, 2 for female

Std.dev $=\operatorname{Var}\left(X_{i}\right)$ to explain variation of sysbp
$\underset{\text { CTS605A-Lecture Notes, }}{\text { SE.mean }}=\sqrt{\operatorname{Var}(\bar{X})}$ to exggyu Baek, PhD variation of MEAN sysbp

Graphical Methods for Continuous variables

- Histogram : indicate the distribution of the values of a continuous variable.

```
## Histogram of sysbp by sex ##
dat_m = subset(dat1, sex==1) ## get a subset for male
dat_f = subset(dat1, sex==2) ## get a subset for female
par(mfrow = c(1,2)) ## to draw two plots side by side
hist(dat_m$sysbp, main="Histogram of sysbp for male")
hist(dat_f$sysbp, main="Histogram of sysbp for female")
```

Histogram of sysbp for male

Histogram of sysbp for female

Graphical Methods for Continuous variables

Box - Plot : indicate the distribution of the values of a continuous variable, pointing out the following quantities:

Outliers

- Observations above Q3 + 1.5IQR or below Q1-1.5IQR are called, "outliers", in the box plot.
- Outliers are not caused by typo or errors.
- Outliers are simply part of data, which can not be ignored.
- Outliers explain how many extreme values are located at tails of a distribution.

Graphical Methods for Continuous variables

- Box-Plot : the distribution of the values of a continuous variable.

```
## A box plot of sysbp by sex ##
par(mfrow = c(1,1))
boxplot(sysbp ~ sex, data=dat1, main="Box plot of sysbp by sex")
```

Box plot of sysbp by sex

