1 Abstract
Semantic parsers map natural language sentences to formal representations of their underlying meaning. Building accurate semantic parsers without prohibitive engineering costs is a long-standing, open research problem.

The tutorial will describe general principles for building semantic parsers. The presentation will be divided into two main parts: learning and modeling. In the learning part, we will describe a unified approach for learning Combinatory Categorial Grammar (CCG) semantic parsers, that induces both a CCG lexicon and the parameters of a parsing model. The approach learns from data with labeled meaning representations, as well as from more easily gathered weak supervision. It also enables grounded learning where the semantic parser is used in an interactive environment, for example to read and execute instructions. The modeling section will include best practices for grammar design and choice of semantic representation. We will motivate our use of lambda calculus as a language for building and representing meaning with examples from several domains.

The ideas we will discuss are widely applicable. The semantic modeling approach, while implemented in lambda calculus, could be applied to many other formal languages. Similarly, the algorithms for inducing CCG focus on tasks that are formalism independent, learning the meaning of words and estimating parsing parameters. No prior knowledge of CCG is required. The tutorial will be backed by implementation and experiments in the University of Washington Semantic Parsing Framework (UW SPF).

2 Outline
1. Introduction to CCG and lambda calculus
2. Learning
 (a) A unified learning algorithm
 (b) Learning with supervised data
 i. Lexical induction with templates
 ii. Unification-based learning
 (c) Weakly supervised learning without labeled meaning representations
3. Modeling
 (a) Questions for database queries
 (b) Plurality and determiner resolution in grounded applications
 (c) Event semantics and imperatives in instructional language

3 Instructors
Yoav Artzi is a Ph.D. candidate in the Computer Science & Engineering department at the University of Washington. His research studies semantic meaning and machine learning methods for natural language understanding within situated interactive systems. He is currently supported by the 2014 Microsoft Research PhD Fellowship, and is a recipient of the 2012 Yahoo KSC award.

Nicholas FitzGerald is a Ph.D. student at the University of Washington. His research interests are grounded natural language understanding and generation. He is a recipient of an Intel Science and Technology Center Fellowship and an NSERC Postgraduate Scholarship.

Luke Zettlemoyer is an Assistant Professor in the Computer Science & Engineering department at the University of Washington. His research interests are in the intersections of natural language processing, machine learning and decision making under uncertainty. Honors include best paper awards at UAI 2005 and ACL 2009, selection to the DARPA CSSG, and an NSF CAREER Award.

1http://yoavartzi.com/spf
References

