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Traditional DHTs

« Each node responsible for random key range
« Objects are assigned random keys

Defragmented DHT (D2)

« Related objects are assigned contiguous keys

Why Defragment DHTs?

» Improves Task Locality

Traditional DHT D2
» Task Success Rate
— Depend on fewer servers
when accessing files
» Task Performance Faill SuRaiss
— Fewer DHT lookups o o
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D2 Contributions

« Simple, effective locality techniques
» Real defragmented DHT implementation
 Evaluation with real file system workloads

« Answers to three principle questions...

Questions

» Can task locality be maintained simply?

» Does locality outweigh parallelism?

» Can load balance be maintained cheaply?

Questions

« Can task locality be maintained simply?

« Does locality outweigh parallelism?
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Technique #1.
Locality Preserving Keys

» Preserve locality in DHT placement
— Assign related objects nearby keys

» Group related objects
— Leverage namespace locality
— Preserve in-order traversal of file system
—E.G,, files in same directory are related

Assigning Object Keys
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Practical Concern

 Key distribution is not uniformly random
— = Object placement is no longer uniform
— = Load imbalance if node IDs are random

* Solution:

— Dynamically balance load
(Discussed later in talk)




DHT Nodes Accessed
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Task Availability Evaluation

¢ How much does D2 reduce task failures?
« Task = sequence of related accesses

— E.G,, ‘I s -1 accesses directory and files’ metadata
— Estimate tasks:
< 1lsec < lsec
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« Evaluated infrastructure DHT scenario:

— Faultload: PlanetLab failure trace (247 nodes)
— Workload: Harvard NFS trace

Systems Compared

Task Unavailability
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Questions

« Can task locality be maintained simply?

« Does locality outweigh parallelism?

e Can load balance be maintained cheaply?

Technique #2:
Lookup Cache

» Task locality = objects on a few nodes
— Cache lookup results to avoid future lookups

* Client-side lookup cache
—Lookups give: | P Address = Key Range
—If key in a cached Key Range, avoid lookup




Performance Evaluation

¢ How much faster are tasks in D2 than Traditional?

» Deploy real implementation on Emulab
— Same infrastructure DHT scenario as before
— Emulate world-wide network topology
— All DHTs compared use lookup cache

* Task replay modes:
— Sequential: accesses dependent on each other
« E.G., ‘make’
— Parallel: accesses not dependent on each other
- EG, ‘cat*

Performance Speedup
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How much faster is D2 vs. Traditional?
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Performance Speedup
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How much faster is D2 vs. Traditional-File?

Questions

» Can task locality be maintained simply?

» Does locality outweigh parallelism?

» Can load balance be maintained cheaply?
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Technique #3:
Dynamic Load Balancing

* Why?
— Object placement is no longer uniform
— Random node IDs = imbalance

Simple dynamic load balancing

— Karger [IPTPS'04], Mercury [SIGCOMM’04]
— Fully distributed

— Converges to load balance quickly

Dynamic Load Balancing
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Load Balance

1.2 T T T

2 Traditional-File
S 1F Traditional ------- b
S osl D2 v |
o . Traditional+Merc
= 06 F <
3 04f - - ]
=} .
@« 0 1 1 L 1 1 L

] 1 2 3 4 5 6 7

Time (days)

How balanced is storage load over time?

Load Balancing Overhead

Day| 1 2 3 4 5 6 | Totl
mted| 61 71 142 114 109 123 | 620 MB/node
LoadBalance| 0 18 65 60 71 93 | 307

Load Balance

- 50% = cost of 1 or 2 more replicas
Writes

How much data is transferred to balance load?
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Conclusions

« Can task locality be maintained simply?

— Yes: Namespace locality enough to improve
availability by an order of magnitude

« Does locality outweigh parallelism?

— Yes: Real workloads observe 30-100% speedup
» Can load balance be maintained cheaply?

— Maintain Balance? Yes: better than traditional

— Cheaply? Maybe: 1 byte for every 2 bytes written

Defragmentation: a useful DHT technique

Thank You.
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Backup Slides

« Or, more graphs than anyone cares for...

Related Work

*« MOAT [Yu et al., NSDI ‘06]
— Only studied availability
— No mechanism for load balance
— No evaluation of file systems
« SkipNet [Harvey et al., USITS ‘03]
— Provides administrative locality
— Can'’t do both locality + global load balance
¢ Mercury [Bharambe et al., SIGCOMM ‘04]
— Dynamic load balancing for range queries
— D2 uses Mercury as the routing substrate
— D2 has independent storage layer, load balancing
optimizations (see paper)
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Encoding Object Names

Traditional key encoding: 160 bits

D2 key encoding:

480 bits

depth: 12 width: 65k petabytes
160 bits. 16 bits 16 bits 16 bits 64 bits 64 bits
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intel.pkey  /home/bob/Mail/INBOX  b-tree-like hash(data)
0000 . 0001 . 0004 . 0003.0000.. .. Bkh blocks

Example

DHT Nodes Accessed

unavailability

Task Unavailability
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Task Unavailability
mean objects mean nodes
inter | block file | block file D2

Isec 63 10 10 6 2
Ssec 91 15 11 8

15sec 128 22 14 10
Imin 237 38 23 16
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How many nodes are accessed per task?

Task Unavailability (Per-User)
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DHT Lookup Messages
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How many lookup messages are used?
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Lookup Cache Utilization
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How many lookups miss the cache?

Performance Speedup (Per-Task)
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How much faster is D2 vs. Traditional?
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Performance Speedup (Per-User)
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How much faster is D2 vs. Traditional?

Load Balance (Webcache)
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How balanced is storage load over time?
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Load Balancing Overhead

Day | 1 2 3 4 5 6 | Total

Harvard W; | 61 71 142 114 109 123 | 620
Harvard L; 0 18 65 60 71 93 307
Webcache W; | 353 32 36 398 428 355 | 1602
Webcache L; | 247 148 45 582 425 413 | 1860

How much data is transferred to balance load?
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