Defragmenting DHT-based
Distributed File Systems

Jeffrey Pang, Srinivasan Seshan
Carnegie Mellon University
Phillip B. Gibbons, Michael Kaminsky
Intel Research Pittsburgh
Haifeng Yu
National University of Singapore

Traditional DHTs

« Each node responsible for random key range
« Objects are assigned random keys

Defragmented DHT (D2)

« Related objects are assigned contiguous keys

Why Defragment DHTs?

» Improves Task Locality

Traditional DHT D2
» Task Success Rate
— Depend on fewer servers
when accessing files
» Task Performance Faill SuRaiss
— Fewer DHT lookups o o
when accessing files objects in two tasks:

Why Defragment DHTSs?

« Improves Task Locality
Traditional DHT D2
» Task Success Rate \

— Depend on fewer servers
when accessing files

* Task Performance

— Fewer DHT lookups
when accessing files

Why Defragment DHTs?

» Improves Task Locality

Traditional DHT D2
e Task Success Rate
— Depend on fewer servers
when accessing files
e Task Performance
— Fewer DHT lookups o lookup
when accessing files objects in two tasks:

D2 Contributions

« Simple, effective locality techniques
» Real defragmented DHT implementation
 Evaluation with real file system workloads

« Answers to three principle questions...

Questions

» Can task locality be maintained simply?

» Does locality outweigh parallelism?

» Can load balance be maintained cheaply?

Questions

« Can task locality be maintained simply?

« Does locality outweigh parallelism?

e Can load balance be maintained cheaply?

Technique #1.
Locality Preserving Keys

» Preserve locality in DHT placement
— Assign related objects nearby keys

» Group related objects
— Leverage namespace locality
— Preserve in-order traversal of file system
—E.G,, files in same directory are related

Assigning Object Keys

= E
/ﬁ I 570-600 601-660 661-700
= [

Practical Concern

 Key distribution is not uniformly random
— = Object placement is no longer uniform
— = Load imbalance if node IDs are random

* Solution:

— Dynamically balance load
(Discussed later in talk)

DHT Nodes Accessed

06:00:27

defragmented

Task Availability Evaluation

¢ How much does D2 reduce task failures?
« Task = sequence of related accesses

— E.G,, ‘I s -1 accesses directory and files’ metadata
— Estimate tasks:
< 1lsec < lsec

—000— 000
time

&
&
&
&

—
Task

« Evaluated infrastructure DHT scenario:

— Faultload: PlanetLab failure trace (247 nodes)
— Workload: Harvard NFS trace

Systems Compared

Task Unavailability

- Ol Traditional—File]

= I Traditional]

Z 0.01¢ oy

= :

5 g

z 0.001 ¢

- le=04 i] median

T

What fraction of tasks fail?

Traditional-File Traditional D2
(PAST) (CFS)
15
Questions

« Can task locality be maintained simply?

« Does locality outweigh parallelism?

e Can load balance be maintained cheaply?

Technique #2:
Lookup Cache

» Task locality = objects on a few nodes
— Cache lookup results to avoid future lookups

* Client-side lookup cache
—Lookups give: | P Address = Key Range
—If key in a cached Key Range, avoid lookup

Performance Evaluation

¢ How much faster are tasks in D2 than Traditional?

» Deploy real implementation on Emulab
— Same infrastructure DHT scenario as before
— Emulate world-wide network topology
— All DHTs compared use lookup cache

* Task replay modes:
— Sequential: accesses dependent on each other
« E.G., ‘make’
— Parallel: accesses not dependent on each other
- EG, ‘cat*

Performance Speedup

2.0 HE 1500 kbps i
16 [384 kbps 1

=%

g 12 -

L

& 08]
0.4]
0.0

560 |

workload, number of nodes

How much faster is D2 vs. Traditional?

20

Performance Speedup

2.0 HE 1500 kbps -
16 [384 kbps 1

speedup

se se sel ara para para
20 500 1,000 200 500 1,000
workload, number of nodes

How much faster is D2 vs. Traditional-File?

Questions

» Can task locality be maintained simply?

» Does locality outweigh parallelism?

» Can load balance be maintained cheaply?

22

Technique #3:
Dynamic Load Balancing

* Why?
— Object placement is no longer uniform
— Random node IDs = imbalance

Simple dynamic load balancing

— Karger [IPTPS'04], Mercury [SIGCOMM’04]
— Fully distributed

— Converges to load balance quickly

Dynamic Load Balancing

00:14:05 PO
e E

- -
= ;
| o g Ll
) R‘«
i L\
4 L]
¥ .
{ '
1 !
) !
Ll .
L] [
Ll ./
\‘\‘ e i
" &

Ioad histogram
24

Load Balance

1.2 T T T

2 Traditional-File
S 1F Traditional ------- b
S osl D2 v |
o . Traditional+Merc
= 06 F <
3 04f - -]
=} .
@« 0 1 1 L 1 1 L

] 1 2 3 4 5 6 7

Time (days)

How balanced is storage load over time?

Load Balancing Overhead

Day| 1 2 3 4 5 6 | Totl
mted| 61 71 142 114 109 123 | 620 MB/node
LoadBalance| 0 18 65 60 71 93 | 307

Load Balance

- 50% = cost of 1 or 2 more replicas
Writes

How much data is transferred to balance load?

26

Conclusions

« Can task locality be maintained simply?

— Yes: Namespace locality enough to improve
availability by an order of magnitude

« Does locality outweigh parallelism?

— Yes: Real workloads observe 30-100% speedup
» Can load balance be maintained cheaply?

— Maintain Balance? Yes: better than traditional

— Cheaply? Maybe: 1 byte for every 2 bytes written

Defragmentation: a useful DHT technique

Thank You.

28

Backup Slides

« Or, more graphs than anyone cares for...

Related Work

*« MOAT [Yu et al., NSDI ‘06]
— Only studied availability
— No mechanism for load balance
— No evaluation of file systems
« SkipNet [Harvey et al., USITS ‘03]
— Provides administrative locality
— Can'’t do both locality + global load balance
¢ Mercury [Bharambe et al., SIGCOMM ‘04]
— Dynamic load balancing for range queries
— D2 uses Mercury as the routing substrate
— D2 has independent storage layer, load balancing
optimizations (see paper)

30

Encoding Object Names

Traditional key encoding: 160 bits

D2 key encoding:

480 bits

depth: 12 width: 65k petabytes
160 bits. 16 bits 16 bits 16 bits 64 bits 64 bits

e — ———
___E

intel.pkey /home/bob/Mail/INBOX b-tree-like hash(data)
0000 . 0001 . 0004 . 0003.0000.. .. Bkh blocks

Example

DHT Nodes Accessed

unavailability

Task Unavailability

Traditional-File
Traditional
01018 =S
0.001 I 1]
le—04

Isec Imin
inter
Application Tasks Human Tasks

What fraction of tasks fail?

5
2 Traditional ———=
D 10 Ordered
555 Lower-bound s
TN 1
o'g
S E 0.1
8¢
RS
o= 001
Q
e ik
e 0.001
Harvard
Filesystem Trace
How many nodes does a user access?
32
Task Unavailability
mean objects mean nodes
inter | block file | block file D2

Isec 63 10 10 6 2
Ssec 91 15 11 8

15sec 128 22 14 10
Imin 237 38 23 16

S~ Lo

How many nodes are accessed per task?

Task Unavailability (Per-User)

‘ Traditional -
01 E Traditional-File
. D2 o

= ——
5 o001 vy
K] I =
z 0.001 > 5
g % A
1e-04 :
16-05 . ‘ . . ‘
0 20 40 60 80 100

user (sorted by rank)

What fraction of each user’s tasks fail?

DHT Lookup Messages

500
400

H D2
Traditional-File
[Traditional

%)
(=3
(=]

avg. lookup msgs
per node

ara ara ara

seq se se
20 500 1,000 200 500 1,000
workload, number of nodes

How many lookup messages are used?

36

Lookup Cache Utilization

H D2 u
80 [Traditional-File]

60 F [Traditional

40
20

avg cache miss rate %

66 560 L6do 366 Bod Fodo
workload, number of nodes

How many lookups miss the cache?

Performance Speedup (Per-Task)

5 5 100

c 100 F c

L L

Al o 1|

=0 =9

B 0.01 F B 0.01 |

[1 1 L = L1 1
0.01 1 100 0.01 1 100
D2 latency (sec) D2 latency (sec)
(a) sequential (b) parallel

How much faster is D2 vs. Traditional?

38

Performance Speedup (Per-User)

T
seq +
para ©

speedup
O =2 N WH OO N
T
+
L

user (sorted by rank)

How much faster is D2 vs. Traditional?

Load Balance (Webcache)

o 12 - r
@ Traditional-File
K] 1F Traditional
c 08 | d D2
3 - Traditional+Merc
% 06 |
3 04F
[a)
g 02t
2 0 1 1 1 L L L
0 1 2 3 4 5 6 7

Time (days)

How balanced is storage load over time?

40

Load Balancing Overhead

Day | 1 2 3 4 5 6 | Total

Harvard W; | 61 71 142 114 109 123 | 620
Harvard L; 0 18 65 60 71 93 307
Webcache W; | 353 32 36 398 428 355 | 1602
Webcache L; | 247 148 45 582 425 413 | 1860

How much data is transferred to balance load?

41

