
1

1

Defragmenting DHT-based
Distributed File Systems

Jeffrey Pang, Srinivasan Seshan
Carnegie Mellon University

Phillip B. Gibbons, Michael Kaminsky
Intel Research Pittsburgh

Haifeng Yu
National University of Singapore

2

Traditional DHTs

150-210 211-400 401-513

800-999

324

987

160

• Each node responsible for random key range
• Objects are assigned random keys

3

Defragmented DHT (D2)

150-210 211-400 401-513

800-999

320

321

322

• Related objects are assigned contiguous keys

4

Why Defragment DHTs?

Traditional DHT D2

objects in two tasks:

• Improves Task Locality

• Task Success Rate
– Depend on fewer servers

when accessing files

• Task Performance
– Fewer DHT lookups

when accessing files

x

Fail!

x

Fail!

x
Fail!

x
Success

x

Fail!

x

Success

5

Why Defragment DHTs?

Traditional DHT D2

objects in two tasks:

• Improves Task Locality

• Task Success Rate
– Depend on fewer servers

when accessing files

• Task Performance
– Fewer DHT lookups

when accessing files

lookup

6

Why Defragment DHTs?

Traditional DHT D2

objects in two tasks:

• Improves Task Locality

• Task Success Rate
– Depend on fewer servers

when accessing files

• Task Performance
– Fewer DHT lookups

when accessing files

lookup

2

7

D2 Contributions

• Simple, effective locality techniques

• Real defragmented DHT implementation

• Evaluation with real file system workloads

• Answers to three principle questions…

8

Questions

• Can task locality be maintained simply?

• Does locality outweigh parallelism?

• Can load balance be maintained cheaply?

9

Questions

• Can task locality be maintained simply?

• Does locality outweigh parallelism?

• Can load balance be maintained cheaply?

10

Technique #1:
Locality Preserving Keys

• Preserve locality in DHT placement
– Assign related objects nearby keys

• Group related objects
– Leverage namespace locality
– Preserve in-order traversal of file system
– E.G., files in same directory are related

11

Assigning Object Keys

Bill

Bob

Docs1

1

2

6 1 0 …

6 1 1 …

6 1 2 …

userid path encode blockid6

7

570-600 601-660 661-700

bid

bid

bid

12

Practical Concern

• Key distribution is not uniformly random
– ⇒ Object placement is no longer uniform
– ⇒ Load imbalance if node IDs are random

• Solution:
– Dynamically balance load

(Discussed later in talk)

3

13

DHT Nodes Accessed

14

Task Availability Evaluation

• How much does D2 reduce task failures?
• Task = sequence of related accesses

– E.G., ‘ls -l’ accesses directory and files’ metadata
– Estimate tasks:

• Evaluated infrastructure DHT scenario:
– Faultload: PlanetLab failure trace (247 nodes)
– Workload: Harvard NFS trace

Task

< 1sec< 1sec

ac
ce

ss

time

15

Systems Compared

8KB blocks

Traditional-File

(PAST)

Traditional

(CFS)

D2

16

Task Unavailability

What fraction of tasks fail?

median

17

Questions

• Can task locality be maintained simply?

• Does locality outweigh parallelism?

• Can load balance be maintained cheaply?

18

Technique #2:
Lookup Cache

• Task locality ⇒ objects on a few nodes
– Cache lookup results to avoid future lookups

• Client-side lookup cache
– Lookups give: IP Address ⇒⇒⇒⇒ Key Range

– If key in a cached Key Range, avoid lookup

4

19

Performance Evaluation

• How much faster are tasks in D2 than Traditional?

• Deploy real implementation on Emulab
– Same infrastructure DHT scenario as before
– Emulate world-wide network topology
– All DHTs compared use lookup cache

• Task replay modes:
– Sequential: accesses dependent on each other

• E.G., ‘make’
– Parallel: accesses not dependent on each other

• E.G., ‘cat *’

20

Performance Speedup

How much faster is D2 vs. Traditional?

21

Performance Speedup

How much faster is D2 vs. Traditional-File?
22

Questions

• Can task locality be maintained simply?

• Does locality outweigh parallelism?

• Can load balance be maintained cheaply?

23

Technique #3:
Dynamic Load Balancing

• Why?
– Object placement is no longer uniform
– Random node IDs ⇒ imbalance

• Simple dynamic load balancing
– Karger [IPTPS’04], Mercury [SIGCOMM’04]
– Fully distributed
– Converges to load balance quickly

24

Dynamic Load Balancing

5

25

Load Balance

How balanced is storage load over time?
26

Load Balancing Overhead

How much data is transferred to balance load?

MB/nodeWrites
Load Balance

Writes

Load Balance ≈≈≈≈ 50% ≈≈≈≈ cost of 1 or 2 more replicas

27

Conclusions

• Can task locality be maintained simply?
– Yes: Namespace locality enough to improve

availability by an order of magnitude

• Does locality outweigh parallelism?
– Yes: Real workloads observe 30-100% speedup

• Can load balance be maintained cheaply?
– Maintain Balance? Yes: better than traditional
– Cheaply? Maybe: 1 byte for every 2 bytes written

Defragmentation: a useful DHT technique
28

Thank You.

29

Backup Slides

• Or, more graphs than anyone cares for…

30

Related Work

• MOAT [Yu et al., NSDI ‘06]
– Only studied availability
– No mechanism for load balance
– No evaluation of file systems

• SkipNet [Harvey et al., USITS ‘03]
– Provides administrative locality
– Can’t do both locality + global load balance

• Mercury [Bharambe et al., SIGCOMM ‘04]
– Dynamic load balancing for range queries
– D2 uses Mercury as the routing substrate
– D2 has independent storage layer, load balancing

optimizations (see paper)

6

31

Encoding Object Names

SHA-1
Hash

SHA1(data)data

Traditional key encoding:

Example

intel.pkey /home/bob/Mail/INBOX
0000 . 0001 . 0004 . 0003 . 0000 . …

b-tree-like
8kb blocks

hash(data)

SHA1(pkey) dir1 block no.dir2 ... file ver. hash

D2 key encoding:

160 bits 16 bits 16 bits 16 bits 64 bits 64 bits

480 bits

depth: 12 width: 65k petabytes

160 bits

32

DHT Nodes Accessed

How many nodes does a user access?

33

Task Unavailability

What fraction of tasks fail?

Application Tasks Human Tasks

34

Task Unavailability

How many nodes are accessed per task?

35

Task Unavailability (Per-User)

What fraction of each user’s tasks fail?
36

DHT Lookup Messages

How many lookup messages are used?

7

37

Lookup Cache Utilization

How many lookups miss the cache?
38

Performance Speedup (Per-Task)

How much faster is D2 vs. Traditional?

39

Performance Speedup (Per-User)

How much faster is D2 vs. Traditional?
40

Load Balance (Webcache)

How balanced is storage load over time?

41

Load Balancing Overhead

How much data is transferred to balance load?

