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Overview

This paper develops a method to compute the confidence that the
expected return of a policy exceeds some lower bound, using only
trajectories generated from other policies.

Terminology:

I Evaluation Policy - The policy which we wish to estimate the
expected return of.

I Behavior Policy - The policies used to estimate the return of
the evaluation policy.



Motivation

”..execution of a new policy can be costly or dangerous if it
performs worse than the policy that is currently being used...”

Examples:

I News recommendation systems

I Patient diagnosis systems

I Neuroprosthetic control

I Automatic drug administration



Problem Setup

This work follows the standard Markov Decision Process (MDP)
formalism:

I S: State space.

I A: Action space.

I rt ∈ [rmax , rmin]: Reward at time t.

I γ ∈ [0, 1]: Discount factor.

I π(a | s, θ): Probability of taking action a in state s given
policy parameters θ.

I τ = {s1, a1, r1, . . . , sT , aT , rT}: A trajectory.



Problem Setup

Define the normalized and discounted return of a trajectory to be:

R(τ) =
(
∑

t γ
t−1rt)− R−

R+ − R−

Where R+ and R− are upper and lower bounds for
∑

t γ
t−1rt .

Ideally, we want to know the expected return given the evaluation
policy parameters θ:

ρ(θ) = E [R(τ) | θ]



Generating Unbiased Estimates of ρ(θ)

Key Idea

Given a dataset D = {(τi , θi ) : τi generated using θi} estimate
ρ(θ) using importance sampling.

Importance Sampling

Given a target distribution p and sampling distribution q and a
function f :

Ex∼p(f (x)) =
1

n

n∑
i=1

f (xi )
p(xi )

q(xi )

where xi ∼ q.



Generating Unbiased Estimates of ρ(θ)

In the context of our problem, the target distribution is Pr(τi | θ)
(e.g. the probability of a trajectory under the evaluation policy),
and the sampling distribution is Pr(τi |̇ θi ) (e.g. the probability of a
trajectory under the behavior policy it was generated by).

The expected return of the evaluation policy can then be estimated
by:

ρ(θ) ≈ 1

n

n∑
i=1

R(τi )
Pr(τi | θ)

Pr(τi |̇ θi )

=
1

n

n∑
i=1

R(τi )
∏
t

π(at | st , θ)

π(at | st , θi )︸ ︷︷ ︸
ρ̂(θ,τi ,θi )



Interlude

Recall our motivation:
”..execution of a new policy can be costly or dangerous if it
performs worse than the policy that is currently being used...”



”Classical” Results

In the following slides, we will review a few ”classical” results
providing lower bounds for the expectation of a random variable
that can be estimated using samples.

We introduce the following variables/assumptions:

I Xi : real-valued, positive, bounded random variables (e.g.
importance weighted returns).

I µ: E(Xi ) for all Xi .

I b: A real-number satisfying Pr [Xi < b] = 1 for all Xi .



”Classical” Results

Chernoff-Hoeffding (CH) inequality

With probability at least 1− δ:

µ ≥ 1

n

n∑
i=1

Xi − b

√
ln (1/δ)

2n

Anderson (AM) inequality

With probability at least 1− δ:

µ ≥ zn −
n−1∑
i=0

(zi+1 − zi ) min

{
1,

i

n
+

√
ln(2/δ)

2n

}

where zi are the samples Xi in increasing order, and z0 = 0.



”Classical” Results

Maurer & Pontil’s empirical Bernstein (MPeB) inequality

With probability at least 1− δ:

µ ≥ 1

n

n∑
i=1

Xi −
7b ln (2/δ)

3(n − 1)
− 1

n

√√√√ ln (2/δ)

n − 1

n∑
i ,j=1

(Xi − Xj)2



New Result

The author’s use the MPeB inequality to prove the following:

Theorem 1
Let Yi = min{Xi , ci} where ci > 0, with probability at least 1− δ:

µ ≥

(
n∑

i=1

1

ci

)−1 n∑
i=1

Yi

ci
−

(
n∑

i=1

1

ci

)−1
7n ln (2/δ)

3(n − 1)

−

(
n∑

i=1

1

ci

)−1
√√√√ ln (2/δ)

n − 1

n∑
i ,j=1

(
Yi

ci
−

Yj

cj

)2



Additional Remarks

I These inequalities can be inverted so that given a lower bound
µ− we can determine the confidence (e.g. value of δ) that
µ ≥ µ−.

I Theorem 1 requires pre-specified thresholds ci . In the paper,
the authors select a single value c∗ and set all ci = c∗. They
show how an optimal value of c∗ can be determined by
splitting the dataset and performing cross-validation.



Experiment 1: The Mountain Car Problem

Demo
https://www.youtube.com/watch?v=x_qDs2kA7H4&feature=

youtu.be

https://www.youtube.com/watch?v=x_qDs2kA7H4&feature=youtu.be
https://www.youtube.com/watch?v=x_qDs2kA7H4&feature=youtu.be


Experiment 1: The Mountain Car Problem



Experiment 1: The Mountain Car Problem



Experiment 1: The Mountain Car Problem

Method ρ−
Thm. 1 0.154

CH -5,831,000
MPeB -129,703

AM 0.055

Table: 95% confidence lower bounds



Experiment 2: Digital Marketing using Real-World Data

Problem
Decide the optimal policy for user-specific targeting of
advertisements. Rewards are measured by advertisement click rates
(e.g. agent recieves +1 if a user clicks the ad, and 0 otherwise).

Data

I From a website for a Fortune 50 company.

I > 100, 000 visitors a day.

I Each user has 31 features.

I Agent must select from two clusters of advertisements.



Experiment 2: Digital Marketing using Real-World Data



Experiment 2: Digital Marketing using Real-World Data

Black - 2 million off-policy trajectories
Blue - 5 million off-policy trajectories
Red - 5 million off-policy trajectories + 1 million on-policy trajectories


