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Abstract: In the present paper, we provide a decomposition of a k-tridiagonal
Toeplitz matrix via tensor product. By the decomposition, the required memory
of the matrix is reduced and the matrix is easily analyzed since we can use
properties of tensor product.
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1. Introduction

A tridiagonal Toeplitz matrix is one of tridiagonal matrices and has constant

Received: May 14, 2015 c© 2015 Academic Publications, Ltd.
url: www.acadpubl.eu

§Correspondence author



538 A. Ohashi, T.S. Usuda, T. Sogabe, F. Yılmaz

entries on each diagonal parallel to the main diagonal. It is widely known
that the matrix arises in the finite difference discretization of the differential
equation (cf. [8, §1.4]). For the recent developments, see, e.g., [1], [2], [4], [11],
and [12].

A k-tridiagonal matrix is one of generalizations of a tridiagonal matrix and
has received much attention in recent years (e.g., [3], [6], [9], and [10]). Here,

let T
(k)
n be an n-by-n k-tridiagonal matrix defined as

T (k)
n :=



































d1 0 · · · 0 a1 0 · · · 0

0 d2 a2
...

...
. . .

. . . 0
0 dn−k an−k

bk+1
. . . 0

0 bk+2
. . .

...
...

. . . dn−1 0
0 · · · 0 bn 0 · · · 0 dn



































. (1)

If di = d (i = 1, 2, . . . , n), ai = a (i = 1, 2, . . . , n − k), bi = b (i = k + 1, k +

2, . . . , n), where 1 ≤ k < n, T
(k)
n is a k-tridiagonal Toeplitz matrix. Moreover,

when k = 1, T
(1)
n is an ordinary tridiagonal Toeplitz matrix. We consider a

k-tridiagonal Toeplitz matrix T
(k)
n .

Hereafter, tensor product is briefly explained since it is used in a decompo-
sition of k-tridiagonal Toeplitz matrices in the present paper. Tensor product is
also referred to as the Kronecker product and represented by the symbol “⊗”.
The definition of tensor product of matrices A ∈ C

m×n and B ∈ C
p×q is

A⊗B :=











a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB











∈ C
mp×nq, (2)

where aij is the (i, j) element of A. Let âi and aj be the i-th row and the j-th

column vectors in A, respectively. Similarly, let b̂i and bj be the i-th row and
the j-th column vectors in B, respectively. Then,

A⊗B =











â1 ⊗ b̂1

â1 ⊗ b̂2
...

âm ⊗ b̂p











,
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= (a1 ⊗ b1,a1 ⊗ b2, . . . ,an ⊗ bq), (3)

as the other expressions of A⊗B.
The purpose of the present paper is to save the required memory of a k-

tridiagonal Toeplitz matrix and to simplify analyses of that. We propose to
decompose the k-tridiagonal Toeplitz matrix into a smaller matrix with the
similar structure than the original one and an identity matrix via tensor prod-

uct. Even if the number n in T
(k)
n is very large, the matrix is decomposed into

T
(1)
2 and the identity matrix under a certain condition. Then, one needs only

analyses of T
(1)
2 in order to analyze T

(k)
n by using properties of tensor product.

This paper is organized as follows. In Section 2, we give a theorem of the
decomposition via tensor product and show two examples. In Section 3, the
decomposition is applied in order to simplify the theorem and the proposition
in [13] and to reduce a computational complexity.

2. Main Results

In this section, we present a theorem of a decomposition of a k-tridiagonal

Toeplitz matrix T
(k)
n and show two examples.

First, the theorem is as follows:

Theorem 1. Let T
(k)
n be an n-by-n k-tridiagonal Toeplitz matrix. If there

exist natural numbers n′, k′, and m such that n = mn′ and k = mk′, where

m > 1, T
(k)
n is decomposed into the form:

T (k)
n = T

(k′)
n′ ⊗ Im, (4)

where Im represents the identity matrix of order m.

Proof. First, let T and S be Toeplitz matrices of the same size. Then,
T is equal to S if and only if both of the following equations are satisfied:
(T )1: = (S)1: for the first row vectors in T and S; (T ):1 = (S):1 for the first
column vectors in those. Here, (T )i: and (T ):j denote the i-th row and the j-th
column vectors in T , respectively.

Since T
(k′)
n′ in (4) has Toeplitz structure, T

(k′)
n′ ⊗ Im also has Toeplitz struc-

ture. Hence, the two matrices are the same if both of the first column and row

vectors in T
(k)
n and in T

(k′)
n′ ⊗ Im are equal. From (3), the first row and column

vectors are obtained as follows:

(T
(k′)
n′ ⊗ Im)1: = (T

(k′)
n′ )1: ⊗ (Im)1:



540 A. Ohashi, T.S. Usuda, T. Sogabe, F. Yılmaz

= (d1, 0, . . . , 0, a1, 0, . . . , 0) ⊗ e
T
1

=
(

d1e
T
1 ,0

T
m, . . . ,0T

m, a1e
T
1 ,0

T
m, . . . ,0Tm

)

, (5)

(T
(k′)
n′ ⊗ Im):1 = (T

(k′)
n′ ):1 ⊗ (Im):1

=





























d1
0
...
0

bk′+1

0
...
0





























⊗ e1 =





























d1e1
0m
...

0m
bk′+1e1

0m
...

0m





























, (6)

where e1 and 0m represent the m-dimensional first canonical vector and the m-

dimensional zero vector, respectively. From (5) and (6), we have (T
(k′)
n′ ⊗Im)1: =

(T
(k)
n )1: and (T

(k′)
n′ ⊗ Im):1 = (T

(k)
n ):1. Thus,

T
(k′)
n′ ⊗ Im = T (k)

n .

This completes the proof.

Theorem 1 provides three notes: first, the required memory of T
(k)
n is the

lowest in all the values m when m = gcd(n, k); second, the k′-tridiagonal

Toeplitz matrix T
(k′)
n′ is the tridiagonal Toeplitz matrix T

(1)
n′ under the con-

dition that n = mk; third, the determinant, the eigenvalues, integer powers,

and the inversion of T
(k)
n are easily computed from those of T

(k′)
n′ . As for the

condition in the second note, the original matrix T
(k)
n is decomposed into the

tridiagonal Toeplitz matrix of order 2 and the identity matrix of order k, i.e.,

T
(k)
n = T

(1)
2 ⊗ Ik, under the condition that n = 2k.

Next, two examples under the condition that n = mk are shown.

Example 2. Let n = 8 and k = 2. Setting m = 2, then the 2-tridiagonal

Toeplitz matrix T
(2)
8 is decomposed such as T

(2)
8 = T

(1)
4 ⊗ I2. The matrices are



ON TENSOR PRODUCT DECOMPOSITION... 541

specifically denoted as follows:

T
(2)
8 =

























d 0 a 0 0 0 0 0
0 d 0 a 0 0 0 0

b 0 d 0 a 0 0 0
0 b 0 d 0 a 0 0

0 0 b 0 d 0 a 0
0 0 0 b 0 d 0 a

0 0 0 0 b 0 d 0
0 0 0 0 0 b 0 d

























=









d a 0 0
b d a 0
0 b d a

0 0 b d









⊗ I2.

Example 3. Let n = 8 and k = 4. Setting m = 4, then the 4-tridiagonal

Toeplitz matrix T
(4)
8 is decomposed such as T

(4)
8 = T

(1)
2 ⊗ I4. The matrices are

specifically denoted as follows:

T
(4)
8 =

























d 0 0 0 a 0 0 0
0 d 0 0 0 a 0 0
0 0 d 0 0 0 a 0
0 0 0 d 0 0 0 a

b 0 0 0 d 0 0 0
0 b 0 0 0 d 0 0
0 0 b 0 0 0 d 0
0 0 0 b 0 0 0 d

























=

(

d a

b d

)

⊗ I4.

From Examples 2 and 3, we can confirm the first and second notes. Partic-
ularly, we can see that the number of nonzero elements of matrices is reduced
by one m-th.

3. Applications

In Subsection 3.1, we present some corollaries, which are obtained from The-
orem 1. Some of the corollaries imply the theorem and the proposition that
were proved in [13], however the corollaries in the present paper have simpler
and more general expressions than in [13]. In Subsection 3.2, we show that
Theorem 1 is used in order to reduce a computational complexity.
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3.1. The Symmetric k-Tridiagonal Toeplitz Matrices

We consider a specialized form of symmetric k-tridiagonal Toeplitz matrices,
i.e.,

(S(k)
n )i,j =











a, |i− j| = k,

d, i = j,

0, otherwise,

(7)

where i, j = 1, 2, . . . , n, and parameters n and k are natural numbers such that

n = mk. Applying Theorem 1 to S
(k)
n in (7), we obtain Corollary 4.

Corollary 4. Let S
(k)
n be the matrix as in (7). Then

S(k)
n = S(1)

m ⊗ Ik.

Proof. By the definition of S
(k)
n and Theorem 1, the result can be obtained.

Using Corollary 4, the determinant, the eigenvalues, and arbitrary integer

powers of S
(k)
n are easily computed as below.

Corollary 5. Let S
(k)
n be the matrix as in (7). Then

det(S(k)
n ) = [det(S(1)

m )]k.

Proof. By Corollary 4 and the property of the determinant of tensor prod-
uct, we have

det(S(k)
n ) = det(S(1)

m ⊗ Ik) = [det(S(1)
m )]k.

Corollary 6. Let S
(k)
n be the matrix as in (7). Then, the eigenvalues λj

of S
(k)
n are represented by

λj = d+ 2a cos

(

jπ

n+ 1

)

,

where j = 1, 2, . . . ,m.

Proof. The result is obtained by Corollary 4, the analytical forms of the
eigenvalues of the tridiagonal Toeplitz matrix (cf. [8, Example 7.2.5]), and the
eigenvalues of tensor product.
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Note that the eigenvalues are particular forms of those in [7].

Corollary 7. Let S
(k)
n be the matrix as in (7). Then

(S(k)
n )r = (S(1)

m )r ⊗ Ik,

where r is an arbitrary integer.

Proof. By Corollary 4 and the property of tensor product, the result is
obvious.

Let a = 1, d = 0, and m = 4 in (7). Then Corollary 6 corresponds to [13,
Proposition 2]. As for Corollary 7, we have

(S(k)
n )r =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









r

⊗ Ik,

which corresponds to [13, Theorem 5].

3.2. A Reduction of a Computational Complexity by the

Decomposition

Theorem 1 can be used in order to reduce the computational complexity. We
here focus on the computation of the inversion of the k-tridiagonal Toeplitz

matrix T
(k)
n using [5, Theorem 2.1]. An algorithm to compute the inversion

with the decomposition is shown below.

First, the k-tridiagonal Toeplitz matrix T
(k)
n is decomposed by Theorem 1.

Then, the inversion of T
(k)
n is computed by (T

(k)
n )−1 = (T

(k′)
n′ )−1⊗Im. Here, the

algorithm in [5, Theorem 2.1] computes the inversion element-wise. Therefore,

the fewer T
(k)
n has elements, the lower the computational complexity of the

algorithm is. Since the number of nonzero elements of T
(k′)
n′ is reduced by one

m-th, the computational complexity is also reduced by one m-th.

4. Conclusion

In the present paper, we gave a decomposition of a k-tridiagonal Toeplitz matrix
via tensor product. As applications of the decomposition, we have shown that
the determinant, the eigenvalues, and arbitrary integer powers of the matrix are
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easily computed and that the inversion of the matrix is computed with lower
computational complexity than that without the decomposition.
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