LONG CYCLES AND NEIGHBORHOOD UNION IN 1-TOUGH GRAPHS WITH LARGE DEGREE SUMS

Vu Dinh Hoa
Wundstr. 7/4L1
01217 Dresden, Germany

Abstract

For a 1-tough graph G we define \(\sigma_3(G) = \min \{d(u) + d(v) + d(w) : \{u, v, w\} \text{ is an independent set of vertices}\} \) and \(NC_{\sigma_3-n+5}(G) = \max \{\bigcup_{i=1}^{\sigma_3-n+5} N(v_i) : \{v_1, \ldots, v_{\sigma_3-n+5}\} \text{ is an independent set of vertices}\} \). We show that every 1-tough graph with \(\sigma_3(G) \geq n \) contains a cycle of length at least \(\min \{n, 2NC_{\sigma_3-n+5}(G) + 2\} \). This result implies some well-known results of Faßbender [2] and of Flan
drin, Jung & Li [6]. The main result of this paper also implies that \(c(G) \geq \min \{n, 2NC_2(G) + 2\} \) where \(NC_2(G) = \min \{|N(u) \cup N(v)| : d(u, v) = 2\} \). This strengthens a result that \(c(G) \geq \min \{n, 2NC_2(G)\} \) of Bauer, Fan and Veldman [3].

Keywords: graphs, neighborhood, toughness, cycles.

1991 Mathematics Subject Classification: 05C38, 05C45.

Introduction

We consider only a finite undirected graph without loops and multiple edges. For undefined terms we refer to [3]. Let \(\omega(G) \) denote the number of components of a graph G. A graph G is 1-tough if for every nonempty proper subset S of the vertex set V(G) of G we have \(\omega(G - S) \leq |S| \). We use \(\alpha \) to denote the cardinality of a maximum independent set of vertices of G. A cycle C in G is called a dominating cycle if the vertices of the graph \(G - C \) are independent. The length \(\ell(C) \) of a longest cycle C of G is denoted by \(c(G) \). For \(k \leq \alpha \) we denote by \(\sigma_k \) the minimum value of the degree sum of any \(k \) pairwise nonadjacent vertices and by \(NC_k(G) \) the minimum cardinality of the neighborhood union of any \(k \) such vertices. For \(k > \alpha \) we set \(\sigma_k = k(n - \alpha(G)) \) and \(NC_k = n - \alpha(G) \). Instead of \(\sigma_1 \) and \(NC_1 \) we use the more common notation \(\delta(G) \). If no ambiguity can arise, we sometimes write \(\alpha \) instead of \(\alpha(G) \), etc.
A number of results have been established concerning long cycles in graphs with large degree sums. For details we refer to a survey [4] and [7]. Since, clearly, \(NC_t(G) \) is a non decreasing function of \(t \) and \(NC_t(G) \geq \frac{1}{t} \sigma_t(G) \), analogous results in terms of \(NC_t \) would extend well-known previous results [5].

Let \(d(u,v) \) denote the distance between \(u \) and \(v \). Our main result in the present paper is Lemma 9 and its consequence.

Theorem 1. If \(G \) is a 1-tough nonhamiltonian graph of order \(n \geq 3 \) with \(\sigma_3 \geq n \), then there exists in \(G \) an independent set of \(\sigma_3 - n + 5 \) vertices \(\{v_0, \ldots, v_{\sigma_3-n+4}\} \) such that \(d(v_0,v_i) = 2 \) (\(i \geq 1 \)) and \(c(G) \geq 2|\bigcup_{i=0}^{\sigma_3-n+4} N(v_i)| + 2 \).

Clearly, Theorem 1 strengthens the result of Bauer et al. (Theorem 26 in [5]) that under the same hypothesis \(c(G) \geq 2NC_2(G) \). Theorem 1 also implies the next result.

Theorem 2. If \(G \) is a 1-tough graph of order \(n \geq 3 \) with \(\sigma_3 \geq n \), then \(c(G) \geq \min\{n, 2NC_{3\sigma_3-n+5} + 2\} \).

Theorem 1 and Theorem 2 are strongly related to other results of Broersma, Van den Heuvel & Veldman [7] and in Van den Heuvel [8].

Theorem 3 (Corollary 6 in [7]). If \(G \) is a 1-tough graph of order \(n \geq 3 \) with \(\sigma_3 \geq n \), then \(c(G) \geq \min\{n, 2NC_{3\delta-n+5}\} \), where \(\delta = \lceil \frac{2n}{3} \rceil \).

Theorem 4 (Theorem 11 in [7]). If \(G \) is a 1-tough graph of order \(n \geq 3 \) with \(\sigma_3 \geq n + r \geq n \) and \(n \geq 8t - 6t - 17 \), then \(c(G) \geq \min\{n, 2NC_t\} \).

Theorem 5 (Corollary 7.12 in [8]). If \(G \) is a 1-tough graph on \(n \geq 3 \) vertices, then \(c(G) \geq \min\{n, 2NC_\frac{1}{2}(4\delta-n+3)\} \).

Theorem 2 is in a sense best possible. This can be seen from the construction by Bauer et al. [3] of a 1-tough graph \(G_n \) for odd \(n \geq 15 \). The graph \(G_n \) is obtained from \(K_{(n-1)/2} \cup K_3 \cup K_{(n-5)/2} \) by joining every vertex of \(K_{(n-5)/2} \) to all vertices in \(K_{(n-1)/2} \cup K_3 \) and by adding a matching between the vertices of \(K_3 \) and three vertices in \(K_{(n-1)/2} \). A variation of the graph \(G_n \), with \(K_{(n-5)/2} \) replaced by \(K_{(n-5)/2} \), has already appeared in [1].

But we do not know of the existence of 1-tough graphs \(G \) on \(n \geq 3 \) vertices with \(\sigma_3 \geq n \) and \(c(G) < n - 1 \) for which Theorem 2 is best possible. Moreover, we cannot conclude Theorem 2 from Theorem 3, Theorem 4
and Theorem 5. Let $G_{(n,p)}$ denote the graph $(F_p \cup K_{(n-1)/2-(2p+1)}) + K_{(n+1)/2-(2p+1)}$ for odd $n \geq 12p + 3 \geq 27$, where F_p denotes the unique graph with a degree sequence $(d_1 = 1, d_2 = 1, ..., d_{2p+1} = 1, d_{2p+2} = 2p + 1, ..., d_{4p+2} = 2p + 1)$. Then $G_{(n,p)}$ is a 1-tough graph on $n \geq 27$ vertices with $\sigma_3 \geq n$. By Theorem 2, $c(G_{(n,p)}) \geq n + 1 - 4p$ which cannot be deduced from Theorem 3, Theorem 4 and Theorem 5.

Theorem 2 immediately implies a result of Flandrin, Jung & Li [6].

Corollary 6. If G is a 1-tough graph of order $n \geq 13$ with $\sigma_3 \geq \frac{3n-14}{2}$, then G is hamiltonian.

Proof. Clearly, $\sigma_3 \geq n$ for $n \geq 13$ and $\sigma_3 - n + 5 \geq \frac{n-4}{2}$ if $\sigma_3 \geq \frac{3n-14}{2}$. Since G is a 1-tough graph, $NC_{\lceil \frac{n-4}{2} \rceil} \geq \frac{n-2}{2}$. Hence, $2NC_{\sigma_3 - n + 5} + 2 \geq 2n - 2 + 2 = n$. By Theorem 2, $c(G) \geq \min\{n, 2NC_{\sigma_3 - n + 5} + 2\} = n$. Thus, G is hamiltonian.

Theorem 2 immediately implies a result of Flandrin, Jung & Li [6].

Corollary 7. If G is a 2-connected graph of order n such that $d(u) + d(v) + d(w) \geq n + |N(u) \cap N(v) \cap N(w)|$ for every independent set $\{u,v,w\}$, then G is hamiltonian.

Proof. Let G satisfy the stated conditions. Then G is 1-tough [4] and $n \leq 2NC_{3}$ [7]. The proof is completed by applying Theorem 2 (note that $NC_{\sigma_3 - n + 5} \geq NC_{3}$).

Proofs

Let C be a cycle in G with an assigned orientation. If x and y are two vertices of C then $x \overrightarrow{C} y$ denotes the path on C from x to y, inclusively x and y, following the assigned orientation. The same vertices in a reverse order are given by $y \overleftarrow{C} x$. We will consider $x \overrightarrow{C} y$ and $y \overleftarrow{C} x$ both as a path and as a vertex set. If c is a vertex on C, then c^+ and c^- are its successor and predecessor on C, respectively, according to the assigned orientation. If X is a set of vertices on C let $X^+ := \{x^+ : x \in X\}$ and $X^- := \{x^- : x \in X\}$. If $v \in V(G)$ and $H \subseteq V(G)$ then $N_H(v)$ is the set of all vertices in H adjacent to v. We denote $|N_H(v)|$ by $d_H(v)$. If G is a nonhamiltonian graph, we set $\mu(C) = \max\{d(v) : v \in V(G) - V(C)\}$ and $\mu(G) = \max\{\mu(C) : C$ is a longest cycle in $G\}$.

The following lemmas are already proved in [3].
Lemma 1 (Theorem 5 [3]). Let G be a 1-tough graph with $\sigma_3 \geq n$. Then every longest cycle in G is a dominating cycle.

Lemma 2 (see proof of Theorem 9 [3]). Let G be a 1-tough graph with $\sigma_3 \geq n$. If G is nonhamiltonian, then G has a longest cycle C such that C avoids a vertex v_0 with $d(v_0) \geq \frac{\sigma_3}{3}$ in G.

Lemma 3 (Lemma 8 [3]). Let G be a 1-tough graph with $\sigma_3 \geq n$. Suppose C is a longest cycle in G. If $v_0 \in V(G) - V(C)$ and $A = N(v_0)$, then $(V(G) - V(C)) \cup A^+$ is an independent set of vertices.

Assume G is nonhamiltonian. Let C be a cycle in G with an assigned orientation, $v \in V(G) - V(C)$ and $v_1, ..., v_k$ be the elements of $N(v)$, occurring on C in a consecutive order. For $i = 1, 2, ..., k$ set $u_i = v_i^+$ and $w_i = v_{i+1}$ (indices modulo k). We set, for convenience, $3 = \{ i : \text{there exists some } j \neq i \text{ such that } u_iw_j \in E(G) \}$.

The set $u_i \rightarrow w_i$ will be called a segment; $u_i \rightarrow w_i$ is a p-segment if $|u_i \rightarrow w_i| = p$. Let S denote the set of 1-segments. The following lemma is observation (1) in the proof of Theorem 4 in Broersma et al. [7].

Lemma 4. $(V(G) - V(C)) \cup N(v)^+ \cup N(S)^+$ is an independent set of vertices.

If $d(v) = \mu(G)$ then $d(v) \geq n/3$ because of Lemma 2 and therefore $S \neq \emptyset$. Let $u_{i_1}, u_{i_2}, ..., u_{i_s}$ be the vertices of the 1-segments and assume, without loss of generality, that $i_1 = 1$ and $d(u_1) \geq d(u_{i_2}) \geq ... \geq d(u_{i_s})$. Since $C' : v v_2 \rightarrow v_1 v$ is a longest cycle, $\mu(G) \geq d(u_1)$.

Lemma 5. If $\mu(G) = d(v) \leq \frac{\sigma_3 + 2}{3}$, then $d(v) = d(u_1)$.

Proof. Suppose to the contrary that $d(u_1) \leq d(v) - 1$. Let $t_C(v) = |V(C) - (N(v) \cup N(v)^+ \cup N(v)^-)|$. By $n - 1 \geq \ell(C) = 3d(v) - s + t_C(v)$, $n - 1 + s - 3d(v) \geq t_C(v)$ (*). We distinguish 3 cases:

Case 1. $s = 1$.

By (*) and by Lemma 2, in fact, $\ell(C) = n - 1$, $d(v) = \frac{n}{3}$ and $t_C(v) = 0$. Since G is a 1-tough graph, $G - N(v)$ contains at most $d(v)$ components. Hence, there is $i_0 \neq j_0$ and some edge joining u_{i_0} with w_{j_0}. Now, $C' : v v_{j_0 + 1} \rightarrow u_{i_0} w_{j_0} \rightarrow u_{i_0 + 1} v$ is also a longest cycle which avoids w_{i_0}. Thus, $d(w_{i_0}) \leq d(v)$ by the maximality of $d(v)$, and therefore $d(u_1) + d(w_{i_0}) + d(v) \leq 3d(v) - 1 = n - 1$, a contradiction.
Case 2. \(s = 2 \).

By (\(* \)), \(\frac{(n+1)}{3} \geq d(v) \) and therefore \(d(u_1) + d(u_2) + d(v) \leq 3d(v) - 2 \leq n - 1 \), a contradiction.

Case 3. \(s \geq 3 \).

In this case we have \(d(u_1) + d(u_2) + d(u_3) \leq 3d(v) - 3 \leq \sigma_3 - 1 \), a contradiction. Thus, Lemma 5 is true.

\begin{lemma}
If \(C \) contains only \(p \)-segments with \(p \leq 3 \), then \(\exists \neq \emptyset \).
\end{lemma}

\begin{proof}
Suppose to the contrary that \(\exists = \emptyset \). We consider \(G - (N(v) \cup \{ u_i^+: u_i \in C \} \) is a 3-segment and \(u_iw_i \notin E(G) \}). Since \(G \) is a 1-tough graph there exists \(i \neq j \) and some arc \(B \) joining a vertex \(p \in u_i \) with a vertex \(q \) in \(u_j \). By Lemma 3 and since \(\exists = \emptyset \), \(p = u_i^+ = w_i \) or \(q = u_j^+ = w_j \), say \(p = u_i^+ = w_i \) and therefore \(u_iw_i \in E(G) \). We distinguish two cases:

1. \(q = u_j \) (similar for the case \(q = w_j \)).

In this case \(C' : vv_jw_iu_ipBu_jw_i \) would be a cycle longer than \(C \), a contradiction.

2. \(q = u_j^+ = w_j \).

In this case \(C' : vv_jw_iu_ipBu_jw_i \) would be a cycle longer than \(C \), a contradiction. Thus Lemma 6 is true.
\end{proof}

\begin{lemma}
Suppose that \(\exists \neq \emptyset \). Let \(i_0 = \max \exists \) and \(j_0 \neq i_0 \) such that \(u_iw_j \in E(G) \). Suppose that \(v_iu_1 \in E(G) \) or \(\{ u_1v_{j_0+1}, u_1v_{j_0} \} \subseteq E(G) \). Then \(d(u_{j_0}) + 2d(v) \leq \ell(C) + x \), where \(x \) is the number of vertices \(u_i = w_i \) such that \(v_iu_i \notin E(G) \) and \(\{ u_iu_{j_0+1}, u_iu_{j_0} \} \subseteq E(G) \).
\end{lemma}

\begin{proof}
To prove this lemma we start with a trivial observation.

(\(* \)) If \(u_iw_i \in E(G) \) or \(u_{i+1}w_i \in E(G) \) then \(u_i \in v_{j_0}u_{j_0} \).

For \(i = 1, 2, \ldots, k \) we set \(L_i := u_i \) for \(i \neq j_0 \). Then \(d_L(u_{j_0}) \leq |L_i| - 1 \) because of \(u_iu_{j_0} \notin E(G) \) by Lemma 3. Since \(d(u_{j_0}) = \sum_{i=1}^{k} d(u_i) \) it suffices to show that \(d_L(u_{j_0}) \leq |L_i| - 2 \) (i.e. there exists on \(L_i \) some \(z \neq u_i \) such that \(zv_{j_0} \notin E(G) \) for \(u_i \neq w_i \) and for \(u_i = w_i \) with \(v_iu_i \in E(G) \) or \(\{ u_iu_{j_0+1}, u_iu_{j_0} \} \subseteq E(G) \).

Note that \(j_0 > i_0 \) and \(v_{j_0+1} \neq v_{i_0} \) by (\(* \)) (for \(i = 1 \)). Thus \(w_iu_{j_0} \notin E(G) \) if \(w_i \neq u_i \) and \(i \neq j_0 \) because of the maximality of \(i_0 \). If \(i = j_0 \), then \(v_{j_0+1}w_{j_0} \notin E(G) \) by (\(* \)). If \(u_i = w_i \) with \(v_iu_i \in E(G) \) or \(\{ u_iu_{j_0+1}, u_iu_{j_0} \} \subseteq E(G) \) then \(u_i \in w_{j_0}u_{j_0} \) by (\(* \)) and therefore \(v_{i+1}u_{j_0} \notin E(G) \). Otherwise, \(C' : vv_{j_0+1}u_{j_0}u_{j_0}u_{j_0+1}u_{j_0}u_{j_0}u_{j_0}v \), when \(u_iu_{j_0} \in E(G) \),
and $C' : v_{i_o} \overrightarrow{w_{j_0}} u_i, v_{j_0} \overrightarrow{w_{j_0}} u_{i_o} \overrightarrow{v_{i_o}}$, when $\{u_i v_{j_0+1}, u_i v_{j_0}\} \subseteq E(G)$ would be a cycle longer than C, a contradiction. Thus Lemma 7 is true.

Theorem 1 is obviously established by the next two lemmas.

Lemma 8. Let $X = N(v) \cup \{N(u_i) : u_i \in S\}$. Then $f(C) \geq 2|X| + 2$.

Proof. Let $x_1, ..., x_y$ be the vertices of X, occurring on C in a consecutive order. By Lemma 4, $X \cap X^+ = \emptyset$. Since G is a 1-tough graph, there exist some $i \neq j$ and some arc joining a vertex y on $x_i^+ \overrightarrow{x_{i+1}}$ and a vertex z on $x_j^+ \overrightarrow{x_{j+1}}$. Without loss of generality, assume that $|x_i^+ \overrightarrow{x_{i+1}}| \leq |x_j^+ \overrightarrow{x_{j+1}}|$. Then by Lemma 4, $z \notin \{x_j^+, x_{j+1}\}$ if $x_i^+ = x_{i+1}$. Thus, $f(C) \geq 2|X| + 2$.

Following Broersma et al. [7], we say that a property P holds by the longest cycle argument, denoted by $P(C')$, if the contrary implies the existence of a cycle C' longer than C.

Now, we give and prove a lower bound of so called 1-segments. Theorem 1 is established by the last lemma.

Lemma 9. Let G be a 1-tough nonhamiltonian graph on $n \geq 3$ vertices with $\sigma_3 \geq n$. Then G contains a longest cycle C avoiding a vertex v with $d(v) = \mu(G)$ and $s \geq \sigma_3 - n + 4$.

Proof. Assume to the contrary that $s \leq \sigma_3 - n + 3$ for any longest cycle C avoiding a vertex v with $d(v) = \mu(G)$. Let $t_C(v) = |V(C) - (N(v) \cup N(v^+) \cup N(v^-))|$.

Claim 1. If C is a longest cycle in G avoiding a vertex v with $d(v) = \mu(G)$, then $d(v) \leq \frac{\sigma_3 + 2}{3}$ and $t_C(v) \leq 2$ with strict inequality if $\mu(G) \neq \frac{\sigma_3}{3}$ or $\ell(C) \neq n - 1$.

Proof. Counting the vertices on C we get $n - 1 \geq \ell(C) = 3d(v) - s + t_C(v)$. Thus, $\sigma_3 + 2 - t_C(v) \geq 3d(v)$ and $\sigma_3 - 3d(v) + 2 \geq t_C(v)$, establishing Claim 1.

Claim 2. If C is a longest cycle avoiding a vertex v with $d(v) = \mu(G)$, then $\delta = 0$.

Proof. Supposing that $\delta \neq \emptyset$, we determine $i_0 = \max \delta$ and $j_0 \neq i_0$ such that $u_{i_0} w_{j_0} \in E(G)$. First note that if $u_i = w_i$ and $d(u_i) = d(v)$, then by $P(C')$ $u_i^+ \overrightarrow{w_{j_0}} u_i^+ \overrightarrow{w_{j_0}} u_{i_0}^+ v_{j_0+1}$ when $u_i \in u_{i_0} \overrightarrow{w_{j_0}}$ and $C' : v_{i_0+1} \overrightarrow{w_{j_0}} u_{i_0}^+ w_{j_0} u_{i_0}^+ v_{j_0+1}$ when $u_i \in w_{j_0} \overrightarrow{u_{i_0}}$. Similarly,
Lemma 5 and by Claim 1, otherwise, $t_{C'}(u_i) \geq 3$ where $C' : vv_i \overrightarrow{C} v_{i+1}v$, which contradicts Claim 1. By Lemma 5 and by Claim 1, $d(u_i) = d(v)$. Now using Lemma 7 we have $d(u_i) + d(v) + d(u_{j_0}) = 2d(v) + d(u_{j_0}) \leq \ell(C) + x$, where x is the number of vertices $u_i = w_i$ such that $d(u_i) \leq d(v) - 1$. By $\sigma_3 \geq n$, $x \geq 1$. Hence, $d(v) + d(u_i) + d(u_{j_0}) \leq \ell(C) + x - 1$ and, by similar argument, $x \geq 2$. Note that by $\frac{\sigma_3 + 2}{3} \geq d(v)$, $x \leq 2$ by $d(u_i) + d(u_{i+1}) + d(u_{i+2}) \geq \sigma_3$ and, by $x \geq 2$, in fact, $x = 2$. Now we get $d(u_{i+1}) + d(u_i) + d(u_{j_0}) \leq \ell(C) < n$, a contradiction.

The next claim is obviously established by Lemma 6, Claim 2 and Claim 1.

Claim 3. If C is a longest cycle and $v \in V(G) - V(C)$ such that $d(v) = \mu(G)$, then $t_C(v) = 2$ and C contains a 4-segment.

By Claim 1, we get $\ell(C) = n - 1$ and $d(v) = \sigma_3/3$. Using the inequality $n - 1 \geq 3d(v) - s + t_C(v)$ and $t_C(v) = 2$ by Claim 3, we get $s \geq \sigma_3 - n + 3 \geq 3$. By $d(u_i) + d(u_i) + d(v) \geq \sigma_3$, we easily get:

Claim 4. If C is a longest cycle avoiding a vertex v with $d(v) = \mu(G)$, then $d(u_i) \geq d(v) = \frac{\sigma_3}{3}$ and $d(w_i) \geq d(v)$ with equality if $u_i = w_i$.

Claim 5. If C is a longest cycle avoiding a vertex v with $d(v) = \mu(G)$, then $N(u_i) = N(v)$ for any $u_i = w_i$.

Proof. Suppose that there exists some $u_i = v_i$ such that $N(u_i) \neq N(v)$. By Claim 4, either $u_i^+ w_t^+ u_i \in E(G)$ or $w_t^- u_i \in E(G)$, say $w_t^- u_i \in E(G)$.

Note that $u_i w_t^+ \notin E(G)$ ($C' : vv_i u_i^- \overrightarrow{C} u_i u_i^+ v_{i+1}v$) and $u_i w_t^- \notin E(G)$ ($C' : vv_i u_i^- \overrightarrow{C} u_i u_i^+ v_{i+1}v$).

Therefore there exists some j such that either $w_i^- w_j \in E(G)$ or $w_i^- w_j \notin E(G)$ since $\omega(G - N(v) - \{u_i^+\}) \leq d(v) + 1$ by the toughness of G and by Claim 2. But $w_i^- u_j \notin E(G)$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$) and therefore $w_i^- w_j \notin E(G)$.

Moreover, $w_j \in u_i^- w_i^-$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$) and $w_j \in u_i^- w_i^-$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$). By Claim 2, $d(w_i) \leq d(v) - 1$ since $w_i w_{i+1} \notin E(G)$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$) and $w_i w_{i+1} \notin E(G)$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$) and $w_i w_{i+1} \notin E(G)$ ($C' : vv_{i+1} u_i^+ v_{i+1}u_i^- \overrightarrow{C} u_i w_{j}^+ v_{i+1}v$) (note that $w_i w_j \notin E(G)$), which contradicts Claim 4.

Thus Claim 5 is true.

Now, a longest cycle C and a vertex $v_0 \in V(G) - V(C)$ with $d(v_0) = \mu(G)$ are fixed. Then there exists one t such that $|u_i^- w_t^-| = 4$ and $|u_i^+ w_t^-| \leq 2$ for any $i \neq t$.

Since G is a 1-tough graph, $\omega(G - N(v_0)) \leq d(v_0)$ and therefore there exist $i \neq j$ and some $y \in u_i \overline{C} w_i, z \in u_j \overline{C} w_j$ such that $yz \in E(G)$. Since $S = \emptyset$ by Claim 2, either $i = t$ or $j = t$, say $j = t$ and assume, without loss of generality, that $y = u_i$. We distinguish two cases.

Case 1. $u_i u_t^+ \in E(G)$. We consider the pair u_t and $C': v_0 v_t \overline{C} u_i^+ u_i \overline{C} v_t v_0$. By the maximality of $d(v_0)$, Claim 4 for v_0 and C yields $\mu(C') = d(u_t) = \mu(G)$. Now, Claim 3, 4 and 5 can be applied to u_i and C'. If $v_i u_t \notin E(G)$, then $v_i^+ v_t^+ v_i v_0$ is the 4-segment of u_t and C', consequently $u_{i-1} \neq v_{i-1}$. If $v_j u_t \notin E(G)$ for some $v_j \neq v_i, v_t$ then $v_j^+ v_{j+1} v_j v_{j+1}$ is the 4-segment of u_t and C', therefore either $u_i \overline{C} w_i$ or $u_{i-1} \overline{C} w_{i-1}$ is a 2-segment of v_t and C. It follows by $s \geq 3$ that some 1-segment of v_0 and C is also a 1-segment of u_t and C'. But this contradicts $N(u_t) \neq N(v)$ and Claim 5 (applied to both pairs v_0, C and u_t, C'). This rejects Case 1.

Case 2. $u_i w_i^+ \in E(G)$.

In this Case $N(u_i^+) \cap N(v_0)^+ = \{u_t\}$ by Case 1. Since G is 1-tough and $u_i w_i \notin E(G)$ ($C': v_0 v_t \overline{C} u_i^+ u_i \overline{C} u_i w_t \overline{C} v_t v_0$) it follows that u_i^+ has a neighbor w_j. Clearly w_j is on $u_i \overline{C} v_i$ ($C': v_0 v_j+1 \overline{C} u_i^+ u_i \overline{C} u_i w_t \overline{C} v_t v_0$). Now consider the pair w_i and $C': v_0 v_{i+1} \overline{C} u_i^+ u_i \overline{C} w_j \overline{C} u_i \overline{C} v_{j+1} v_0$ to obtain a contradiction as in Case 1.

Conjecture

The lower bound on the number of so called 1-segments on a longest cycle in Lemma 9 is best possible only for $c(G) = n - 1$.

Conjecture. Let G be a 1-tough nonhamiltonian graph on $n \geq 3$ vertices with $\sigma_3 \geq n$. Then G contains a longest cycle C (with an assigned orientation) avoiding a vertex v with $d(v) = \mu(G)$ and $|N_C(v)^+ \cap N_C(v)^-| \geq \sigma_3 - n + 3\omega(G - C) + 1$.

The graphs $G_{(n, p)}$ show that our Conjecture, if true, is best possible, also in case $c(G) < n - 1$.

Acknowledgement

The author would like to thank the referees for their comments and many helpful suggestions to improve the proofs in the paper.
References

Received 23 September 1994
Revised 27 November 1996