6. Literatur

2 Akrawi PA, Drummond JC, Kalkman CJ, Patel PM: A Comparison of the Electrophysiologic Characteristics of EEG Burst-Suppression as induced by Isoflurane, Thiopental, Etomidate, and Propofol. J of Neurosurgical Anesth 1996;8(1);40-46

4 Antognini JF, Carstens E: Increasing Isoflurane from 0.9 to 1.1 Minimum Alveolar Concentration Minimally Affects Dorsal Horn Cell Responses to Noxious Stimulation. Anesthesiology 1999;90;208-214

6 Antognini JF, Carstens E, Tabo E, Buzin V: Effect of Differential Delivery of Isofluran to Head and Torso on Lumbar Dorsal Horn Activity. Anesthesiology 1998;88(4);1055-1061

9 Antognini JF, Wang XW, Carstens E: Quantitative and Qualitative Effects of Isoflurane on Movement Occurring after Noxious Stimulation. Anesthesiology 1999;91;1064-1071

11 Barnett TP, Johnson LC, Naitoh P, Hicks N, Nute C: Bispectrum analysis of electroencephalogram signals during waking and sleeping. Science 1971;172:401-402

16 D'Amour ML, Shahani BT, Young RR, Bird KT: The importance of studying sural nerve conduction and late responses in the evaluation of alcoholic subjects. Neurology 1979;29;1600-1604

17 DaunDerer M, Schwender D: [Depth of anesthesia, awareness and EEG]. Anaesthesist 2001; 50: 231-41

Electroenceph Clin Neurophysiol 1971;31;137-148

21 Dutton RC, Smith WD, Smith NT: EEG Predicts movement response to surgical stimuli during general anesthesia with combinations of isoflurane, 70% N2O, and fentanyl.

22 Dwyer RC, Rampil IJ, Eger EI, Bennett HL: The electro-encephalogram does not predict depth of isoflurane anesthesia.
Anesthesiology 1994; 81: 403-9

Anesth Analg 1997;84;915-918

24 Eger EI, Saidman LJ, Brandstater B: Minimum alveolar anesthetic concentration: a standard of anesthetic potency.
Anesthesiology 1965; 26: 756-63

26 Fox JE, Hitchkock ER: F-wave size as a monitor of motor neuron excitability: the effect of deafferentiation.
J Neurol Neurosurg Psychiatry 1987;50;453-459

27 Fraser JL, Olney RK: The relative diagnostic sensitivity of different F wave parameters in various neuropathies.
Muscle Nerve 1991;14;912-913

Anesthesiology 1997; 86: 836-47
30 Gurman GM: Warum brauchen wir eine Objektivierung der “Narkosetiefe”? Anästh Intensivmed 1995;36;50-56
34 Inomata S, Watanabe S, Taguchi M, Okada M: End-tidal sevoflurane concentration for tracheal intubation and minimum alveolar concentration in pediatric patients. Anesthesiology 1994; 80: 93-6
Anaesthesia 1997; 52: 377-81

Katoh T, Ikeda K:
The minimum alveolar concentration (MAC) of sevoflurane in humans.
Anesthesiology 1987; 66: 301-3

Katoh T, Suzuki A, Ikeda K: Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane.
Anesthesiology 1998; 88: 642-50

Anesthesiology 1994;81;1365-1370

Anesthesiology 1993; 79: 235-43

Philadelphia, FA Davis 1983; pp 379-398

Kimura J, Butzer JF: F-wave conducton velodity in Guillian-Barré syndrome. Assessment of nerve segment between axilla and spinal cord.
Arch Neurol 1975;32;524-529

J Neurol Sci 1979;42;291-302

Kimura T, Watanabe S, Asakura N, Inomata S, Okada M, Taguchi M:
Determination of end-tidal sevoflurane concentration for tracheal intubation and minimum alveolar anesthetic concentration in adults.
King BS, Rampil IJ: Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology 1994; 81: 1484-92

Kröll W: Narkosetiefe – Monitoring in Anästhesie und Intensivmedizin; Springer 1995

Lachman T, Shahani BT, Young RR: Late responses as aids to diagnosis in peripheral neuropathy. J Neurol Neurosurg Psychiatry 1980; 43: 156-162

Olofsen E, Dahan A: The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology 1999; 90: 1345-53

Panayiotopoulos CP, Chroni E: F-waves in clinical neurophysiology: a review, methodological issues and overall value in peripheral neuropathies. Electroenceph clin Neurophysiol 1996;101;365-374

70 Quasha AL, Eger EI, Tinker JH: Determination and application of MAC. Anesthesiology 1980;53;315-334

71 Rampil IJ, King BS: Volatile anesthetics depress spinal motor neurons. Anesthesiology 1996; 85: 129-34

72 Rampil IJ, Mason P, Singh H: Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78: 707-12

73 Rampil IJ, Matteo RS: Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 1987;67;139-142

74 Rampil IJ: A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980-1002

75 Rampil IJ: Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 1994; 80: 606-10

77 Rehberg B, Bouillon T, Zinserling J, Hoeft A: Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 1999; 91: 397-405

Scheller MS, Saidman LJ, Partridge BL: MAC of sevoflurane in humans and the New Zealand white rabbit.

Berlin Heidelberg New York, Springer-Verlag, 1997,

Schnider TW, Minto CF, Stanski DR: The effect compartment concept in pharmakodynamic modelling.
Anaesth Pharmacol Rev 1994;2;204-213

Schouenborg J, Kalliomaki J:
Functional organization of the nociceptive withdrawal reflexes
I: Activation of hindlimb muscle in the rat.
Exp Brain Res 1990;83;67-78

News Phyiol Sci 1994;6;261-265

Schwender D, Daunderer M, Mulzer S, Klasing S, Finsterer U, Peter K:
Spectral edge frequency of the electroencephalogram to monitor "depth" of anaesthesia with isoflurane or propofol.
Br J Anaesth 1996; 77: 179-84

Stoeckel H, Thieme, Stuttgart 1985, 160-168

Anästh Intensivther Notfallmed 1980;15;279-286

Sebel PS, Bowles S, Saini V, Chamoun N: EEG bispectrum predicts movement during thiopental/isoflurane anesthesia.

91 Sleigh JW, Donovan J: Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth 1999; 82: 666-71

96 Woodbridge PD: Changing concepts concerning depth of anesthesia Anesthesiology 1957;18(4);536-50

J Neurol Neurosurg Psychiatry 1979; 42: 161-170

99 Zappia M, Valentino P, Marchello LP, Paniccia M, Maontagna P:
F-wave normative studies in different nerves of healthy subjects.
Electroencephalogr Clin Neurophysiol 1993; 89; 67-72

Anesthesiology 1994; 80: 253-60

101 Zhou HH, Jin TT, Qin B, Turndorf H: Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia.
Anesthesiology 1998; 88: 955-61

102 Zhou HH, Mehta M, Leis AA: Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia.
Anesthesiology 1997; 86: 302-7

103 Zhou HH, Zhu C: Comparison of isoflurane effects on motor evoked potential and F wave.
Anesthesiology 2000; 93: 32-8