A new method for feature selection based on fuzzy similarity measures using multi objective genetic algorithm

Hassan Nosrati Nahook*, Mahdi Eftekhari

(1) Faculty member of Information Technology Engineering department, Payame Noor University, Saravan, Iran
(2) Department Computer Engineering - Faculty of Engineering - Shahid Bahonar University of Kerman, Iran.

Copyright 2014 © Hassan Nosrati Nahook and Mahdi Eftekhari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
Feature selection (FS) is considered to be an important preprocessing step in machine learning and pattern recognition, and feature evaluation is the key issue for constructing a feature selection algorithm. Feature selection process can also reduce noise and this way enhance the classification accuracy. In this article, feature selection method based on fuzzy similarity measures by multi objective genetic algorithm (FSFSM – MOGA) is introduced and performance of the proposed method on published data sets from UCI was evaluated. The results show the efficiency of the method is compared with the conventional version. When this method multi-objective genetic algorithms and fuzzy similarity measures used in CFS method can improve it.

Keywords: Feature Selection, Fuzzy Similarity Measures, Multi Objective Genetic.

1 Introduction

Large dimensionality presents a problem for handling data due to the fact that the complexity of many commonly used operations are highly dependent (e.g. exponentially) on the level of dimensionality. The problems associated with such large dimensionality mean that any attempt to use machine learning or data mining tools to extract knowledge, results in very poor performance. Feature selection (FS) [1] is a process which attempts to select features which are information-rich whilst retaining the original meaning of the features following reduction. Most learning algorithms are unable to consider problems of such size, whilst those that are not will usually perform poorly.

A similarity measure is an important tool for determining the degree of similarity between two objects. Kaufman and Rousseuw [2] presented some examples to illustrate traditional similarity measure applications in hierarchical cluster analysis. Since Zadeh [3] originated the idea of fuzzy sets, many different similarity measures between fuzzy sets have been proposed in the literature. Zwick et al [4]

The theory of fuzzy sets, proposed by Zadeh [3], has gained successful applications in various fields. Measures of similarity between fuzzy sets, as an important content in fuzzy mathematics, have gained attention from researchers for their wide applications in real world. Based on similarity measures that are very useful in some areas, such as pattern recognition, machine learning, decision making and market prediction, many measures of similarity between fuzzy sets have been proposed and researched in recent years.

In this paper, we will review several popular similarity measures between fuzzy sets and a feature selection method based on fuzzy similarity measures by multi objective genetic algorithm (FSFSM – MOGA) is presented. This paper is organized as follows. Section 2 describes the related terms. Section 3 explains the multi – objective genetic algorithm. Section 4 describes the correlation based on feature selection method. Section 5 explains the proposed method based on fuzzy similarity measure for evaluate similarity between features by multi objective genetic algorithm. In Section 6, the experimental results of the proposed method are presented. The last section summarises and conclusion related work.

2 Related terms

2.1. T – norm and T – conorm

The triangular norms (t-norm), which generalize the form of intersection and union, are next well described and later will be used to construct our similarity measure: For any x, y, z and uε[0, 1].

T – norm: A two-place function T:[0, 1]×[0,1]→[0,1] is called t – norm if the following conditions are satisfied:
1. T(x,1) = x: one identity;
2. x ≤ z, y ≤ u ⇒ T(x, y) ≤ T(z, u): monotonicity;
3. T(x, y) = T(y, x): commutivity;
4. T(T(x, y), z) = T(x, T(y, z)): associativity;

A t-norm is called Archimedean if and only if T is continuous and ∀ x ∈ [0, 1]: T(x, x) < x.

T – conorm: A two-place function S:[0, 1]×[0,1]→[0,1] is called t – conorm if the following conditions are satisfied:
1. Sn(x,0) = x: zero identity;
2. x ≤ z, y ≤ u ⇒ Sn(x, y) ≤ Sn(z, u): monotonicity;
3. Sn(x, y) = Sn(y, x): commutivity;
4. Sn(Sn(x, y), z) = Sn(x, Sn(y, z)): associativity;

Notice that t-norms are functions which are called fuzzy intersections and unions are the common shorthand term for triangular norms. t-norm and t-conorm only differ on their boundary conditions. Some additional properties of t-norm and t-conorm are presented in the following definitions [11].
A function $S_n : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is dual t-conorm of t-norm such that for all $x, y \in [0, 1]$ both the following equivalent equalities hold, $S_n(x, y) = 1 - T_n(1-x, 1-y)$ and $T_n(x, y) = 1 - S_n(1-x, 1-y)$, where $(1-x)$ and $(1-y)$ are respectively complements of x and y.

Next we present a list of the main well know and most frequently used t–norms [11, 12]:

$$T_{\min}(x, y) = \min(x, y) : \text{Minimum};$$ (2.1)

$$T_{\text{prod}}(x, y) = xy: \text{Algebraic product};$$ (2.2)

$$T_{\text{bprod}}(x, y) = \max \{0, x+y-1\}: \text{Bounded product};$$ (2.3)

$$T_{D_0}(x, y) = \begin{cases} x & y=0 \\ y & x=0 \\ 1 & \text{otherwise} \end{cases} : \text{Drastic sum};$$ (2.4)

$$T_{\alpha H_0}(x, y) = \frac{xy}{\alpha + (1-\alpha)x + y - xy}, \alpha \geq 0: \text{Hamacher's t-norm} ;$$ (2.5)

$$T_{\beta F_0}(x, y) = \log_{\beta} \left(1 + \frac{(\beta-1)(\beta-1)}{\beta-1} \right), \beta > 0, \beta \neq 1: \text{Frank's t-norm};$$ (2.6)

$$T_{Y_0}(x, y) = 1 - \min \left(1, (1-x)^{\frac{1}{\gamma}} + (1-y)^{\frac{1}{\gamma}} \right), \gamma > 0: \text{Yager's t-norm};$$ (2.7)

$$T_{k D_0}(x, y) = 1 - \frac{1}{1 - \left(\left(\frac{x}{k}\right)^{\frac{1}{k}} + \left(\frac{y}{k}\right)^{\frac{1}{k}} \right)^{\frac{1}{k}}}, k > 0: \text{Dombi's t-norm} ;$$ (2.8)

$$T_{\theta W_0}(x, y) = \max \left(0, \frac{x+y+1+0xy}{1+0} \right), \theta > 1: \text{Weber's t-norm} ;$$ (2.9)

$$T_{SS_0}(x, y) = \max \left(0, \left(x^p + y^p - 1\right)^{\frac{1}{p}} \right), p > 0: \text{Schweizer \& Sklar's t-norm};$$ (2.10)

$$T_{\lambda Y_0}(x, y) = \max \left(0, (1+\lambda)(x+y-1)-\lambda xy \right), \lambda > 1: \text{Yu's t-norm};$$ (2.11)

By using the duality we can easily establish the Yu's t-conorm, which is:

$$S_{n Y_0}(x, y) = \min(1, x+y+\lambda xy), \lambda > 1$$ (2.12)

2.2. Similarity measures for fuzzy sets

In this section we present a brief review of similarity measures for fuzzy sets and their axiomatic basis. Since the concept of similarity has a wide range of applications, there are different approaches present in literature as axioms for degree or measure of similarity. These axioms have differences and similarities depending upon the contexts in which they are constructed. At first hand, a similarity measure for fuzzy sets is expected to be a T- equivalence on $F(X)$, which is later realized to be a very unrealistic requirement. Some other lists of properties are also found in literature that a reasonable similarity measure must satisfy. We shall suffice to present a set of axioms formulated by Bustince [13] for an interval valued similarity measure.
A function \(\zeta : \mathcal{F}(X) \times \mathcal{F}(X) \rightarrow [0, 1] \) is called a normal interval valued similarity measure, if \(\zeta \) satisfies following properties for all \(A, B, \) and \(C \in \mathcal{F}(X) \):

I. \(\zeta(A, B) = \zeta(B, A) \),

II. \(\zeta(A, A^c) = [0, 0] \),

III. \(\zeta(A, A) = [1, 1] \),

IV. Monotonic: if \(A \subseteq B \subseteq C \), then \(\zeta(A, B) \geq \zeta(A, C) \) and \(\zeta(B, C) \geq \zeta(A, C) \).

Distance based similarity measures for Fuzzy sets. The most obvious way of calculating similarity of fuzzy sets is based on their distance. This calculation is in two step: in first part the distance between two fuzzy sets is obtained by a distance measure and in the second part one of the relationships between similarity and distance comes into play to reach at the degree of similarity.

Distance measures \(d \) are present in literature. The most commonly employed distance measures are:

1. The Hamming distance
\[
d_H(A, B) = \sum_{i=1}^{n} |A(x_i) - B(x_i)|
\]
(2.13)

2. The normalized Hamming distance
\[
d_{nH}(A, B) = \frac{1}{n} \sum_{i=1}^{n} |A(x_i) - B(x_i)|
\]
(2.14)

3. The Euclidean distance
\[
d_E(A, B) = \sqrt{\sum_{i=1}^{n} (A(x_i) - B(x_i))^2}
\]
(2.15)

4. In general
\[
d_r(A, B) = \left[\sum_{i=1}^{n} |A(x_i) - B(x_i)|^r \right]^{\frac{1}{r}} \quad , \quad r \geq 1
\]
(2.16)

5. The sup distance
\[
d_{sup}(A, B) = \sup |A(x_i) - B(x_i)|
\]
(2.17)

Where measures 1–4 are constructed for finite universe. The relationship between the notions of similarity and distance is expressed in several ways some of which are as follows: If \(d \) is the distance measure between two fuzzy sets \(A \) and \(B \) on a universe \(X \), then following measures of similarity are presented in [14, 15, 16] respectively:

1. The distance based assessment proposed by Koczy:
\[
S(A, B) = \frac{1}{1 + d(A, B)}
\]
(2.18)

2. The distance based assessment proposed by Williams and Steele:
\[
S(A, B) = e^{-\alpha d(A, B)}
\]
(2.19)

Where \(\alpha \) is the steepness measure.

3. Family of distance based similarity measures presented by Sanitini:
\[
S(A, B) = 1 - d_r(A, B), \quad r = 1, 2, \infty.
\]
(2.20)
2.3. Fuzzy similarity measures

(1) Simple fuzzy similarity measures

As definition of the cardinality of a fuzzy set \(A \) in \(X \) we consider the usual sigma-count of \(A \):

\[
\#A = \sum_{i=1}^{n} A(x_i)
\]

(2.21)

Furthermore, the complement \(A^c \) of \(A \) is defined by:

\[
A^c(x_i) = 1 - A(x_i)
\]

(2.22)

And therefore \(\#A^c = n - \#A \).

We have expressed \(T \) – norms in Section 2.1. In this paper, only the \(T \) – norm of equation (2.1) we use. Consider two fuzzy sets \(A \) and \(B \) in \(X \) and let \(a_i = A(x_i) \) and \(b_i = B(x_i) \), then we define:

\[
A \cap B(x_i) = T(a_i, b_i)
\]

(2.23)

\[
A \cup B(x_i) = S_n(a_i, b_i)
\]

(2.24)

Where \(T \) is an arbitrary t-norm, and \(S_n \) denotes its dual t-conorm: \(S_n(x, y) = 1 - T(1-x, 1-y) \). We further restrict the t-norm \(T \) to the family of Minimum t-norms, namely the t-norms characterized by the functional equation:

\[
S_n(x, y) + T(x, y) = x + y
\]

(2.25)

Hence, fuzzification equation (2.24) for set union can be restated in the alternative form:

\[
A \cup B(x_i) = a_i + b_i - T(a_i, b_i)
\]

(2.26)

Notice that rules (2.21), (2.22) and (2.26) are such that both the expressions \(\#(A \cup B) \) + \(\#(A \cap B) \) and \(\#A + \#B \) are fuzzified to the same expression.

Equations (2.21) and (2.22) leads to the fuzzy similarity measures listed in Table 1.

Table 1: Simple fuzzy similarity measures.

<table>
<thead>
<tr>
<th>(S)</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{11})</td>
<td>(\min(\sum a_i, \sum b_i)) (\max(\sum a_i, \sum b_i))</td>
</tr>
<tr>
<td>(Complement (S_{11})) (S_{12})</td>
<td>(n - \max(\sum a_i, \sum b_i)) (n - \min(\sum a_i, \sum b_i))</td>
</tr>
<tr>
<td>(S_{13})</td>
<td>(n - \min(\sum a_i, \sum b_i))</td>
</tr>
<tr>
<td>(Complement (S_{13})) (S_{14})</td>
<td>(n - \max(\sum a_i, \sum b_i))</td>
</tr>
</tbody>
</table>

(2) \(\cap \) - based fuzzy similarity measures

From Table (1) we see that are candidate for fuzzification by means of equations (2.21), (2.22) and (2.26).

In (Table 2) are shown the expressions of the corresponding fuzzy similarity measures.
Table 2: \cap - based fuzzy similarity measures.

<table>
<thead>
<tr>
<th>S</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{21}</td>
<td>$\frac{\sum T(a_i, b_i)}{\max(\sum a_i, \sum b_i)}$</td>
</tr>
<tr>
<td>$(\text{Complement } S_{21})S_{22}$</td>
<td>$\frac{n - \sum a_i - \sum b_i + \sum T(a_i, b_i)}{n - \min(\sum a_i, \sum b_i)}$</td>
</tr>
<tr>
<td>S_{23}</td>
<td>$\frac{\sum T(a_i, b_i)}{n}$</td>
</tr>
<tr>
<td>$(\text{Complement } S_{23})S_{24}$</td>
<td>$\frac{n - \sum a_i - \sum b_i + \sum T(a_i, b_i)}{n - \sum T(a_i, b_i)}$</td>
</tr>
<tr>
<td>S_{25}</td>
<td>$\frac{\sum a_i + \sum b_i - \sum T(a_i, b_i)}{\min(\sum a_i, \sum b_i)}$</td>
</tr>
<tr>
<td>$(\text{Complement } S_{25})S_{26}$</td>
<td>$\frac{n - \min(\sum a_i, \sum b_i)}{n - \sum T(a_i, b_i)}$</td>
</tr>
<tr>
<td>S_{27}</td>
<td>$\frac{\sum T(a_i, b_i)}{n}$</td>
</tr>
<tr>
<td>$(\text{Complement } S_{27})S_{28}$</td>
<td>$\frac{n - \sum a_i - \sum b_i + \sum T(a_i, b_i)}{n}$</td>
</tr>
</tbody>
</table>

2.4. Fuzzy similarity measures based on distance

In this Fuzzy similarity measure, for features of a standard data set, we define a triangular fuzzy number. In this case, the minimum and maximum values in each feature is defined respectively the lower and upper fuzzy numbers. Each feature a triangular fuzzy number will vary according to the center. Whatever triangular fuzzy number related to more asymmetric features, the degree of similarity between two features is greater. That degree of similarity between two feature is calculated as follows:

We Use Triangular Fuzzy number $A(x)$ as follows (equation (2.27)) [17]:

$$A(x) = \begin{cases}
0 & \text{for } x \leq a \text{ or } x \geq b \\
\frac{(x-a)}{(m-a)} & \text{for } x \in (a, m) \\
\frac{(b-x)}{(b-m)} & \text{for } x \in (m, b)
\end{cases} \quad (2.27)$$

Let $(m, 0)$ divides, internally, the base of the triangle in ratio $P : 1$, where P is real positive number ($P \in \mathbb{R}^+$).

$$\frac{p}{1} = \frac{m-a}{\beta-m} \Rightarrow m = \frac{a + \beta P}{P+1} \quad (2.28)$$

Where $\alpha=$minimum value of a feature and $\beta=$maximum value of a feature. Based on figure below (figure 1):
In [18], Hsieh and Chen proposed a similarity measure using the "graded mean integration representation distance", where the degree of similarity \(S(A, B) \) between fuzzy numbers \(A \) and \(B \) can be calculated with equation (2.18). Where
\[
\text{d}(A, B) = |P(A) - P(B)|
\] (2.29)

\(P(A) \) and \(P(B) \) are the graded mean integration representations of \(A \) and \(B \), respectively. If \(A \) and \(B \) are triangular fuzzy numbers, where \(A=(a_1, a_2, a_3) \) and \(B=(b_1, b_2, b_3) \), then the graded mean integration representations \(P(A) \) and \(P(B) \) of \(A \) and \(B \), respectively, are defined as follows [18, 19]:
\[
P(A) = \frac{a_1 + a_2 + a_3}{6}
\] (2.30)
\[
P(B) = \frac{b_1 + b_2 + b_3}{6}
\] (2.31)

It is obvious that the larger the value of \(S(A, B) \), the more the similarity between the fuzzy numbers \(A \) and \(B \).

3 Multi objective genetic algorithm

In GA terminology, a solution vector \(x \in X \) is called an individual or a chromosome. Chromosomes are made of discrete units called genes. Each gene controls one or more features of the chromosome. In the original implementation of GA by Holland, genes are assumed to be binary digits. In later implementations, more varied gene types have been introduced. Normally, a chromosome corresponds to a unique solution \(x \) in the solution space. This requires a mapping mechanism between the solution space and the chromosomes. This mapping is called an encoding. In fact, GA work on the encoding of a problem, not on the problem itself.

GA operate with a collection of chromosomes, called a population. The population is normally randomly initialized. As the search evolves, the population includes fitter and fitter solutions, and eventually it converges, meaning that it is dominated by a single solution. Holland also presented a proof of convergence (the schema theorem) to the global optimum where chromosomes are binary vectors.

GA use two operators to generate new solutions from existing ones: crossover and mutation. The crossover operator is the most important operator of GA. In crossover, generally two chromosomes, called parents, are combined together to form new chromosomes, called offspring. The parents are selected among existing chromosomes in the population with preference towards fitness so that offspring is expected to inherit good genes which make the parents fitter. By iteratively applying the crossover operator, genes of good chromosomes are expected to appear more frequently in the population, eventually leading to convergence to an overall good solution.
The mutation operator introduces random changes into characteristics of chromosomes. Mutation is generally applied at the gene level. In typical GA implementations, the mutation rate (probability of changing the properties of a gene) is very small and depends on the length of the chromosome. Therefore, the new chromosome produced by mutation will not be very different from the original one. Mutation plays a critical role in GA. As discussed earlier, crossover leads the population to converge by making the chromosomes in the population alike. Mutation reintroduces genetic diversity back into the population and assists the search escape from local optima.

Being a population-based approach, GA are well suited to solve multi-objective optimization problems. A generic single-objective GA can be modified to find a set of multiple non-dominated solutions in a single run. The ability of GA to simultaneously search different regions of a solution space makes it possible to find a diverse set of solutions for difficult problems with non-convex, discontinuous, and multi-modal solutions spaces. The crossover operator of GA may exploit structures of good solutions with respect to different objectives to create new nondominated solutions in unexplored parts of the Pareto front. In addition, most multi-objective GA do not require the user to prioritize, scale, or weigh objectives. Therefore, GA have been the most popular heuristic approach to multi-objective design and optimization problems. Jones et al. [20] reported that 90% of the approaches to multi-objective optimization aimed to approximate the true Pareto front for the underlying problem. A majority of these used a meta-heuristic technique, and 70% of all metaheuristics approaches were based on evolutionary approaches. Several survey papers [21, 22, 23, 24] have been published on evolutionary multi-objective optimization. Coello lists more than 2000 references in his website [25]. Generally, multi-objective GA differ based on their fitness assignment procedure, elitism, or diversification approaches. In this paper, multi-objective genetic algorithm to select the optimal number of features to use.

4 Correlation based on feature selection (CFS)

Like the majority of feature selection programs, CFS uses a search algorithm along with a function to evaluate the merit of feature subsets. The heuristic by which CFS measures the “goodness” of feature subsets takes into account the usefulness of individual features for predicting the class label along with the level of intercorrelation among them. The hypothesis on which the heuristic is based can be stated: “Good feature subsets contain features highly correlated with the class, yet uncorrelated with each other.”

In test theory (Huawen, Jigui Sun, Lei Liu and Huijie Zhang, 2009) [26], the same principle is used to design a composite test (the sum or average of individual tests) for predicting an external variable of interest. In this situation, the features” are individual tests which measure traits related to the variable of interest (class). A feature subset S containing k features, \(\bar{r}_{cf} \) the average feature – class correlation, and \(\bar{r}_{ff} \) the average feature – feature intercorrelation, The equations are defined.

\[
\bar{r}_{ff} = \frac{\sum_{i=0}^{n-1} \text{Co}(f_i, f_j)}{n} \tag{4.32}
\]

\[
\bar{r}_{cf} = \frac{\sum_{i=0}^{n} \text{Co}(c, f_i)}{n} \tag{4.33}
\]

Where Co is the correlation matrix. In this paper, we compare the number of selected features FSFSM – MOGA method with CFS method using equations (4.32) and (4.33).
The proposed feature selection method based on fuzzy similarity measures by multi objective genetic algorithms (FSFSM – MOGA)

This method is the same as CFS method, with the difference that instead of the correlation matrix use fuzzy similarity measure matrix and to select the optimal the number of features, we use multi-objective genetic algorithm.

In this case, equations (2.31) and (4.32) the following equations are converted.

\[
\overline{S_{ff}} = \frac{\sum_{i=1}^{n} Sm(f_i, f_{i+1})}{n}
\]

\[
\overline{S_{cf}} = \frac{\sum_{i=1}^{n} Sm(c, f_i)}{n}
\]

Where Sm is the fuzzy similarity measure matrix, \(\overline{S_{cf}}\) the average feature – class fuzzy similarity, and \(\overline{S_{ff}}\) the average feature – feature fuzzy similarity.

Use MOGA algorithm of In the proposed method is explained briefly as follows:

1. Fuzzy similarity matrix calculated using fuzzy similarity measures.
2. Calculated \(\overline{S_{ff}}\) and \(\overline{S_{cf}}\) using fuzzy similarity matrix.
3. Selection the number of optimal features using multi-objective genetic algorithm (use fitness functions relating to equations (5.34) and (5.35)).

\[
f(1) = S_{ff} = \frac{\sum_{i=1}^{n} Sm(f_i, f_{i+1})}{n}
\]

\[
f(2) = \frac{1}{\overline{S_{cf}}} = \frac{n}{\sum_{i=1}^{n} Sm(c, f_i)}
\]

Finally, we compare the results of proposed method with the results of the CFS method fitness functions.

CFS method, Fitness functions:

\[
f(1) = r_{ff} = \frac{\sum_{i=1}^{n} Co(f_i, f_{i+1})}{n}
\]

\[
f(2) = \frac{1}{r_{cf}} = \frac{n}{\sum_{i=1}^{n} Co(c, f_i)}
\]

6 Experiments

Six data sets are used in the experiments to test the proposed algorithm. All of them have been taken from the UCI machine learning database [27], the properties of the data sets are summarized in Table 3. (they differ greatly in the sample size, feature number).

<table>
<thead>
<tr>
<th>No.</th>
<th>Data sets</th>
<th>Features</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>Semeion Handwritten Digit</td>
<td>266</td>
<td>1593</td>
</tr>
<tr>
<td>D_2</td>
<td>Dbworld</td>
<td>4702</td>
<td>64</td>
</tr>
<tr>
<td>D_3</td>
<td>Dbworld_bodies_stemmed</td>
<td>3721</td>
<td>64</td>
</tr>
<tr>
<td>D_4</td>
<td>Lung – Cancer</td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>D_5</td>
<td>Madelon</td>
<td>500</td>
<td>1800</td>
</tr>
<tr>
<td>D_6</td>
<td>CNAE –9</td>
<td>857</td>
<td>1080</td>
</tr>
</tbody>
</table>

Compare the results proposed method with CFS method come in Table 4.
Table 4: The number of Selective features the proposed method in comparison with the conventional method for two classes of FSM using correlation matrix.

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Total number of features</th>
<th>CFS method Using the correlation matrix</th>
<th>FSFSM – MOGA method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Distance – FSM</td>
<td>∩ - FSM</td>
</tr>
<tr>
<td>D₁</td>
<td>266</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>D₂</td>
<td>4702</td>
<td>260</td>
<td>284</td>
</tr>
<tr>
<td>D₃</td>
<td>3721</td>
<td>207</td>
<td>232</td>
</tr>
<tr>
<td>D₄</td>
<td>52</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D₅</td>
<td>500</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>D₆</td>
<td>857</td>
<td>36</td>
<td>26</td>
</tr>
</tbody>
</table>

In the feature selection algorithms of machine learning, the average fuzzy measure feature – feature less and average fuzzy measure class – feature more is better. In table (4), we see that the FSFSM – MOGA method is better than the conventional method. Especially when we use of the ∩ - fuzzy similarity measures. This result in figure 2 is clearly specified.

![Figure 2: The number of Selective features the proposed method in comparison with CFS method.](image)

7 Conclusion

In this paper, we have presented a new method for feature selection based on fuzzy similarity measure using multi – objective genetic algorithm (FSFSM – MOGA). CFS method using fuzzy similarity measure and MOGA were improved, as the performance of this method is shown in Table 4 and figure 2. Experiments show that feature selection method using fuzzy similarity measures together with similarity classifier is giving good results. The proposed method can be modified with other fuzzy similarity measures and improve it.

References

http://dx.doi.org/10.1016/S1088-467X(97)00008-5

 http://dx.doi.org/10.1023/A:1009651725256

 http://dx.doi.org/10.1016/S0377-2217(01)00123-0

 http://dx.doi.org/10.1162/106365600568202

 http://dx.doi.org/10.1109/4235.797969

 http://dx.doi.org/10.1145/358923.358929

 http://dx.doi.org/10.1109/TEVC.2003.817234

 http://dx.doi.org/10.1016/j.patcog.2008.10.028