

A Resilient Algorithm for Power System Mode Estimation using Synchrophasors

Arezoo Rajabi and Rakesh B. Bobba

2nd Industrial Control System Security (ICSS) Workshop, December 6th 2016

Outline

- Introduction
- Background and Problem
 - Prony Algorithm
 - Standard ADMM
 - False Data Injection
- Related Work
- Our Proposed Method
- Evaluation
- Analytical Intuition
- Conclusion

1

Power System

Large synchronous distributed system of interconnected electrical components used for generation, transmission and distribution of electric power

- Generators
- Transmission (and distribution) lines
- Transformers
- Substations

2

* Image Source: http://www2.econ.iastate.edu

Stability In Power Systems

- The ability of operating an AC power network with:
 - All generators in synchronism and
 - Retaining synchronism even after a large disturbance
- Faults can lead to instability in power systems
- Instability problems in power systems can lead to brownouts or in extreme cases blackouts

Introduction

Northeast Blackout – August 2003

Impacted 50 million people

- Estimated loss: \$4-\$10 billion
- At least 2 deaths in New York city attributed to the blackout

Northeast Blackout Map*

Introduction

Inter-Area Oscillation Modes

- In the presence of a fault, two or more coherent groups of generators may start swinging against each other leading to frequency oscillations
- It is important to detect unstable oscillations and take corrective action

Oscillation Mode Detection Approaches

te

	Model-Based Methods	Measurements- Methods
Time Efficiency	×	
Scalability	×	
On-line	×	
Accuracy	\checkmark	×
Topology Independency	×	

2nd Industrial Control System Security (ICSS) Workshop, December 6th 2016

6

Prony Algorithm [Hauer 1990]

7

Orea

- Prony algorithm is a popular measurement-based method
- Consider a power system with *m* synchronous generators
- Assume that each synchronous generator is modeled by a second-order swing equation
- $[y_i(t_0), ..., y_i(t_n)]$ is a set of measurements provided by i^{th} Phasor Measurement Units at time t

$$y_i(t) = \sum_{k=1}^{2m} r_{i,k} e^{\sigma_k + j\Omega_k} + r'_{i,k} e^{\sigma_k - j\Omega_k}$$

Prony Algorithm

Oreao

- Goal: To estimate damping factors(σ_k) and , frequencies (Ω_k) of oscillation modes
- Finds coefficient vector \vec{a} :

$$\underbrace{\begin{bmatrix} y_i(t_0+nT) \\ y_i(t_0+(n+1)T) \\ \vdots \\ y_i(t_0+(n+l)T) \end{bmatrix}}_{\vec{c}} = \underbrace{\begin{bmatrix} y_i(t_0+(n-1)T) & y_i(t_0+(n-1)T) & \cdots & y_i(t_0) \\ y_i(t_0+nT) & y_i(t_0+(n-2)T) & \cdots & y_i(t_0+T) \\ \vdots & \vdots & \vdots & \vdots \\ y_i(t_0+(n+l-1)T)y_i(t_0+(n+l-2)T) & \cdots & y_i(t_0+lT) \end{bmatrix}}_{\vec{h}} \underbrace{\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \\ \vec{d} \end{bmatrix}}_{\vec{d}}$$

• Obtains the roots Z_1, \ldots, Z_n of discrete-time characteristic polynomial equation

$$Z^n + a_n Z^{n-1} + a_{n-1} Z^{n-2} + \dots + a_1 = 0$$

$$\sigma_i \pm \Omega_i = \frac{\log Z_i}{T}$$

8

Power Grid: A Large Distributed Network

9

 Power systems are usually divided into multiple areas of control

*Image source: [Andersson (2005)]

Power Grid: A Large Distributed Network

- Power systems are usually divided into multiple areas of control
- Using Alternating Direction Method of Multipliers (ADMM) to implement Prony Algorithm in a distributed fashion [Wei 2013]:
 - Local objective function of i^{th} area: $(f_i(a) = ||H_ia C_i||)$
 - Goal: to find a solution for:

$$\min_{a} \sum_{i=1}^{N} \|H_{i}a_{i} - C_{i}\|$$

s.t $a_{i} - z = 0$

Standard ADMM (S-ADMM) [Nabavi 2015]

Local Phasor Data Concentrator (PDC):

- Gathers measurements to create Henkel matrix *H_i* and vector *C_i*
 - Disadvantage: S-ADMM is not robust against false data injection

Compromised areas can send corrupted data to mislead other areas or disrupt convergence

Oreao

Background and

Problem

PDCs

 Computes the global optimal estimate vale (z^{k+1}) and shares it with local PDCs

2nd Industrial Control System Security (ICSS) Workshop, December 6th 2016

Ce

Impact of False Data Injection on Convergence

Oregon

Without Attack

With Attack

12

Potential Adversary Goals

- Disrupting the mode estimation by preventing convergence :
 - Random Value Attack
- Driving the estimate away from the real modes (potentially to desired modes)
 - Desired Value Attack
- Remaining Undetected
 - Periodic Attack

Oreac

Related Work

- Round-Robin ADMM[Liao 2016]
 - Central PDC updates the global optimal estimate value by using a local optimal estimate value from only one area in each iteration ($z^{k+1} = a_i^{k+1}$)
 - Central PDC removes the local optimal estimate which causes the most change in global optimal
- D-ADMM[Nabavi 2015]
 - Fully distributed version of S-ADMM
 - Areas send their local optima estimate values to each other
 - Each area uses its objective function to detect compromised area
- CON:
 - They need two runs: one for compromised area detection and one for mode estimation
- Not robust against periodic attack

Our Contributions

- Unlike previous methods that localize the false data, our approach aims to tolerate the false data
- Our approach needs only one run to estimate oscillation modes
- We considered different attack scenarios to evaluate our methods

Fault Tolerance Approach

• Central PDC will identify outlier and remove it from $z^{(k+1)}$ calculation

Our Proposed

(k+1)

V4^(k+1)

 θ_4

Oregon

 $v_{2}^{(k+1)}$

Method

 a_i^{k+1}

V3^(k+1)

 $v_1^{(k+1)}$

- Direction of $v_i^{(k+1)} = a_i^{(k+1)} z^k$ points to the location of optimal value from view of area *i*
- Dissimilarity matrix $(M_{dis}(i, j))$ keeps the angle between v_i^{k+1} and v_j^{k+1}
- To resist against periodic attacks, central PDC has a loc al memory with size+W to strack attacker. θ_3 $M_{dis} = \begin{bmatrix} \theta_1 & \theta_4 + \theta_2 + \theta_3 & 0 & \theta_2 + \theta_3 & \theta_2 \\ \theta_1 + \theta_2 + \theta_3 & \theta_4 & \theta_2 + \theta_3 & 0 & \theta_3 \\ \theta_1 + \theta_2 & \theta_4 + \theta_3 & \theta_2 & \theta_3 & 0 \end{bmatrix}$ 16 $\begin{bmatrix} 1 & 2 & 4 & 2 & 5 & 2 & 3 \end{bmatrix}$

Evaluation

Evaluation

- IEEE 68-bus power system divided into 5 areas
- Generated measurements using Power System Toolbox (PST)
- Generators in this model are 6th order
 - Many of modes have small residues
 - Inter-area oscillation modes have small frequency
 - Therefore, we consider about 40 modes

*Image Source: [Nabavi 2015]

Evaluation

Different Attack Scenarios

2nd Industrial Control System Security (ICSS) Workshop, December 6th 2016

19

Evaluation

Different Attack Scenarios

Periodic Random Value Attack

Oregon Stat

Evaluation

Window Size = 5

2nd Industrial Control System Security (ICSS) Workshop, December 6th 2016

Ь

22

Evaluation

Window Size=10

Oregon State

Evaluation

Theorem 3. Lett fp(x) bod fp(xi) defocutives function s_{v} it $x \notin h$ s_{i} in a_{i} is the optimal value at which f_{i} (x), has s_{i} in a_{i} (x) has s_{i} (x) has has s_{i} (x) has s_{i} (x) has s_{i} (x) has

Conclusions

- We proposed a promising byzantine fault tolerant mode estimation method based on S-ADMM
- Our proposed method does not localize the attacker but can tolerate byzantine attackers
- Our proposed method works well under different attack scenarios

Future Directions

We plan to:

- Evaluate this approach further both empirically and analytically
- Provide a formal analysis of our approach and characterize its limitations
- Apply machine learning algorithms to partition areas into non-faulty and faulty areas

Oregon State

References

[Hauer 1990] Hauer, J. F., Demeure, C. J., & Scharf, L. L. (1990). Initial results in Prony analysis of power system response signals. *IEEE Transactions on power*, *5*(1), 80-89.

[Andersson 2005] Andersson, G., Donalek, et.al.. (2005). Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. *IEEE transactions on Power Systems*, *20*(4), 1922-1928

[Wei 2013] Wei, E., & Ozdaglar, A. (2013, December). On the o (1= k) convergence of asynchronous distributed alternating direction method of multipliers. In *Global Conference on Signal and Information Processing (GlobalSIP), 2013.IEEE* (pp. 551-554). IEEE.

[Nabavi 2015] Nabavi, S., & Chakrabortty, A. (2015, December). An intrusion-resilient distributed optimization algorithm for modal estimation in power systems. In *2015 54th IEEE Conference on Decision and Control (CDC)* (pp. 39-44). IEEE.

[Liao 2016] Liao, M., & Chakrabortty, A.(2016). A round-robin ADMM algorithm for identifying data-manipulators in power system estimation. In *Proc. Amer. Control Conf.*

Orea

27

Thanks

rajabia@oregonstate.edu rakesh.bobba@oregonstate.edu

S-ADMM (Cont.)

Iteration k:

1. Local PDCs updating local optima

$$a_i^{(k+1)} = (H_i'H_i + \rho I)^{-1} \left(H_i'C_i - w_i^{(k)} + \rho z^{(k)} \right)$$

Central PDC compute the global optima: 2. l a1 **PMUs** $z^{(k+1)} = \sum_{i=1}^{N} a_i^{(k+1)}$ **PMUs** $y_{21}(t) \dots y_{2n_2}(t)$ $y_{51}(t) ... y_{5n5}(t)$ central PDC 2 a_2 PDC 5 ы PDC Local PDC update dual parameter 3. PMUs $w_i^{(k+1)} = w_i^{(k)} + \rho(a_i^{(k)} - z^{(k+1)})$ **PMUs** $y_{41}(t) \dots y_{4n_4}(t)$ $y_{31}(t) \dots y_{3n3}(t)$ PDC 4 PDC 3 **Oregon S** 29

 $\begin{array}{c} PMUs \\ y_{11}(t) & \dots & y_{1n_1}(t) \end{array}$

PDC 1