


















premature stop codons, resulting in the truncated TLE gephyrins

�4* and �5–7*, respectively (Supplementary Fig. 8C–D).

Similarly, skipping of exons 4–8 is expected to result in protein

truncation, but unusual assembly of exons 3 and 9 actually

circumvented this (Supplementary Fig. 8E). Post-transcriptional

processing is known to be disturbed in the TLE hippocampus

(Vollmar et al., 2004; Eichler et al., 2008, 2009; Legendre

et al., 2009) and cellular stress (alkalosis and high temperature)

Figure 5 Interaction of regular gephyrin with TLE gephyrins. (A and B) TLE gephyrins were expressed in HEK293 cells, and molybdenum

cofactor (Moco) and molybdopterin (MPT) content was determined. (A) Nit1 activity upon expression of individual constructs in

comparison to EGFP expressing (MOCK) cells. Note that regular gephyrin (�6) increases both molybdopterin and molybdenum cofactor

content, which is due to its molybdopterin binding (G-domain) and metal insertion activity (E-domain), respectively. The reduced catalytic

activity of TLE gephyrins goes back to structural deficits in their G-domains, similar to previous data obtained with the dominant negative

gephyrin G2 splice variant. (B) Co-expression of TLE gephyrin variants with regular gephyrin (�6) was carried out in order to analyse the

capacity of TLE gephyrins to interact with catalytically active gephyrin (�6). Note the significant reductions of both molybdopterin and

molybdenum cofactor content upon co-expression of regular and TLE gephyrins. (C) N- and C-terminal parts (DsRed-Express-tagged

exons 1–3 and exon 8, respectively) of TLE gephyrin G-domains co-localize with regular (�6) EGFP-tagged gephyrin in HEK293 cells. The

G-domain trimer interface exon 7 also co-localizes with regular gephyrin. Note that expression of exon 1–3 dissolves globular aggregates

of regular gephyrin (examples in C). Scale bar: 10 mm. *P50.05, **P50.01.
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is known to be involved in epileptogenesis (Church and

Baimbridge, 1991; Hentschke et al., 2006; Schuchmann et al.,

2006; Qu et al., 2007). Most importantly, hyperthermia was

shown to decrease GABAergic synaptic transmission in cornu

ammonis pyramidal cells, but not in dentate gyrus granule cells

(Qu and Leung, 2009). Therefore, we finally addressed the possi-

bility that experimentally induced alkalosis and hyperthermia

(Fig. 9A) are sufficient to provoke exon skipping in GPHN gene

transcripts. For this purpose, the capacity of primary hippocampal

neurons to maintain regular gephyrin splicing upon alkalosis and

hyperthermia was analysed (Fig. 9B and C). Both alkalization and

hyperthermia reduced the amount of regularly spliced gephyrin

down to 52 � 5% (alkalosis) and 30 � 2% (hyperthermia) of con-

trol (Fig. 9B and C), and molecular cloning and sequencing con-

firmed the TLE identity of PCR products obtained from stressed

neurons (Fig. 9B, arrows). Alkalosis and hyperthermia increased

the fraction of neurons with overlapping gephyrin, ubiquitin and

NeuN immunoreactivities (control: 3.4 � 1.1%; alkalosis:

49.0 � 5.0%; hyperthermia: 60.1 � 3.9%, P50.001; Fig. 9D,

arrowhead and arrow, E). Moreover, in control neurons

(Fig. 9D, left lower panel), 80.1 � 2.6% of GABAergic synapses

(vesicular inhibitory amino acid transporter) contained gephyrin

and GABAA receptor a2 (Fig. 9F), while in neurons challenged

with alkalosis or hyperthermia (Fig. 9D, right lower panel,

arrows) significantly less synapses contained gephyrin and

GABAA receptor a2 (alkalosis: 47.6 � 8.5%; hyperthermia:

44.8 � 10.5%; Fig. 9F). Finally and most conclusively, a reporter

construct consisting of red (tdTomato) and green (EGFP) fluores-

cent proteins separated by exons 3–5 (including the sequenced

TLE intron fragments) reliably monitored skipping of exon 4

upon cellular stress (Supplementary Fig. 9, ‘EGFP ON’).

Therefore, we conclude that cellular stress has induced exon

Figure 6 TLE gephyrins exert dominant negative effects on hippocampal endogenous postsynaptic gephyrin. Proximal dendrites of

primary rat hippocampal neurons expressing EGFP-tagged regular (A, �6) or TLE gephyrins (B–E) are shown. GABAergic synapses and

endogenous gephyrin were visualized with anti-vesicular inhibitory amino acid transporter (VIAAT) and mAb7a antibodies, respectively.

Note that the fraction of GABAergic synapses (vesicular inhibitory amino acid transporter) with postsynaptic gephyrin (mAb7a) is reduced

in cells expressing TLE gephyrins. Scale bar: 5 mm.

3788 | Brain 2010: 133; 3778–3794 B. Förstera et al.

 by guest on O
ctober 6, 2016

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/


skipping in gephyrin mRNA and produced TLE gephyrins with

dominant negative effects on GABAergic postsynaptic protein

scaffolds (Fig. 9G).

Discussion
Anomalous GABAergic inhibition is involved in TLE (Kumar and

Buckmaster, 2006; Stief et al., 2007; Eichler and Meier, 2008)

and corresponding reduction of gephyrin immunoreactivity was

observed in the hippocampal cornu ammonis of kainate-injected

epileptic mice (Knuesel et al., 2001). However, the mechanisms

underlying curtailed postsynaptic gephyrin remained unknown.

This study identifies pathological gephyrin expression in the

cornu ammonis of patients with TLE, irrespective of hippocampal

sclerosis. Therefore, curtailing of postsynaptic gephyrin and

GABAA receptor a2 scaffolds is not a consequence of neuronal

dropout, but rather results from cellular stress-induced inhibition

of gephyrin RNA splicing and the resulting synthesis of dominant

negative gephyrins. Notably, cellular stress (alkalosis or hyperther-

mia) has been involved in epileptogenesis (Church and

Baimbridge, 1991; Hartley and Dubinsky, 1993; Ben-Ari et al.,

2007; Qu and Leung, 2008). As we did not see gephyrin

genome sequence modifications in patients with TLE, but could

monitor exon skipping in gephyrin mRNA upon cellular stress,

this study reveals that cellular stress is sufficient to trigger domin-

ant negative effects of TLE gephyrins on hippocampal GABAergic

postsynaptic domains.

Gephyrin regulates the size of postsynaptic scaffolds and con-

sequently their ability to locally stabilize and enrich postsynaptic

domains with GABAA receptors (Kneussel et al., 1999; Levi et al.,

2004) by providing binding sites for GABAA receptor a2 (Tretter

et al., 2008). Its capacity to form oligomers is essential to this

mechanism as it amplifies the number of postsynaptic GABAA re-

ceptor docking sites. Based on structural and functional data,

gephyrin oligomerization involves both G-domain trimer and

E-domain dimer formation, leading to the proposed hexagonal

protein lattice (Schwarz et al., 2001; Sola et al., 2001, 2004;

Schrader et al., 2004; Lardi-Studler et al., 2007). Thus, any pro-

cess that interferes with G- or E-domain interactions will impact on

available GABAA receptor a2 binding sites. Alternative splicing of

gephyrin G-domains was already proposed to produce dominant

negative gephyrins, since inclusion of exon 6 [G2 gephyrin splice

variant (Fritschy et al., 2008)] was shown to disrupt the G-domain

trimer interface (Schwarz et al., 2001). Consequently, exon

6-containing G-domains are no longer able to form trimers, and

in conjunction with E-domain dimerization, filamentous gephyrin

aggregates emerge (Meier et al., 2000; Smolinsky et al., 2008).

We have also shown that the gephyrin G2 splice variant is cata-

lytically inactive in synthesizing molybdenum cofactor (Smolinsky

et al., 2008). Therefore, G2-gephyrin was a prime candidate for

impairment of GABAergic synapses in TLE. However, we did not

obtain evidence for up-regulation of G2-gephyrin in patients with

TLE. Instead, we isolated four abnormally spliced G-domains that

all abolished regular gephyrin aggregation. One TLE gephyrin

(�4-8) produced filamentous aggregates, as was observed with

the G2 splice variant (Meier et al., 2000; Bedet et al., 2006;

Smolinsky et al., 2008), while the other three TLE variants pro-

duced a diffuse signal in fibroblasts. In all cases, deficits in

gephyrin oligomerization most likely result from omission of

exon 7 because these amino acids constitute the integral part of

the trimer interface of gephyrin G-domains (Schwarz et al., 2001;

Sola et al., 2001). Furthermore, the presence of filamentous and

diffuse mAb7a immunoreactivities in combination with curtailed

postsynaptic gephyrin, gephyrin cleavage products in western

blots as well as overlapping signals of gephyrin, ubiquitin and

the neuronal splice factor NeuN indicates that abnormal gephyrin

splicing and expression had occurred in the hippocampal cornu

ammonis of patients with TLE.

Dominant negative effects of TLE gephyrins on hippocampal

regular gephyrin were determined using three experimental stra-

tegies. First, gephyrin’s catalytic activity in synthesizing molyb-

denum cofactor was used as a measure for their ability to

interact with regular gephyrin in HEK293 cells. As TLE gephyrins

rendered catalytically active regular gephyrin non-functional both

in terms of G-domain dependent molybdopterin and E-domain

catalysed molybdenum cofactor synthesis, even upon

co-expression of truncated variants with fragmental G-domains,

interaction of TLE gephyrins with regular gephyrin must have

occurred. Second, we could show that N- and C-terminal parts

of TLE gephyrin G-domains co-localize with regular gephyrin in

HEK293 cells, and third, the impact of the TLE gephyrins on hip-

pocampal endogenous postsynaptic gephyrin and GABAA receptor

a2 was obvious in vitro. Thus, dominant negative effects can be

attributed to TLE gephyrin variants.

Table 2 Percent fraction of GABAergic synapses (vesicular
inhibitory amino acid transporter) with postsynaptic
gephyrin (mAb7a)

Gephyrin
clone ID

Number of
cultures

n Postsynaptic
gephyrin

SD P-value

�6 control 2 13 89.5 8.6

�6–8 3 28 53.7 11.0 ***

�4–8 2 13 47.0 8.4 ***

�5–7* 3 12 53.8 19.1 ***

�4* 3 12 50.8 14.6 ***

n = number of analysed neurons per culture; SD = standard deviation.
***P50.001.

Table 3 Number of GABAergic synapses (vesicular
inhibitory amino acid transporter)

Gephyrin
clone ID

Number of
cultures

n Number of
VIAAT

SD P-value

�6 control 2 13 27 9

�6–8 3 28 30 11 ns

�4–8 2 13 31 10 ns

�5–7* 3 12 28 9 ns

�4* 3 12 28 10 ns

n = number of analysed neurons per culture; SD = standard deviation;
VIAAT = vesicular inhibitory amino acid transporter; ns = not significant, P50.05.
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DNA sequencing of TLE gephyrin G-domain exons and their

flanking intron fragments has indicated that gephyrin genome se-

quence modifications did not underlie abnormal gephyrin expres-

sion in TLE hippocampectomies. A novel fluorescence reporter

construct of irregular gephyrin RNA splicing was generated to

verify that the sequenced intron fragments were long enough to

draw such a conclusion, by monitoring skipping of exon 4 upon

cellular stress (Supplementary Fig. 9). Thus, cellular stress (alkalosis

and hyperthermia) is sufficient to trigger exon skipping and to

produce dominant negative TLE gephyrin, associated with over-

lapping signals of gephyrin, ubiquitin and NeuN in vitro and cor-

responding to our observations made in CA3 regions, but not in

Figure 7 TLE gephyrin expression in hippocampal neurons reduces the number of functional GABAergic synapses. (A) Representative

traces of miniature GABAergic postsynaptic currents obtained from untransfected neurons (NT), from neurons expressing EGFP and from

neurons expressing �4* TLE gephyrin are shown. (B) Quantitative analysis of the frequency of miniature GABAergic postsynaptic currents

(mIPSC) reveals significant differences between control neurons (NT or EGFP) and TLE gephyrin expressing neurons (�4*). (C) Mean

amplitudes of miniature GABAergic postsynaptic currents are shown. (B and C) The number of investigated neurons is indicated.

(D) The normalized histogram of miniature GABAergic postsynaptic current amplitude distributions illustrates under-representation of

large miniature GABAergic postsynaptic currents (570 pA) in �4* TLE gephyrin expressing neurons. The bin size was set to 10 pA, and

1571 (EGFP) and 657 (�4* TLE gephyrin) events were included. (E) Cumulative probability distribution of miniature GABAergic post-

synaptic current amplitudes and P-value obtained with statistical analysis using Kolmogorov-Smirnov test. **P50.01, *P50.05, ns = not

significant (P = 0.8).
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dentate gyri, of TLE hippocampectomies. In fact, hyperthermia

was already shown to decrease GABAergic synaptic transmission

to pyramidal cells of the cornu ammonis, but not to dentate gyrus

granule cells (Qu and Leung, 2009). The rise of extracellular glu-

tamate during epileptic seizures (During and Spencer, 1993) is an-

other example of critical cellular stress, because seizures produce

rebound alkalosis up to intracellular pH of 8.0 (Hartley and

Dubinsky, 1993), also culminating in exon skipping

(Supplementary Fig. 9) and hence the postsynaptic signature of in-

hibited gephyrin RNA splicing (Fig. 9G). In fact, a large body of evi-

dence supports the involvement of rises in intracellular pH in

increased neuronal excitability and epileptiform activity both

in vitro and in vivo (Aram and Lodge, 1987; Balestrino and

Somjen, 1988; Jarolimek et al., 1989; Lee et al., 1996; Kaila and

Ransom, 1998).

Although the overall role of gephyrin in enrichment of postsy-

naptic sites with GABAA receptors is a matter of controversy

(Kneussel et al., 1999; Levi et al., 2004), this study and others

(Fischer et al., 2000; Kneussel et al., 2001; Yu et al., 2007) sup-

port a subunit-specific role of gephyrin in postsynaptic GABAA

receptor enrichment. Direct binding of GABAA receptor a2 to

gephyrin was demonstrated recently (Tretter et al., 2008), while

postsynaptic clustering of a1-GABAA receptors seems to be inde-

pendent of gephyrin (Kneussel et al., 2001; Levi et al., 2004; Yu

et al., 2007). a1-GABAA receptors are preferentially found at syn-

apses of fast-spiking interneurons (involved in high frequency

gamma network oscillatory activity), while a2-GABAA receptors

preferentially associate with synapses of regular, low frequency, spik-

ing interneurons (Freund and Katona, 2007). Notably, a preponder-

ance of high frequency hippocampal network oscillatory activity is

known to precede seizures (Fisher et al., 1992; Bragin et al., 2007),

and small changes in the overall activity in the hippocampal CA3 area

can trigger the neuronal network to switch from gamma oscillations

to epileptiform bursts (Fisahn, 2005). In fact, dentate gyrus granule

cell to CA3 synapses are ‘conditional detonators’ (Henze et al.,

2002), which can easily elicit recurrent CA3–CA3 activity if not con-

trolled appropriately. Thus, exon skipping in gephyrin mRNA could

reduce seizure threshold, for example secondary to seizure activity,

due to cellular stress (e.g. alkalosis) and its impact on postsynaptic

gephyrin and GABAA receptor a2.

Figure 8 TLE gephyrin expression curtails postsynaptic GABAA receptor a2 scaffolds. (A–D) Analysis of postsynaptic GABAA receptor

distribution in neurons with �4* TLE gephyrin reveals coherent depletion of postsynaptic endogenous gephyrin (Ge, mAb7a) and GABAA

receptor a2. Dendrites of neurons expressing EGFP (A, control) or �4* TLE gephyrin (B) are shown. Co-localization of vesicular inhibitory

amino acid transporter (VIAAT), gephyrin and GABAA receptor a2 appears in white. Synapses devoid of gephyrin also lack GABAA

receptor a2 (B, arrows). Thus, �4* TLE gephyrin expression reduces both postsynaptic gephyrin and GABAA receptor a2 (C and D). (E–G)

In CA3 regions of TLE hippocampectomies, vesicular inhibitory amino acid transporter-positive nerve endings without gephyrin (mAb7a)

also lack GABAA receptor a2 (arrows). Scale bars, A–B: 5mm, E–G: 10mm. ***P50.001.
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Figure 9 Cellular stress (alkalosis and 39�C) triggers curtailing of postsynaptic gephyrin and GABAA receptor a2 scaffolds in hippocampal

neurons. (A) High temperature (39�C) and alkalosis experimental paradigms. Change of the extracellular milieu pH (pH[e]) over time is

shown. (B) Reverse transcription PCR analysis of G-domain splicing in control condition and upon experimentally induced cellular stress.

DNA sequencing confirmed the TLE identity of gephyrin amplification products (arrows). Note that splicing of regular gephyrin (�6) is

reduced in neurons challenged with alkalosis or 39�C (C). (D and E) Determination of the fraction of cells with co-localized gephyrin and

ubiquitin in perinuclear (DAPI) compartments. Note that control neurons (NeuN) rarely display co-localized gephyrin and ubiquitin

immunoreactivities, and the rare perinuclear aggregates do not contain NeuN (D, high power view, arrowhead). In contrast, cellular stress

increases the fraction of neurons with perinuclear gephyrin and ubiquitin (E). These aggregates also contain the neuronal splice factor

NeuN (D, high power view, right panel, arrow). (D and F) Neurons challenged with 39�C or alkalosis display coherent loss of postsynaptic

gephyrin and GABAA receptor a2 (D, high power views of dendrites with mAb7a, a2 and vesicular inhibitory amino acid transporter,

arrows). Accordingly, cellular stress induces exon skipping during RNA splicing (Supplementary Fig. 9). (G) Scheme summarizing effects of

cellular stress on gephyrin splicing and postsynaptic GABAergic domains. ***P50.001.
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