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The recent �nancial crisis demonstrates that an upstream member in a supply chain usually has a

weaker cash liquidity. Cash shortage a�ects material supply to a downstream member, which, in turn,

a�ects the performance of the entire chain. This paper provides a supply chain model that integrates

material and cash �ows and investigates the impact of payment policies on the system performance.

Speci�cally, we consider a two-stage system in which a retailer replenishes inventory from a supplier

in a �nite horizon. The retailer has stronger cash liquidity in the sense that it can transfer cash from

or to an investment account in each period. To quantify the value of payment �exibility, we consider

two payment schemes. For the �exible payment (FP) scheme, the retailer may delay the payment or

subsidize cash to the supplier; for the strict payment (SP) scheme, the retailer pays exactly what it

orders. We prove that the optimal joint policy for the FP model has a surprisingly simple structure �

both stages implement an echelon base-stock policy for inventory replenishment; the retailer monitors

the system's working capital and implements a two-threshold policy for cash transfers and a pay-up-to

policy for payment. Solving the SP model is more involved. We �rst provide a lower bound on the

optimal cost by connecting the SP model to an assembly system. We then propose a simple and

intuitive heuristic. Our numerical study characterizes circumstances under which the value of �exible

payment is most signi�cant and identi�es factors that a�ect the optimal cash to inventory ratio. In

addition, the volatility of payment from the retailer to the supplier is larger (smaller) than that from the

supplier to the external vendor under the FP (SP) scheme. Thus, the material and �nancial bullwhip

e�ects may not amplify in the same direction.
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1 Introduction

The fundamental purpose of supply chain management is to e�ciently coordinate material, infor-

mation, and �nancial �ows so as to reduce risks of demand-supply mismatches. These risks can be

mitigated through implementing optimal or near-optimal inventory policies (e.g., Clark and Scarf 1960,



Federgruen and Zipkin 1984, Shang and Song 2003), coordinating supply chain members (e.g., Lee and

Whang 1999, Cachon and Lariviere 2005, Shang et al. 2009), sharing demand and projected order

information (e.g., Lee et al. 2000, Aviv 2001, Chen and Lee 2009), and exercising operational hedging

strategies (e.g., Huchzermeier and Cohen 1996, Harrison and Van Mieghem 1999). While the sup-

ply chain literature on the aforementioned topics is quite extensive, these studies essentially focus on

achieving a more e�ective integration of material and information �ows. Interestingly, the literature

on studying the integration of material and �nancial �ows is relatively sparse, even though these two

�ows are closely related and a�ect each other. For example, in the recent �nancial crisis, many up-

stream suppliers who provide trade credit contracts to their downstream retailers su�ered from cash

shortage because of the di�culty of getting funds from banks. Lacking cash will a�ect the suppliers'

normal operations, which, in turn, a�ects material supply to their downstream retailers. Such a supply

disruption risk can be mitigated, however, if a more e�ective cash payment policy is in place. The

purpose of this paper is to provide a framework that integrates �nancial �ows into an existing supply

chain model and to explore the impact of cash payment policies on the system performance. To this

end, we shall demonstrate that an e�ective cash payment policy can mitigate the supply disruption

risk and improve supply chain e�ciency.

We consider a two-stage inventory system in which an upstream supplier provides materials to

a downstream retailer, who faces stochastic customer demand. The demands are independent from

period to period but not necessarily identical. There are positive lead times for both stages. Linear

inventory holding and backorder costs are incurred in each period. In addition, there is a linear purchase

cost incurred for each inventory ordered at each stage. Consistent with a cited phenomenon that the

downstream retailer usually has stronger cash liquidity (e.g., Lester 2002, Boute et al. 2011), we assume

that the retailer can either dispose cash to invest, for example, in equity markets or retrieve cash by

selling equities to assist operations, if necessary. We call this cash disposal or retrieval investment

decision (either invest in equities or inventory). This modeling approach is commonly seen in the cash

management literature since large companies usually hold two distinct accounts for cash usage: an

operating account (cash balance account) and an investment account (portfolio of liquid assets); see,

for example, Baumol (1952), Tobin (1956), and Miller and Orr (1966). On the other hand, the supplier

mainly focuses on using cash for operations, i.e., paying inventory, without major investment activities.

In each period, both stages decide how much inventory to order; the retailer also makes payment and

investment decisions. The objective is to obtain the optimal joint inventory order, cash payment, and

investment policies such that the system-wide discounted expected cost in a �nite horizon is minimized.

To quantify the value of payment �exibility, we consider two payment schemes for the retailer.

For the �exible payment (FP) scheme, the retailer may delay the payment or subsidize cash to the

supplier; for the strict payment (SP) scheme, the retailer pays exactly what it orders. In both schemes,

the supplier pays exactly what it orders. Clearly, the bene�t gained from the FP scheme over the SP

scheme is the value of �exible payment.
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We �rst formulate a dynamic program which includes (two) inventory and (two) cash states for

the considered two-stage system under the FP scheme. This problem is complicated as one cannot

directly obtain a structured joint optimal policy from the dynamic program. Nevertheless, by rede�ning

the state variables into echelon terms, we can transform the original two-stage system into a four-

stage system, under which the optimal joint policy can be characterized. The optimal joint policy is

surprisingly simple. The inventory policy has the same structure as the traditional multi-echelon system

(c.f., Clark and Scarf 1960): each stage reviews the echelon inventory position at the beginning of a

period and orders up to a target echelon base-stock level. For the cash payment and investment policies,

the retailer reviews the echelon working capital position (echelon inventory position plus inventory-

equivalent cash level) at the beginning of each period and disposes (retrieves) cash down (up) to a

threshold level; then the retailer pays the supplier up to a target level (or the supplier receives cash

payment up to a target level). Technically, we simplify the computation by decoupling the original

dynamic program with four states into four separate dynamic programs, each with one state variable.

Thus, the optimal policy parameters can be easily obtained.

Solving the model with the SP scheme is more involved. Simply speaking, the problem is similar to

a serial capacitated system (Parker and Kapuscinski 2004) in the sense that the on-hand cash level can

be viewed as a capacity constraint for inventory ordering. However, the major di�erence between the

traditional capacitated system and ours is that the cash level constraint is endogenously determined by

the inventory, payment, and investment decisions. Thus, we are not able to characterize the optimal

policy. Nevertheless, we provide a lower bound to the optimal cost by mapping the considered SP

model into an assembly system with two component �ows � one is retailer's cash �ow and the other is

the system's material �ow. In addition, we propose a simple and e�ective heuristic policy for the SP

model. We use the heuristic policy to reveal qualitative insights.

We summarize several major analytical and qualitative �ndings. First, by adopting a �exible pay-

ment policy, the inventory decision is independent of the cash payment decision; however, the cash

payment decision depends on the echelon working capital position. An implication is that the account-

ing department should consider the inventory level when making cash payment decisions. Second, the

optimal echelon working capital position depends on the length of the total inventory lead time plus

�nancial payment lead time. In other words, when the retailer plans for its optimal cash level in the

current period, it has to consider the demand occurring in the aforementioned lead time length in the

future. Third, the retailer should subsidize the supplier when the supplier pro�t margin is low and

the demand is increasing. In this case, the �exible payment policy has a signi�cant value and can

mitigate the risk of supply shortage. Nevertheless, the value of �exible payment diminishes faster than

the reduction of capital liquidity. On the other hand, the retailer should delay the payment to the

supplier when the supplier's pro�t margin is high and demand tends to be stationary. In this case,

delaying payment is equivalent to allocating more cash to the retailer who has a better investment

capability, and thus the value of �exible payment is signi�cant. This �nding also suggests that the

3



cash payment policy can be a useful mechanism to share the �nancial default risk between the supply

chain parties. Fourth, when �exible payment is in place, we �nd that both stages' optimal cash and

inventory levels are non-decreasing with demand volatility, but the change of inventory level is larger

than that of cash level, making the cash to inventory ratio decrease. In addition, the optimal cash to

inventory ratio of the supplier tends to be more stable than that of the retailer. Lastly, the variability

of cash payment from the retailer to the supplier is larger (smaller) than that from the supplier to the

outside vendor under the FP (SP) scheme. On the other hand, the variability of inventory shipment

grows when moving upstream. Thus, the material and �nancial bullwhip e�ects may not amplify in

the same direction in an integrated supply chain.

2 Literature Review

Our work is related to four streams of research in the literature: cash management, multi-echelon

inventory models, capacitated inventory models, and inventory model with �nancial �ows.

For the cash management literature, most papers treated cash as inventory and used inventory

control tools to �nd the optimal cash balance for �rms. Baumol (1952) studied the optimal cash level

for a �rm that uses cash either for paying transactions or for investment. Baumol's model is similar

to the retailer in our setting. Tobin (1956) considered a more re�ned model, focusing on the impact of

interest rate on the demand for cash at a given volume of transactions. In both works, the cash �ows

were modeled as a deterministic stream. In contrast, Miller and Orr (1966) highlighted the stochastic

nature of transactions by assuming that the net cash �ows are generated by a stationary random

walk. This line of research was further extended by Frenkel and Jovanovic (1980), who analyzed

the optimal cash holdings when net disbursements are governed by a standard Wiener process. For

dynamic, periodic-review cash balance problems, Girgis (1968) modeled the selection of a cash level

in anticipation of future net expenses as a single product multi-period inventory system. Porteus

(1972) showed that the marginal cost and total cost formulation of these problems are equivalent

under appropriate cost constructions. Heyman (1973) presented a model to minimize the average cash

balance subject to a constraint on the probability of stock-out. The biggest di�erence between these

studies and ours is that these authors focus on cash dynamics without considering detailed operational

decisions, while we speci�cally model the cash and inventory dynamics as two inter-related �ows.

Our research is also related to the multi-echelon literature. In particular, our model incorporates

cash �ows into the seminal supply chain model developed by Clark and Scarf (1960), who proved that an

echelon base-stock policy is optimal. Furthermore, they showed that the problem can be decoupled into

a series of separate one-dimensional dynamic programs by introducing the notion of echelon inventories.

Federgruen and Zipkin (1984) extended their results to an in�nite horizon model and showed that a

stationary order-up-to policy is optimal. Chen and Zheng (1994) simpli�ed the optimality proof and

provided a lower bound on the long run costs. Angelus (2011) considered a variant of the Clark-Scarf
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model by allowing each stage to dispose excess inventory to a secondary market. He introduced a class

of heuristic policies, called disposal saturation policies, which can be obtained using the Clark-Scarf

decomposition. In our model, we allow both cash disposal and injection.

The capacitated inventory problem is related to our model since the cash constraint on inventory

replenishment can be viewed as the supply capacity. For single-stage systems, Federgruen and Zipkin

(1986) showed that the modi�ed base-stock policy is optimal. Angelus and Porteus (2002) derived the

optimal joint capacity adjustment and production plan with and without carryover of unsold inventory

units. Their capacity adjustment decision is similar to our cash investment decision, but our cash

capacity is also a�ected by payment decisions and random sales. For serial systems, Roundy and

Muckstadt (2000) assumed base-stock policy and proposed an e�cient approximation. Parker and

Kapuscinski (2004) demonstrated that a modi�ed echelon base-stock policy is optimal in a two-stage

system when there is a smaller capacity at the downstream facility. Glasserman and Tayur (1995)

studied the stability issue of the system and provided a heuristic for the optimal base-stock policy.

Huh et al. (2010) studied the stability properties of base-stock policies with a sample path approach.

The main di�erence between the serial capacitated models and ours is that the cash constraint is

endogenously determined by inventory and cash decisions.

Finally, there have been several recent studies to incorporate �nancial decisions or budget con-

straints into inventory models. Most of these papers are based on single-stage systems. Buzacott and

Zhang (2004) incorporated asset-based �nancing into production decisions. They demonstrated the

importance of joint consideration of production and �nancing decisions to capital constrained �rms.

Babich and Sobel (2004) coordinated the �nancial and operational decisions to maximize the present

value of proceeds from an IPO. They characterized an optimal capacity-expansion policy by formulat-

ing the IPO event as a stopping time in an in�nite-horizon Markov decision process. Li et al. (2005)

studied a dynamic model in which inventory and �nancial decisions are made simultaneously in the

presence of uncertain demand. The objective is to maximize the expected present value of dividends.

The authors proved that the myopic policy is optimal. Ding et al. (2007) studied the integrated

operational and �nancial hedging decisions faced by a global �rm which sells to both home and for-

eign markets. They showed that the �rm's �nancial hedging strategy is closely tied to its operational

strategy. Chao et al. (2008) modeled a self-�nancing retailer's inventory replenishment decisions with

a cash budget constraint. They characterized the optimal inventory control policy. Gupta and Wang

(2009) presented a discrete-time inventory model with trade credit and showed that the problem can

be converted into a single-stage system model with re�ned holding cost rates. Babich (2010) studied a

manufacturer's joint inventory and �nancial subsidy decisions when facing a supplier whose �nancial

state is governed by a �rm-value model. He showed that an order-up-to policy and subsidize-up-to pol-

icy are optimal for the manufacturer. Our model is di�erent from Babich's as we explicitly model the

interrelated dynamics of inventory and cash �ows between the retailer and supplier, while the supplier

in Babich's is exogenous to the manufacturer. Yang and Birge (2011) modeled a Stackelberg game

5



between a retailer and a supplier with the use of a trade credit contract. They demonstrated that an

e�ective trade credit policy can enhance supply chain e�ciency. Protopappa and Seifert (2010) con-

ducted a simulation study on a two-stage supply chain to reveal qualitative insights on the allocation

of working capital between the supply chain partners.

The rest of this paper is organized as follows. �3 describes the FP model and formulates the

corresponding dynamic program. �4 proves the optimal joint policy by transforming the original two-

stage system into a four-stage model. �5 focuses on the SP model. We provide lower bounds to the

optimal cost and suggest a heuristic. �6 examines the e�ectiveness of the heuristic for the SP model,

and discusses the qualitative insights through a numerical study. �7 concludes. Appendix A extends

our model to incorporate a penalty cost charged on the debt between the supplier and the retailer.

Appendix B provides proofs. Throughout this paper, we de�ne x+ = max(x, 0), x− = −min(x, 0),

a ∨ b = max(a, b), and a ∧ b = min(a, b).

3 The Model

We consider a periodic-review, two-stage serial inventory system where a retailer (stage 1) orders from

a supplier (stage 2), which orders from an outside ample source. The supplier pays exactly what it

orders. The retailer receives payment from customers and decides the payment amount to the supplier.

We consider two payment schemes for the retailer, �exible payment (FP) and strict payment (SP). For

the FP scheme, the retailer can decide any positive payment amount to the supplier. If the payment is

greater than what is orders, the additional amount can be seen as a �nancial subsidy to the supplier.

On the other hand, if the payment is less than what is orders, the retailer is purchasing on open

account, i.e., delayed payment in trade �nance. The SP scheme is a special case of the FP scheme as

the retailer pays exactly what it orders. The retailer faces a stochastic demand Dt in period t. The

demands are independent between periods, but the demand distributions may di�er from period to

period. We assume that unsatis�ed demand is fully backlogged. Figure 1 shows the material and cash

�ows in solid and dashed arrows, respectively. Without loss of generality, we assume that the material

lead time is one period for both stages.

Figure 1: The two-stage FP model with material and cash �ows.

To re�ect that the retailer has a stronger cash liquidity, we assume that the retailer's role is similar
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to an investment center in that it can either invest excess cash in equity markets or retrieve cash by

selling equities, if necessary. As commonly seen in the cash management literature, large �rms usually

manage cash in two separate accounts: an investment account where �rms hold a portfolio of invested

assets (e.g., stock equities) and an operating account from which inventory payment is drawn and to

which sales revenue is deposited. Transferring funds between these two accounts is permissible and

assumed to be instantaneous yet with costs incurred proportional to the amount transferred. The

circle in Figure 1 represents the investment account; the top white rectangle represents the operating

account, i.e., retailer's cash balance. On the other hand, the supplier's role is similar to a cost center

in a sense that it only uses cash for inventory procurement without investment activities.

The sequence of events is as follows: At the beginning of the period, (1) both stages receive

shipments; (2) stage 2 and outside source receive payment from stage 1 and stage 2, respectively; (3)

stage 1 makes an investment decision; (4) both stages make an order decision; (5) stage 1 makes a

payment decision. During the period, demand is realized and stage 1 receives revenue. At the end

of the period, all inventory and cash related costs are calculated. The planning horizon is T periods,

and we count the time backwards, i.e., T, T − 1, ..., 1. The objective is to minimize the system's total

discounted cost over the entire horizon.

We assume that the actual payment transaction occurs upon the receipt of shipments. That is, the

supplier will not receive the payment determined by the retailer in period t until period t − 1 when

the retailer receives the shipment (placed in period t). This payment practice is similar to a Letter of

Credit (LC), in which the retailer holds the exact cash amount in a bank for the inventory ordered.

The bank will guarantee the payment to the supplier after the retailer receives the shipment. In other

words, we can view that there is a one-period lead time for the cash payment for both stages. For stage

i = 1, 2, let pi be the unit selling price, c2 the unit procurement cost of stage 2, and c1 the inter-stage

transportation cost. We assume c2 < p2 and p2 + c1 < p1 to ensure the pro�tability for both stages.

We now de�ne state and decision variables. Here and in the sequel, we use prime to indicate local

variables and parameters. For stage i = 1, 2 and period t, let

x
′
1,t = net inventory level at stage 1 after Event (1);

x
′
2,t = on hand inventory level at stage 2 after Event (1);

w
′
i,t = cash level in stage i after Event (2);

vt = amount of cash transferred into stage 1's operating account made in Event (3);

zi,t = order quantity for stage i made in Event (4);

mt = payment amount from stage 1 to stage 2 made in Event (5).

Note that v+t is the cash amount that �ows into the retailer's operating account and v−t is the cash

amount that �ows out to the investment account.
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The dynamics of states between two periods are shown below:

x
′
1,t−1 = x

′
1,t + z1,t −Dt, (1)

x
′
2,t−1 = x

′
2,t + z2,t − z1,t, (2)

w
′
2,t−1 = w

′
2,t +mt − c2z2,t, (3)

w
′
1,t−1 = w

′
1,t + vt −mt + p1Dt. (4)

For stage 1's cash dynamic in (4), we assume that the customer will prepay the item even if there is a

stock out. This assumption is reasonable as all demand will be �lled in the future under the backorder

model. It is also commonly seen in practice and in the dynamic pricing literature, e.g., Federgruen

and Heching (1999). The cash dynamics in (3) and (4) do not include holding and backorder cost, or

inter-stage transportation cost because they usually are not incurred in the daily cash transactions.

More speci�cally, the inventory holding and transportation costs are usually calculated biannually or

annually; backorder cost is a concept representing loss of goodwill, and cash holding cost is viewed as

an opportunity loss of capital. Furthermore, the cash transaction costs are often minimal and therefore

ignored in the daily cash calculations. Nevertheless, these costs are considered in the total cost function

as they will be realized at the end of the planning horizon.

De�ne x′ = (x
′
1, x

′
2), w

′ = (w
′
2, w

′
1), and z = (z1, z2). The feasible set in each period is

Ŝ(x′,w′) =
{
z,m, v | 0 ≤ z1 ≤ x

′
2, 0 ≤ z2 ≤ w

′
2/c2, 0 ≤ m ≤ w

′
1 + v, v ≤ K ′

}
.

The �rst constraint states that stage 1's order quantity cannot exceed stage 2's on-hand inventory; the

second constraint states that stage 2's order quantity is constrained by its cash available; the third

constraint speci�es stage 1's maximum payment to stage 2, which also implies that the cash put into

the investment account in each period cannot exceed its on-hand cash level, i.e., v ≥ −w1. Finally, the

last constraint speci�es an upper limit (denoted by K ′) on the amount of cash that can �ow into stage

1's operating account in each period. This upper bound can be viewed as a proxy of the liquidity level

of the retailer's investment account.

We introduce the cost parameters. Following the inventory literature, we charge a linear local

holding cost h
′
i for each unit of inventory held at stage i in each period, and a backorder cost b for

each unit of backorder incurred at the retailer in each period. In addition, there is a linear holding

cost η
′
i per dollar per period for the cash held in the stage i's operating account. Empirical research

suggests that there is an opportunity cost of holding cash for operations. For example, η
′
1 may be

viewed as the potential loss on the return if the cash were transferred to the investment account. Here,

we assume that h
′
1 > h

′
2 > η

′
2c2, i.e., holding a unit of inventory at downstream is more costly than

that at upstream, and holding an unit of inventory is more costly than holding the same value amount

of cash. The later is generally true since inventory holding cost consists of both �nancial opportunity

cost and physical shelf cost. Let β
′
i and β

′
o denote the unit cash transfer cost to and from the retailer's
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operating account, respectively. In practice, the cost charged on transferring funds can be regarded as

brokerage fees. Finally we denote γ′ as the unit payment transaction cost between stages.

The single-period expected cost function is

Ĝt(x
′,w′, z,m, v) = EDt

[
h

′
1(x

′
1 −Dt)

+ + b(x
′
1 −Dt)

−
]
+ h

′
2x

′
2 + c1z1 + c2z2

+ η
′
2w

′
2 + η

′
1EDt

[
w

′
1 + v + p1Dt

]
+ γ′m+ β

′
iv

+ + β
′
ov

−. (5)

The �rst line in the cost function is the inventory-related cost, which includes inventory holding,

backlogging and procurement costs. By convention, we charge h
′
2 to the pipeline inventory so h

′
2x

′
2 is

the cost for the inventories held at stage 2 plus those in the pipeline. The second line is the cash-related

cost, which includes cash holding and transaction costs. As shown, we charge η
′
2 for w

′
2 because stage 2

still holds the inventory payment (determined in period t) until it receives the shipment in next period.

A similar idea applies to stage 1.

We make a remark here. Under the FP scheme, the retailer's payment decision can be any non-

negative value. On the other hand, for the SP scheme, the payment m is equal to p2z1. Also, under

the FP scheme, there might be additional interest costs for the retailer (supplier) in each period due

to delayed payment (subsidy). Nevertheless, from the entire supply chain perspective, the retailer's

interest loss is equal to the supplier's interest gain. Thus, we do not specify these interest costs as they

will be canceled out in a period.

Let α denote the single-period discount rate. Recall that the objective is to minimize the expected

discounted total cost in T periods. Denote Ĵt(x
′,w′, z,m, v) as the minimum expected discounted cost

over period t to 0, at the beginning of period t, with given states (x′,w′, z,m, v). And denote V̂t(x
′,w′)

as the optimal total discounted cost over all feasible decisions. The dynamic program is

Ĵt(x
′,w′, z,m, v) = Ĝt(x

′,w′, z,m, v) + αEDt

[
V̂t−1(x

′
1 + z1 −Dt, x

′
2 + z2 − z1,

w
′
2 +m− c2z2, w

′
1 + v −m+ p1Dt)

]
, (6)

V̂t(x
′,w′) = min

z,m,v∈Ŝ(x′,w′)
Ĵt(x

′,w′, z,m, v), (7)

V̂0(x
′,w′) = 0. (8)

Here we assume a zero terminating cost for simplicity. Appendix A extends this model to incorporate

a penalty cost charged on the expected end debt between the retailer and the supplier. One can expect

that if the penalty cost is signi�cantly high, the expected end debt tends to be zero.

The local formulation in (6)-(8) is di�cult to solve. One can prove that Ĵt(·) is jointly convex

in all state and decision variables. Thus, the global minimum solution is state-dependent. However,

computing the solution is quite hard due to the curse of dimensionality. In the next section, we

transform the original problem into a new system, from which we can obtain a simple and implementable

optimal joint policy.
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4 Flexible Payment Scheme

4.1 Echelon Formulation

We transform the original two-stage system into a four-stage serial model by introducing new system

variables. De�ne the following echelon variables:

x1 = x
′
1, x2 = x

′
1 + x

′
2,

w2 = x
′
1 + x

′
2 + w

′
2/c2, w1 = x

′
1 + x

′
2 + (w

′
1 + w

′
2)/c2.

Let x = (x1, x2) and w = (w2, w1). We refer to x as the echelon net inventory level, and w as the

echelon net working capital level measured in inventory unit, which is obtained by converting cash

to inventory at the value of c2. This state transformation explicitly treats cash as inventory. More

speci�cally, the �nancial �ow in the system can be seen as an extension of the material �ow after

��ipping� the operating accounts of the supplier and the retailer. These two operating accounts serve

as new upstream stages. We de�ne the corresponding echelon decision variables:

y1 = x
′
1 + z1, y2 = x

′
1 + x

′
2 + z2,

r2 = x
′
1 + x

′
2 + (w

′
2 +m)/c2, r1 = x

′
1 + x

′
2 + (w

′
1 + w

′
2 + v)/c2.

Let y = (y1, y2) and r = (r2, r1). Figure 2 shows the transformed FP system.

Figure 2: The four-stage transformed FP system.

With this transformation, supplier's operating account becomes stage 3 in the new system, directly

supplying its own inventory. Symmetrically, retailer's operating account turns into stage 4, the most

upstream stage in the transformed system. Beyond inventory echelons x1 and x2, we de�ne echelon 3

(with state variable w2) as stage 2's echelon working capital, which includes inventory at both stages

and supplier's cash expressed in inventory units. We de�ne echelon 4 (with state variable w1) as stage

1's echelon working capital, which is equal to w2 plus stage 1's cash expressed in inventory units.

Clearly, w1 is equivalent to the total system working capital in inventory units.

Similar to a multi-echelon inventory model, we denote echelon holding cost rate η1 = η
′
1c2, η2 =

(η
′
2−η

′
1)c2, h2 = h

′
2−η

′
2c2, and h1 = h

′
1−h

′
2. Since h

′
1 > h

′
2 > η

′
2c2 by assumption, we have η1 > 0, and

hi > 0, i = 1, 2. Furthermore, let βi = β
′
ic2, βo = β

′
oc2, γ = γ′c2, θ = p1/c2 − 1 > 0, and K = K ′/c2.
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With these echelon terms, the state dynamics in (1)-(4) become

x1,t−1 = y1,t −Dt, x2,t−1 = y2,t −Dt, w2,t−1 = r2,t −Dt, w1,t−1 = r1,t + θDt,

and the constraint set becomes

S(x,w) = {y, r |x1 ≤ y1 ≤ x2 ≤ y2 ≤ w2 ≤ r2 ≤ r1 ≤ w1 +K}.

We further specify the holding and backorder cost associated with each echelon as:

H1,t(x1) = EDt

[
(h1 + h2 + η2 + η1 + b)(Dt − x1)

+ + h1(x1 −Dt)
]
,

H2,t(x2) = EDth2(x2 −Dt), H3,t(w2) = EDtη2(w2 −Dt), H4,t(r1) = EDtη1(r1 + θDt).

Then, we can rewrite the dynamic program in (6)-(8) as follows:

Jt(x,w,y, r) = Gt(x,w,y, r) + αEDt

[
Vt−1(y1 −Dt, y2 −Dt, r2 −Dt, r1 + θDt)

]
, (9)

Vt(x,w) = min
y,r∈S(x,w)

Jt(x,w,y, r), (10)

V0(x,w) = 0, (11)

where the single-period cost function can be shown as

Gt(x,w,y, r) = H1,t(x1) +H2,t(x2) +H3,t(w2) +H4,t(r1)

+ c1(y1 − x1) + c2(y2 − x2) + γ(r2 − w2) + βi(r1 − w1)
+ + βo(r1 − w1)

−.

We refer to the dynamic program in (9)-(11) as the echelon formulation of the model.

4.2 The Optimal Policy

We �rst state the optimal joint policy for the FP model, which includes three decisions made through

�ve control parameters (y∗1, y
∗
2, r

∗
2, l

∗, u∗) in each period. For the inventory ordering decision, each stage

implements an echelon base-stock policy. That is, stage i reviews its xi at the beginning of each period.

If xi < y∗i , stage i orders up to y∗i or as close as possible to y∗i if its upstream does not have su�cient

stock; otherwise, it does not order. For the investment decision, stage 1 reviews w1. If w1 > u∗, stage 1

disposes cash down to the maximum of u∗ and w2; if w1 < l∗, stage 1 retrieves cash up to l∗ or as close

as possible to l∗ (due to the upper bound K); otherwise, it does not transfer cash between accounts.

Finally, for the payment decision, stage 2 reviews w2. If w2 < r∗2, stage 2 receives stage 1's payment up

to r∗2 or as close as possible to r∗2 if stage 1 does not have su�cient cash; it does not receive payment

otherwise.

We next explain how the optimal policy is derived and how to calculate these policy parameters.

The following proposition decouples inventory decisions from the rest of the system.

11



Proposition 1. For all t and states (x,w), Vt(x,w) = f1,t(x1) + f2,t(x2) + Ft(w), where fi,t(xi) is

convex in xi and Ft(w) is joint convex in w.

We de�ne fi,t(·) as the expected optimal cost for echelon i, and Ft(·) as the expected optimal cost

for echelon 3 and 4 combined, at the beginning of period t. These functions can be expressed as

fi,t(xi) = Hi,t(xi) + Γi,t(xi) + min
xi≤yi

{
ci(yi − xi) + αEDtfi,t−1(yi −Dt)

}
, (12)

Ft(w) = H3,t(w2) + Γ3,t(w2) + min
w2≤r2≤r1≤w1+K


γ(r2 − w2) +H4,t(r1)

+βi(r1 − w1)
+ + βo(r1 − w1)

−

+αEDtFt−1(r2 −Dt, r1 + θDt)

 , (13)

where the Γi,t(·) functions are the so-called induced penalty cost functions de�ned in Clark and Scarf

(1960). More speci�cally, Γ1,t(·) ≡ 0, and

Γ2,t(x2) =

{
c1(x2 − y∗1,t) + αEDt

[
f1,t−1(x2 −Dt)− f1,t−1(y

∗
1,t −Dt)

]
, x2 ≤ y∗1,t,

0, otherwise,

}
(14)

Γ3,t(w2) =

{
c2(w2 − y∗2,t) + αEDt

[
f2,t−1(w2 −Dt)− f2,t−1(y

∗
2,t −Dt)

]
, w2 ≤ y∗2,t,

0, otherwise.

}
(15)

The optimal control parameters y∗1,t and y∗2,t can be obtained by solving the minimization problem in

(12). That is, let gi,t(yi) = ciyi + αEDtfi,t−1(yi −Dt), then

y∗i,t = argmin
y

{
gi,t(y)

}
.

Here, Γ2,t(·) represents the penalty cost charged to echelon 2 if the supplier cannot ship up to retailer's

target base-stock level y∗1,t; Γ3,t(·) represents the penalty cost charged to echelon 3 if the supplier fails

to hold su�cient cash to pay for its inventory procurement up to the target echelon base-stock level

y∗2,t.

The next proposition further decouples the Ft(w) function in (13). The analysis appears to be new

and di�erent from Clark and Scarf's decomposition scheme.

Proposition 2. For all t and states w, Ft(w) = f3,t(w2)+f4,t(w1), where f3,t(·) and f4,t(·) are convex
functions.

We express the expected optimal cost for echelon 3 and 4 as follows

f3,t(w2) = H3,t(w2) + Γ3,t(w2) + Λ3,t(w2) + min
w2≤r2

{
γ(r2 − w2) + αEDtf3,t−1(r2 −Dt)

}
, (16)

f4,t(w1) = Λ4,t(w1) +


Lt(w1), if w1 ≤ l∗t
H4,t(w1) + Γ4,t(w1) + αEDtf4,t−1(w1 + θDt), if l∗t < w1 ≤ u∗t
Ut(w1), if u∗t < w1

 , (17)

12



where Γ4,t(·) has the same structure as the standard induced-penalty cost function, i.e.,

Γ4,t(r1) =

{
γ(r1 − r∗2,t) + αEDt

[
f3,t−1(r1 −Dt)− f3,t−1(r

∗
2,t −Dt)

]
, r1 ≤ r∗2,t,

0, otherwise.

}
(18)

However, it has a di�erent economic meaning: it is the penalty cost changed to echelon 4 if the retailer

does not have su�cient post-investment cash to pay up to the target echelon working capital level r∗2,t.

Similarly, let g3,t(r2) = γr2 + αEDtf3,t−1(r2 −Dt), then,

r∗2,t = argmin
r2

{
g3,t(r2)

}
.

There are new penalty cost functions Λ3,t(·) and Λ4,t(·) appearing in (16) and (17). To illustrate

their meanings, we de�ne

g4,t(w1) = H4,t(w1) + Γ4,t(w1) + αEDtf4,t−1(w1 + θDt), (19)

Lt(w1) = −βi(w1 − l∗t ) + g4,t(l
∗
t ), (20)

Ut(w1) = βo(w1 − u∗t ) + g4,t(u
∗
t ). (21)

One can view g4,t(w1) as the optimal cost for echelon 4 when the system working level w1 is in [l∗t , u
∗
t ].

Under the optimal policy, when w1 < l∗t , the retailer should retrieve cash from the investment account

until w1 reaching l∗t . Thus, Lt(w1) can be viewed as the optimal cost when w1 < l∗t . Similarly, Ut(w1)

can be viewed as the optimal cost when w1 > u∗t . In such case, the retailer should dispose cash down

to u∗t . With these explanations, the two new penalty cost functions can be de�ned as follows:

Λ3,t(w2) =

{
0, if w2 ≤ u∗t ,

g4,t(w2)− Ut(w2), otherwise,

}
(22)

Λ4,t(w1) =

{
g4,t(w1 +K) + βiK − Lt(w1), w1 ≤ l∗t −K,

0, otherwise.

}
(23)

Let us �rst consider Λ3,t(w2) in (22). This is a penalty cost charged to echelon 3 for carrying too

much working capital. Intuitively, if echelon working capital w2 is less than or equal to u∗t , echelon

4 can always maintain a system total working capital between l∗t and u∗t . However, if w2 > u∗t , the

best the retailer can do is to dispose all cash on hand, making w1 = w2. In such case, the extra cost

g4,t(w2)− Ut(w2) incurred in echelon 4 should be charged back to echelon 3 due to its excess working

capital. For this reason, we call Λ3,t(w2) the excess capital penalty. (Recall that Γ3,t(w2) is the penalty

cost charged to echelon 3 due to insu�cient cash holding.) The cash transfer control thresholds can

be obtained from the following equations:

l∗t = sup

{
r1 :

∂

∂r1
g4,t(r1) ≤ −βi

}
, u∗t = sup

{
r1 :

∂

∂r1
g4,t(r1) ≤ βo

}
.

With a similar logic, Λ4,t(w1) in (23) can be explained: this is a self-induced penalty cost charged to

13



echelon 4 if the system total working capital w1 is less than l∗t −K due to too much investment in the

previous period. In such a case, the retailer is penalized with the extra cost g4,t(w1+K)+βiK−Lt(w1)

for over-disposing cash.

Figure 3(a) depicts functions L(·), U(·), g4(·), f4(·), as well as induced penalty functions Λ3(·)
and Λ4(·) created while decoupling echelon 3 and 4 (with time subscripts suppressed). The optimal

control threshold l∗ (u∗) is derived as the tangent point of curve g4,t(·) and a line with slope −βi (βo).

Function f4(·) is shown as the bold convex curve connected by four di�erent functions, which are, from

the right to the left, the linear function U(·), the convex function g4(·), the linear function L(·), and
the convex function g4 shifted from point (l∗, g4(l

∗)) to point (l∗ −K,L(l∗ −K)); the induced penalty

function Λ4(w1) is the di�erence between f4(w1) and L(w1) to the left of l∗ −K; the induced penalty

function Λ3(w2) is the di�erence between g4(w2) and U(w2) to the right of u∗. Figure 3(b) illustrates

the relationship between four echelons and �ve penalty cost functions in our problem. The direction

of the arrow indicates to which echelon the penalty cost should be charged.

Figure 3: Induced penalty functions of the FP model.

We summarize our main result in Theorem 1.

Theorem 1. For all t and (x,w), Vt(x,w) = f1,t(x1) + f2,t(x2) + f3,t(w2) + f4,t(w1).

Theorem 1 indicates that we have transformed a four-state dynamic program into four, single-

dimensional dynamic programs.

5 Strict Payment Scheme

We now consider the SP model, which is a special case of the FP model by replacing the payment

decision m with the ordered value p2z1, and adding a budget constraint at stage 1. For simplicity, we

will keep the same notation to describe the SP model without confusion.
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The constraint set for the SP model is

Ŝ(x′,w′) =

{
z, v | 0 ≤ z1 ≤ min

(
w

′
1 + v

p2
, x

′
2

)
, 0 ≤ z2 ≤ w

′
2/c2, v ≤ K ′

}
. (24)

As shown in the �rst inequality, p2z1 cannot exceed the available cash w
′
1 + v. The dynamic program

for the SP model formulated by the local state and decision variables is

Ĵt(x
′,w′,z, v) = Ĝt(x

′,w′,z, v) + αEDt

[
V̂t−1(x

′
1 + z1 −Dt, x

′
2 + z2 − z1,

w
′
2 + p2z1 − c2z2, w

′
1 + v − p2z1 + p1Dt)

]
, (25)

V̂t(x
′,w′) = min

z,v∈Ŝ(x′,w′)
Ĵt(x

′,w′,z, v), (26)

V̂0(x
′,w′) = 0, (27)

where the single-period expected cost is

Ĝt(x
′,w′,z, v) = EDt

[
h

′
1(x

′
1 −Dt)

+ + b(x
′
1 −Dt)

−
]
+ h

′
2x

′
2 + (c1 + γ′p2)z1

+ c2z2 + η
′
2w

′
2 + η

′
1EDt

(
w

′
1 + v + p1Dt

)
+ β

′
iv

+ + β
′
ov

−.

The dynamic model described in (25)-(27) can be interpreted as a serial inventory problem with

capacities (in the form of cash constraints) at both stages. However, these constraints are random and

endogenous, hence very di�erent from those in the traditional capacitated inventory model (Parker

and Kapuscinski 2004). More speci�cally, from the state transitions in (25), stage 2's future cash level

w
′
2,t−1 is determined by both stages' current order quantity z1,t and z2,t; stage 1's future cash level

w1,t−1 is determined by the current period's order decision z1,t, investment decision vt as well as the

demand realization Dt.

5.1 Echelon Formulation

Because of the strict payment, we need to create a di�erent echelon transformation scheme. De�ne

x1 = x
′
1, y1 = x

′
1 + z1;

x2 = x
′
1 + x

′
2, y2 = x

′
1 + x

′
2 + z2;

w1 = x
′
1 + w

′
1/p2, r1 = x

′
1 + (w

′
1 + v)/p2;

w2 = x
′
1 + x

′
2 + w

′
2/c2.

Here, xi, yi, and w2 have the same de�nition and meaning as those in the FP model; w1 is stage

1's net working capital level (in inventory units), rather than both stages' combined. With these

state transformations, we rede�ne the echelon holding cost parameters for the SP model: η2 = η
′
2c2,

h2 = h
′
2 − η

′
2c2, η1 = η

′
1p2, and h1 = h

′
1 − h

′
2 − η

′
1p2. Also rede�ne βi = p2β

′
i, βo = p2β

′
o, γ = p2γ

′,
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θ = p1/p2 − 1 > 0, K = K ′/p2, and �nally ρ = p2/c2.

Figure 4: The transformed SP System.

Figure 4 shows the transformed SP system, which is similar to an assembly system. With the new

echelon terms, the feasible set becomes

S(x,w) = {y, r1 | x1 ≤ y1 ≤ r1 ≤ w1 +K, x1 ≤ y1 ≤ x2 ≤ y2 ≤ w2}.

The echelon formulation of the SP model becomes

Jt(x,w,y, r1) = Gt(x,w,y, r1)

+ EDt

[
Vt−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt, r1 + θDt)

]
, (28)

Vt(x,w) = min
y,r1∈S(x,w)

Jt(x,w,y, r1), (29)

V0(x,w) = 0, (30)

where the single-period cost function can be shown as

Gt(x,w,y, r1) = H1,t(x1) +H2,t(x2) +H3,t(w2) +H4,t(r1)

+ (c1 + γ)(y1 − x1) + c2(y2 − x2) + βi(r1 − w1)
+ + βo(r1 − w1)

−. (31)

After the new transformation, some of the complexities caused by the endogenous constraints are

reduced. More speci�cally, the dynamics of the new echelon variable w1 no longer depend on z1.

However, the dynamics of echelon w2 still depend on the decision y1 − x1 associated with echelon 1,

as shown in (28). This unique feature of strict payment undermines the decomposition structure in

the FP model and di�erentiates the SP model from the traditional assembly system (Rosling 1989).

Below, we provide an approach to derive lower bounds to the optimal cost of the SP model.

5.2 Lower Bounds

This subsection establishes two lower bounds to the optimal cost for the SP model. Recall that the

SP model is similar to an assembly system. The main idea of constructing these lower bounds is

to decompose this assembly system. More speci�cally, the expression of S(x,w) indicates that the

retailer's decision y1 is subject to two constraints: one is y1 ≤ r1 ≤ w1 +K, which represents the cash
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constraint on the order quantity; the other is y1 ≤ x2 ≤ y2 ≤ w2, which can be viewed as a material

order constraint in a two-stage system with an endogenous, random capacity w2 at the upstream stage

2. Figure 5(a) shows these two sets of constraints.

Now, imagine that the �nal product sold at stage 1 consists of two components: a physical com-

ponent (depicted by triangles) supplied from stage 2's stock, and a �cash� component (depicted by

circles) supplied from stage 1's operating account. The constraint 0 ≤ z1 ≤ min{(w′
1 + v)/p2, x

′
2} in

(24) (or, equivalently, x1 ≤ y1 ≤ min{r1, x2}) implies a similar structure to an assembly system: the

same amount of inventory and cash equivalent are matched through replenishment at stage 1.

To derive a lower bound to the optimal cost, we relax the above matching constraint by assuming

that the components can be ordered and sold separately. As a result, the original system is decoupled

into two independent subsystems as shown in Figure 5(b) � subsystem 1 represents the cash �ows;

subsystem 2 represents the material �ow. The sum of the minimum costs of subsystems is a lower

bound on the minimum cost of the original system.

Figure 5: Decomposition of the SP system.

We specify the total cost function for each of the subsystems. Let h11 and h21 be the inventory

holding cost for Subsystem 1 and 2, respectively, where h11 + h21 = h1. Let b1 and b2 be the backorder

cost for Subsystem 1 and 2, respectively, where b1 + b2 = b.

H1
1,t(x1) = EDt

[
(h11 + η1 + b1)(Dt − x1)

+ + h11(x1 −Dt)
]
, (32)

H2
1,t(x1) = EDt

[
(h21 + h2 + η2 + b2)(Dt − x1)

+ + h21(x1 −Dt)
]
. (33)

Now de�ne

G1
t (x1, w1, y1, r1) = H1

1,t(x1) +H4,t(r1) + γ(y1 − x1) + βi(r1 − w1)
+ + βo(r1 − w1)

−, (34)

G2
t (x, w2,y) = H2

1,t(x1) +H2,t(x2) +H3,t(w2) + c1(y1 − x1) + c2(y2 − x2). (35)

Note that H1,t(x1) = H1
1,t(x1) +H2

1,t(x1), hence we have

G1
t (x1, w1, y1, r1) +G2

t (x, w2,y) = Gt(x,w,y, r1).
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With this cost allocation, the dynamic program for Subsystem 1 can be expressed as

V 1
t (x1, w1) = min

x1≤y1≤r1≤w1+K

{
G1

t (x1, w1, y1, r1) + αEDt

[
V 1
t−1(y1 −Dt, r1 + θDt)

] }
, (36)

V 1
0 (x1, w1) = 0. (37)

And the dynamic program for Subsystem 2 is

V 2
t (x1, x2, w2) = min

x1≤y1≤x2≤y2≤w2

{
G2

t (x, w2,y)

+αEDt

[
V 2
t−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt)

]}
, (38)

V 2
0 (x1, x2, w2) = 0. (39)

Proposition 3. Vt(x,w) ≥ V 1
t (x1, w1) + V 2

t (x1, x2, w2) for all (x,w) and t.

Proposition 3 shows that for any combination of (h11, h
2
1) and (b1, b2), the sum of the two subsys-

tems forms a cost lower bound to the original system. Maximizing expected cost over all parameter

combinations yields the best lower bound.

The remaining question is how to �nd the optimal cost of these subsystems. A careful examination

of Subsystem 1 described in (36) and (37) reveals that it is the echelon transformation for a single-stage

system with inventory and cash investment decisions. Speci�cally, the system has to decide how much

to invest and how much to order in each period (and pay exactly what it orders to the outside vendor).

This is actually a special case of the FP model in which there is only one stage (the retailer, stage 1).

Thus, we have characterized the optimal joint policy, i.e., using the base-stock policy to control the

inventory replenishment and the two-threshold policy to control the cash investment.

Solving Subsystem 2 is much harder. The dynamic problem described in (38) and (39) is the echelon

expression of a two-stage inventory model with random, endogenous capacity at the upstream stage.

There exists no known optimal policy for this model. Thus, we provide two approaches to further

develop a lower bound to the optimal cost for Subsystem 2.

Constraint Relaxation (CR) Bound

As the name suggests, we form the lower bound by relaxing the constraint y2 ≤ w2 at stage 2. Once

w2 is removed from the constraint set, it only appears in the expected cost function of each period.

The following lemma characterizes the expected value of w2 through the �ow conservation.

Lemma 1. Given the initial states w2,T and x1,T , for any policy we have

E
DT ,...,Dt+1

w2,t = ρ · E
DT ,...,Dt+1

x1,t +Bt,

where Bt = (ρ− 1)
∑T

s=t+1 µs + w2,T − ρx1,T .

Recall that in the periodic cost function (35), the function H3,t(w2) is a linear function of w2.

Therefore, by using Lemma 1, we can replace H3,t(w2) with H3,t(ρx1 + Bt) without a�ecting the
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optimal decision in each period. With this construction, w2 can be replaced by x1 and Subsystem 2

becomes a classic two-stage serial system in which Clark and Scarf's algorithm can be applied to �nd

the optimal echelon base-stock levels for both stages. The CR bound generally works well when the

constraint y2 ≤ w2 is not binding, i.e., when stage 2 holds su�cient cash. This occurs if the supplier's

markup (p2/c2−1) is high and demand tends to be stationary. However, under increasing demand, it is

optimal for the supplier to order more in anticipation of future demand uprise. In such case, supplier's

cash constraint could become binding, especially if its markup is low. Thus, we need another lower

bound to complement the performance of the CR bound.

Sample Path (SA) Bound

The di�culty of solving Subsystem 2 comes from keeping track of the state w2,t. As stated earlier,

the current period's w2,t depends on the previous period's order quantity and the demand realization.

Nevertheless, if we consider a speci�c demand sample path, w2,t can be fully characterized by the �ow

conservation.

Lemma 2. Let dt(ω) represent the demand realization in period t given a demand sample path ω. With

initial stages w2,T and x1,T , we have w2,t = ρx1,t +Bt(ω), where

Bt(ω) = (ρ− 1)
T∑

s=t+1

ds(ω) + w2,T − ρx1,T .

The proof of Lemma 2 is similar to that of Lemma 1, and thus omitted. Given the initial states

and a demand sample path, Bt(ω) is a constant. If we replace w2,t (according to Lemma 2) in both the

constraint set and the periodic cost function, Subsystem 2 can be reduced to a two-stage serial system

with deterministic demand subject to the following constraint (at time t):

Sd
t (x1, x2 | ω) =

{
y1, y2 | x1 ≤ y1 ≤ x2 ≤ y2 ≤ ρx1 +Bt(ω)

}
.

The constraints state that stage 1's order decision y1 is a�ected by stage 2's echelon inventory level x2;

stage 2's order decision y2 is a�ected by a linear function of stage 1's inventory level x1. The optimal y∗1

and y∗2 can be obtained by solving a two-dimensional convex program in each period. To facilitate the

computation, we prove that this problem can be decoupled into two one-dimensional convex programs.

Let V d
t (x1, x2 | ω) represent the optimal cost for Subsystem 2 for any demand sample path ω after w2,t

is substituted with ρx1,t +Bt(ω). The following proposition shows the decoupling result.

Proposition 4. V d
t (x1, x2 | ω) = v1t (x1 | ω) + v2t (x2 | ω), where vit(xi | ω) is a convex function.

We refer the reader to the proof for the detailed formulation of v1t and v2t functions. A lower bound

to the optimal cost of the Subsystem 2 under the SA approach can be found by averaging total costs

over all demand sample paths.
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In summary, we are able to generate two lower bounds � the sum of the optimal cost obtained from

Subsystem 1 and the optimal cost obtained from either the CR approach or the SA approach.

5.3 Heuristic

We suggest a simple heuristic for the SP model. Let yu1,t, y
u
2,t, and ru1,t be the heuristic solution (at

time t) to the echelon SP formulation in (28)-(30). The heuristic policy is executed as follows. First,

we implement an echelon base-stock policy at both stages for the inventory replenishment. The base-

stock levels are set to be the optimal echelon base-stock levels obtained from the FP model, y∗1 and

y∗2. More speci�cally, each stage orders up to y∗i or as close as possible to y∗i subject to upstream

stage's stock availability and the stage's cash availability. For the cash investment decision, stage 1

disposes excess cash to the investment account after the inventory payment or retrieves cash if it does

not have su�cient cash to pay for the inventory order. Mathematically, the resulting heuristic solution

(suppressing the time subscript) is

yu1 = x1 ∨ (y∗1 ∧ x2 ∧ w1 +K), yu2 = x2 ∨ (y∗2 ∧ w2), ru1 = yu1 .

The rationale implied by the SP heuristic is that we aim to set the inventory decision as a primary

one and subordinate the investment decision to the inventory decision. In practice, such heuristic

policy should be e�ective as the cash transfer cost rates βo and βi are often small. As we shall see

later, it remains e�ective even when the transfer cost rates are reasonably large.

6 Numerical Study

We proceed to show the numerical results of both FP and SP models studied above. In �6.1 the heuristic

performance is evaluated in a numerical study. The value of cash payment �exibility is discussed in

�6.2. Other qualitative properties and managerial insights are presented in �6.3.

6.1 E�ectiveness of the Heuristic

Let CU be the cost of the heuristic which serves as an upper bound cost of the SP model. We compare

CU with a lower bound cost CL, where

CL = max {CCR, CSA} .

Here, CCR and CSA represent the cost of the constraint relaxation bound and the sample path bound,

respectively. Notice that the optimal cost of the FP model is also a lower bound. However, in our

numerical study, the optimal FP cost is always smaller than either CCR or CSA. To evaluate the

e�ectiveness of the heuristic, we de�ne the percentage error as

% error =
CU − CL

CL
× 100%.
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We conduct a numerical study by starting with a basic case which has the time horizon of 10 periods,

total simulation of 1000 scenarios (in computing the SA bound), and �xed parameters α = 0.95, c2 = 1,

c1 = 0.25, γ
′
= 0.05, η

′
1 = 0.05, and h

′
1 = 1. We vary the other parameters with each taking two

values: p2 = (1.2, 2), p1 = (2.5, 4), b = (5, 10), η′2 = (0.05, 0.2), h
′
2 = (0.25, 0.75), β

′
o = (0.05, 0.15),

and β
′
i = (0.05, 0.2). In addition, two demand forms are considered. In the i.i.d. demand case, Dt

is Poisson distributed with mean µt = 10 for all t; in the increasing demand case, Dt is Poisson

distributed with the �rst period mean µT = 10 (we count time backward) and µt increasing at a rate of

1.2. In both demand cases, we �x the liquidity level K
′
t = µt (non-stationary in the increasing demand

cases). The combination of these parameters covers a wide range of di�erent system characteristics.

For example, when (p1, p2) = (2.5, 2) ((4, 1.2), respectively) the supplier markup (= p2/c2 − 1) is

low (high, respectively). For each demand form, we generate 128 instances. The total number of

instances in our test bed is 256. For all cases we assume the initial on-hand inventory and cash level

(x
′
1,T , x

′
2,T , w

′
2,T , w

′
1,T ) = (16, 10, 10, 10), roughly equal to the steady-state inventory/cash level under

i.i.d. demand with the aforementioned parameters.

The average (maximum, minimum) performance error in our test bed is 1.71% (4.00%, 0.31%) for

the i.i.d. demand and 2.72% (6.81%, 0.15%) for the increasing demand case. The proposed heuristic

performs well in general. Nevertheless, we suggest conditions under which our heuristic performs less

e�ectively: (1) p1 is signi�cantly larger than p2 and β
′
o is large; (2) p1 is close to p2 and β

′
i is large. In

our heuristic policy, stage 1 disposes excess cash to the investment account after inventory payment or

retrieves to the operating account just enough cash for the inventory payment. In other words, stage

1 does not hold any cash after payment. When p1 is signi�cantly larger than p2, stage 1 tends to have

excess cash to dispose. Thus, the heuristic performs less e�ectively when β
′
o is high. This explains

condition (1). Similarly, when p1 is close to p2, stage 1 is likely to have cash shortage, thus has to

retrieve cash from the investment account. So a higher β
′
i will make the heuristic less e�ective. This

explains condition (2).

In practice, the 15%-20% transaction fees are very unlikely to happen. If we use a more practical

transaction percentage β
′
o = β

′
i = 0.05, the average percentage error will reduce to 0.86% for the i.i.d.

demand case and 1.81% for the increasing demand case.

6.2 Value of Flexible Payment

To assess the value of �exible payment, we compare the optimal cost of the FP model, CFP , with the

heuristic cost, CU . De�ne the value of payment �exibility as

% value =
CU − CFP

CU
× 100%.

We compute the percentage value for the same 256 cases in �6.1. Table 1 (left) summarizes the value

of payment �exibility under i.i.d. demand (128 cases). The results are aggregated into 4 quadrants,
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each displaying the average value of 32 cases with the same p2 and η′2 inputs. Since we �x c2 = 1,

p2 represents the supplier markup. As shown in Table 1 (left), payment �exibility does not add much

value if the supplier markup is low (e.g., p2/c2 = 1.2). This is because under the i.i.d. demand, the

optimal mt is likely to be z1,t. When p2 gets close to 1, the strict payment (mt = p2z1,t) policy can

be near optimal. On the other hand, if the supplier markup is high (e.g., p2/c2 = 2), �exible payment

will then play a signi�cant role � it will be better o� for the retailer to delay the payment so less cash

will be accumulated at the supplier's. This value of �exible payment would be more signi�cant when

supplier cash holding cost η′2 is high.

Under increasing demand, the strict payment scheme will make the system perform poorly when

the supplier markup is low. More speci�cally, as the retailer order size increases with the demand,

ideally the supplier should in turn increase its inventory stocking to prepare for the future bigger orders.

However, under the strict payment, the supplier might not have su�cient cash to do so due to its low

markup (p2 = 1.2). This vicious circle will make the supply chain very ine�cient. Table 1 (right)

demonstrates this ine�ciency. As shown, when the supplier markup is low and demand is increasing,

the value of �exible payment can be very signi�cant. This value is even higher when backorder cost is

larger: restricting upstream capacity is more costly when unsatis�ed demand is penalized more.

Unit price p2
Cash holding cost η

′
2 1.2 2

0.05 2.18% 7.65%
0.2 5.84% 21.94%

Unit price p2
Backorder cost b 1.2 2

5 63.61% 11.40%
10 78.23% 11.92%

Table 1: Value of payment �exibility - i.i.d. demand (left) and increasing demand (right)

Figure 6(a) summarizes the conditions under which the �exible payment scheme has a signi�cant

value1. When demand is stationary and the supplier markup is high, payment �exibility adds substan-

tial value by delaying the retailer's payment, making more cash disposed to the downstream investment

account. On the other hand, when the demand is increasing and the supplier markup is low, the role

of �exible payment is to allocate more cash to the supplier for stocking inventory. We notice that our

conclusion is consistent with a practice of supply chain �nance at Caterpillar: In 2009, the equipment

maker took the unusual step of visiting with key suppliers to ensure they had the quick resources

to boost output. According to Aeppel (2010), Caterpillar was in extreme cases helping suppliers get

�nancing, just to restock dealer inventories and meet on going demand.

Figure 6(b) illustrates the impact of retailer's liquidity level on the value of �exible payment when

demand is increasing. Here we �x p2 = 1.05, b = 5, η
′
2 = 0.2, h

′
2 = 0.25, β

′
o = β

′
i = 0.05 and keep other

parameter values the same as in �6.1. The liquidity of retailer's operating and investment account is

represented by p1 and K, respectively, with each taking 5 values. (We keep both p1 and K stationary

in each of the 25 cases.) As shown in the �gure, the value of �exible payment is limited when both

1Figure 6 also shows that CR (SA) bound is tight in the upper left (lower right) quadrant
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p1 and K are small, i.e., when downstream liquidity is weak. In addition, p1 and K complement each

other's role as a liquidity source. For example, (K, p1) = (8, 1.2) and (4, 1.5) yield a similar value

of �exible payment. Notice that the marginal value of payment �exibility decreases in p1 or K. For

instance, when p1 = 1.2, the % value increases from 56% to 68% when K increases from 8 to 12, and

increases from 68% to 70% when K increases from 12 to 16. This observation suggests that the value

of �exible payment diminishes faster than the reduction of the capital liquidity.

Figure 6: Value of �exible payment.

6.3 Other Qualitative Insights

Optimal Cash to Inventory Ratio

The FP model allows us to study the impact of demand volatility on the optimal cash to inventory

ratio at both stages. We compute the optimal control policy of the FP model with an i.i.d. negative

binomial demand. Let xi and wi (i = 1, 2) be the long-run optimal inventory and cash level at stage

i, respectively. At steady state, we have

x1 = y∗1 − µ, x2 = y∗2 − y∗1,

w2 = min{r∗2, u∗} − y∗2, w1 =
p1
p2

µ,

where µ is the demand mean. The optimal cash to inventory ratio of stage i is de�ned as wi/xi. In

conducting the comparative statics, we �x µ = 10 and change the demand variation from 15 to 55. In

addition, we �x p2 = 1.2, p1 = 2.5, b = 55, η′2 = 0.15, h′2 = 0.2, β′
o = β′

i = 0.05, and keep all the other

parameters the same as in �6.1.

Figure 7(a) shows that the optimal cash to inventory ratio for both stages is decreasing with demand

volatility. This is because when demand becomes more volatile, the stage 1 inventory x1 increases most,

followed by x2, and by w2, whereas w1 remains fairly stable. Overall, the change of inventory level is
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signi�cantly larger than that of cash level. The insight of the observation is that when the demand

becomes more variable, the inventory stocking should increase, especially at the most downstream

stage. However, the cash level can be maintained at a fairly stable level.

Figure 7: Qualitative properties of the FP model.

Product Life Cycle Demand

Now we focus on the dynamics of cash �ows between stages when FP is in place and when demand

follows a product life cycle form. More speci�cally, we consider a time horizon of 22 periods with

independent Poisson demand in each period. The demand mean starts from 6, peaks at 36, drops

to 14 and remains there for the last 5 periods. We compare the �exible payment m and the strict

payment p2z1 if SP were in place, and keep track of the retailer's accumulated account payable (A/P),

i.e.,
∑T

k=t(p2z1,k −mk) (account receivable if negative) in each period. The system parameters remain

the same value as in computing the optimal cash to inventory ratio.

From Figure 7(b) we can see that the retailer's (accumulated) A/P becomes negative when demand

increases, and becomes positive when demand decreases. This result implies that, when facing a

product life cycle demand, the retailer should subsidize the supplier during the product introduction

and growth stages to help the supplier maintain su�cient inventory supply. On the other hand, the

retailer should delay payment during the mature and decline stages so cash could be better used via

investment. This sheds light on large manufacturing �rms and their smaller suppliers in the post-crisis

time. When demand starts to pick up, the downstream �rm should make �nancial subsidy, rather than

push delayed payment contracts, such as requesting trade credits from its supplier.

Financial Bullwhip E�ect

Bullwhip e�ect is a phenomenon that the order variability ampli�es when moving along the supply

chain from downstream toward upstream stages (Lee et al. 1997). It describes a phenomenon of order
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information distortion. In the empirical studies, bullwhip phenomenon is also observed in material

shipments (e.g., Blanchard 1983, Cachon et al. 2007). Interestingly, in the �nancial literature, a similar

phenomenon called ��nancial contagion� has also been observed in practice (e.g., Allen and Gale 2000).

The �nancial contagion describes that the risk of �nancial payment defaults ampli�es when moving

toward upstream in a supply chain. One reason that causes the �nancial contagion is the material

bullwhip e�ect: the �nancial payment amount is usually consistent with the order/shipment size.

When order/shipment ampli�es, an upstream stage requires more capital for its inventory payments.

As stated, the upstream member in general has weaker cash liquidity, which results in a higher risk of

�nancial defaults. Nevertheless, the �nancial contagion may be mitigated by a �exible payment policy.

To see this, we conduct a simulation study. In the SP model, we �nd that the variability of payment

indeed ampli�es: the coe�cient of variation (c.v.) of the payment from the retailer to the supplier is

smaller than that of the payment from the supplier to the outside ample source. However, in the FP

model, we observe the opposite � the c.v. of the payment from the retailer to the supplier is larger.

Our study suggests that the �nancial bullwhip e�ect may not be consistent with the material bullwhip

e�ect and the payment policy can be an e�ective tool to shift the �nancial risk between the supply

chain partners.

7 Concluding Remarks

This paper integrates �nancial �ows into a two-stage supply chain model, in which the downstream

retailer has a higher cash liquidity in the sense that it can dispose cash to invest in the equity market

or retrieve cash by selling equities. In each period, both the retailer and the supplier make inventory

replenishment decisions. In addition, the retailer also makes cash payment and investment decisions.

The objective is to minimize the total supply chain cost in a �nite horizon. To assess the impact

of payment �exibility, we compare two schemes. For the �exible payment scheme, the retailer can

either delay payment to or subsidize the supplier; for the strict payment policy, the retailer has to

pay what it orders in the same period. We prove the joint optimal inventory and cash policy for the

�exible payment scheme and suggest a simple and e�ective heuristic for the strict payment scheme.

We characterize the conditions under which the value of payment �exibility is most signi�cant. We

also discuss qualitative insights regarding the optimal inventory to cash ratio, the product life cycle

demand, as well as the �nancial bullwhip e�ect.

For the �exible payment model, we can modify the terminating condition to incorporate a penalty

cost charged on any positive debt (between the retailer and the supplier) at the end of the horizon. As

shown in Appendix A, changing the terminating condition will not a�ect the structure of the optimal

policy as well as the qualitative insights. Finally, the optimality results of the �exible payment scheme

apply to the following generalizations: general number of stages, general lead times, and Markov

modulated demand. We refer the reader to the authors for these extensions.
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Appendix A: Model Extension

We consider an extension where a penalty cost is charged on the end-of-horizon debt between the

retailer and the supplier. This can be done by modifying the terminating condition in equation (11).

First, let us assume at the end of horizon, i.e., t = 0, (1) necessary inventory replenishment has to

be made to satisfy the backlogged demand; (2) the retailer can return the excess inventory to the

supplier at the price p2. Let Rt denote the retailer's account receivable (A/R) at time t (if Rt < 0,

then −Rt is the retailer's A/P). The following proposition derives the expected value of R0 through

�ow conservation.

Proposition 5. Under assumption (1) and (2), and given the initial states x1,T and w2,T at the

beginning of the horizon, we have

E
DT ,...,D1

R0 = E
DT ,...,D1

c2w2,0 − C,

where C = c2w2,T − p2x1,T + (p2 − c2)
∑T

t=1 µt is a constant.

Denoting M as the unit penalty cost on the non-zero A/R or A/P at the retailer's, we change the

terminating condition to the following:

V0(x,w) = M |c2w2 − C| ,

which is a convex function of w2. Therefore, all analytical results derived in �4.2 remain una�ected.

This approach saves us from keeping track of another state variable Rt, but at the same time ignores

the historical demand information captured in Rt. Since the terminating cost is non-linear in w2, the

resulting system forms an upper bound to the system where Rt is in place. Thus, the value of payment

�exibility will be under-estimated when comparing with the SP model.

Appendix B: Proofs

Lemma 3 (Karush 1959) shows the additive separation of a function value.

Lemma 3. If a function f(y) is convex on (−∞,∞) and attains its minimum at y*, then

min
a≤y≤b

f(y) = fL(a) + fU (b),
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where fL(a) = mina≤y f(y) is convex non-decreasing in a, and fU (b) = f(b) − f(b ∨ y∗) is convex

non-increasing in b.

Proof of Proposition 1.

Proof. Prove by induction. The claim trivially holds for t = 0. Assume Vt−1(x,w) = f1,t−1(x1) +

f2,t−1(x2) + Ft−1(w), then

Vt(x,w) = min
y,r∈S(x,w)


∑2

i=1[Hi,t(xi) + ci(yi − xi) + αEDtfi,t−1(yi −Dt)]

+H3,t(w2) +H4,t(r1) + γ(r2 − w2) + βi(r1 − w1)
+ + βo(r1 − w1)

−

+αEDtFt−1(r2 −Dt, r1 + θDt)

 .

For i = 1, 2, let gi,t(yi) = ciyi + αEDtfi,t−1(yi − Dt). Since fi,t−1(·) is convex (from the induction

assumption), by Lemma 3 we can decompose the cost functions of echelon 1 and 2 as follows:

min
x1≤y1≤x2

g1,t(y1) = min
x1≤y1

{
c1y1 + αEDtf1,t−1(y1 −Dt)

}
+ Γ2,t(x2),

min
x2≤y2≤w2

g2,t(y2) = min
x2≤y2

{
c2y2 + αEDtf2,t−1(y2 −Dt)

}
+ Γ3,t(w2),

where the induced penalty functions Γ2,t(x2) and Γ3,t(w2) are expressed in (14) and (15), respectively.

Now, de�ne fi,t(xi) and Ft(w) as in (12) and (13). From Lemma 3 and Proposition B-4 in Heyman and

Sobel (1984), it can be seen that fi,t(xi) is convex and Ft(w) is joint convex. In addition, Vt(x,w) =

f1,t(x1) + f2,t(x2) + Ft(w), completing the proof.

Proof of Proposition 2.

Proof. Prove by induction. The claim trivially holds for t = 0. Assume Ft−1(w) = f3,t−1(w2) +

f4,t−1(w1), then

Ft(w) = min
w2≤r2≤r1≤w1+K

{
H3,t(w2) + Γ3,t(w2) + γ(r2 − w2) + αEDtf3,t−1(r2 −Dt)

+H4,t(r1) + βi(r1 − w1)
+ + βo(r1 − w1)

− + αEDtf4,t−1(r1 + θDt)

}
.

Let g3,t(r2) = γr2+αEDtf3,t−1(r2−Dt). Since f3,t−1(·) is convex (from the induction assumption), by

Lemma 3 we can decompose the cost function of echelon 3:

min
w2≤r2≤r1

g3,t(r2) = min
w2≤r2

{
γr2 + αEDtf3,t−1(r2 −Dt)

}
+ Γ4,t(r1).

where the induced penalty function Γ4,t(r1) is expressed in (18). De�ne g4,t(r1) = H4,t(r1)+Γ4,t(r1)+

αEDtf4,t−1(r1 + θDt). Then

Ft(w) = H3,t(w2) + Γ3,t(w2) + min
w2≤r2

{
γ(r2 − w2) + αEDtf3,t−1(r2 −Dt)

}
+ min

w2≤r1≤w1+K

{
g4,t(r1) + βi(r1 − w1)

+ + βo(r1 − w1)
−}. (40)
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Let r̃1,t = argminr1
{
g4,t(r1)

}
, and r∗1,t = argminr1

{
g4,t(r1) + βi(r1 − w1)

+ + βo(r1 − w1)
−}. The

convexity of g4,t(r1) implies the existence of the one-sided derivative ∂g4,t(r1)/∂r1. De�ne l
∗
t = sup{r1 :

∂g4,t(r1)/∂r1 ≤ −βi} and u∗t = sup{r1 : ∂g4,t(r1)/∂r1 ≤ βo}. The monotonicity of ∂g4,t(r1)/∂r1 implies

l∗t ≤ r̃1,t ≤ u∗t . Using Proposition B-7 in Heyman and Sobel (1984), we have

r∗1,t =


l∗t , if w1 ≤ l∗t ,

w1, if l∗t < w1 ≤ u∗t ,

u∗t , if u∗t < w1.

 (41)

De�ne Lt(w1) = −βi(w1 − l∗t ) + g4,t(l
∗
t ), Ut(w1) = βo(w1 − u∗t ) + g4,t(u

∗
t ), and let

Wt(w1) =


Lt(w1), if w1 ≤ l∗t ,

g4,t(w1), if l∗t < w1 ≤ u∗t ,

Ut(w1), if ut < w1.

 (42)

From (41) it can be easily shown that Wt(w1) = minr1{g4,t(r1) + βi(r1 −w1)
+ + βo(r1 −w1)

−}. Now,
we impose the constraint w2 ≤ r1 ≤ w1 +K. First, let

r∗∗1,t = arg min
w2≤r1≤w1+K

{
g4,t(r1) + βi(r1 − w1)

+ + βo(r1 − w1)
−} , (43)

and de�ne the induced penalty functions Λ3,t(w2) and Λ4,t(w1) according to (22) and (23), respectively.

Then, we de�ne f4,t(w1) as in (17). The convexity of f4,t(w1) can be easily proved by showing that

∂f4,t(w1)/∂w1 is non-decreasing in w1. Next, we prove the decomposition of echelon 4:

min
w2≤r1≤w1+K

{
g4,t(r1) + βi(r1 − w1)

+ + βo(r1 − w1)
−} = f4,t(w1) + Λ3,t(w2). (44)

The echelon system dynamics and constraint guarantee that w2 ≤ w1 holds for all periods. To prove

(44), we consider all possible relationships between w2, w1, l
∗
t and u∗t , as extensively described in the

4 cases below.

Case 1. When w1 ≤ l∗t−K, we have r∗∗1,t = w1+K ≤ l∗t , f4,t(w1) = g4,t(w1+K)+βiK and Λ3,t(w2) = 0.

Thus, f4,t(w1) + Λ3,t(w2) = g4,t(w1 +K) + βiK = g4,t(r
∗∗
1,t) + βi(r

∗∗
1,t −w1)

+ + βo(r
∗∗
1,t −w1)

−, i.e., (44)

holds.

Case 2. When l∗t −K < w1 ≤ l∗t , we have r
∗∗
1,t = r∗1,t = l∗t , f4,t(w1) = Lt(w1) and Λ3,t(w2) = 0. Clearly

(44) holds.

Case 3. When l∗t < w1, and w2 ≤ u∗t , we have r∗∗1,t = r∗1,t = r̃1,t, f4,t(w1) = g4,t(w1), and Λ3,t(w2) = 0.

Clearly, (44) holds.

Case 4. When u∗t < w2 ≤ w1, we have r∗∗1,t = w2, f4,t(w1) = Ut(w1) and Λ3,t(w2) = g4,t(w2)− Ut(w2).

Thus, f4,t(w1) +Λ3,t(w2) = g4,t(w2) +Ut(w1)−Ut(w2) = g4,t(w2) + βi(w1 −w2) = g4,t(r
∗∗
1,t) + βi(r

∗∗
1,t −

w1)
+ + βo(r

∗∗
1,t − w1)

−, i.e., (44) holds.

Therefore, we veri�ed that (44) holds in all cases. Substituting (44) into (40), and de�ning f3,t(w2)
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as in (16), we complete the induction Ft(w) = f3,t(w2)+f4,t(w1). Using Lemma 3, all induced penalty

functions are convex, thus, fi,t(·) is convex (i = 3, 4), accomplishing the proof.

Proof of Proposition 3.

Proof. Prove by induction. V0(x,w) = 0 = V 1
0 (x1, w1) + V 2

0 (x1, x2, w2). Suppose Vt−1(x,w) ≥
V 1
t−1(x1, w1) + V 2

t−1(x1, x2, w2) for all (x,w), then

Vt(x,w) = min
y,r1∈S(x,w)

{Gt(x,w,y, r1) (45)

+αEDt [Vt−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt, r1 + θDt)]}

≥ min
y,r1∈S(x,w)

{Gt(x,w,y, r1) (46)

+αEDt

[
V 1
t−1(y1 −Dt, r1 + θDt)

]
+ αEDt

[
V 2
t−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt)

]}
≥ min

y,r1∈S(x,w)

{
G1

t (x1, w1, y1, r1) + αEDt

[
V 1
t−1(y1 −Dt, r1 + θDt)

]}
(47)

+ min
y,r1∈S(x,w)

{
G2

t (x, w2,y) + αEDt

[
V 2
t−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt)

]}
≥ min

x1≤y1≤r1≤w1+K

{
G1

t (x1, w1, y1, r1) + αEDt

[
V 1
t−1(y1 −Dt, r1 + θDt)

]}
(48)

+ min
x1≤y1≤x2≤y2≤w2

{
G2

t (x, w2,y) + αEDt

[
V 2
t−1(y1 −Dt, y2 −Dt, w2 + ρ(y1 − x1)−Dt)

]}
= V 1

t (x1, w1) + V 2
t (x1, x2, w2). (49)

The inequality in (46) and (48) are due to induction and constraint relaxation, respectively. The above

relationship holds for all (x,w) in period t, completing the induction.

Proof of Lemma 1.

Proof. We write out the �ow conservation of w2 and x1 from s = T to s = t+ 1.

E
DT ,...,Dt+1

w2,t − w2,T =
∑T

s=t+1
ρz1,s −

∑T

s=t+1
µs, (50)

E
DT ,...,Dt+1

x1,t − x1,T =
∑T

s=t+1
z1,s −

∑T

s=t+1
µs. (51)

The result is shown by subtracting ρ×(51) from (50).

Proof of Proposition 4.

Proof. We �rst specify the cost functions when demand is deterministic. De�ne

H2d
1,t(x1) = (h21 + h2 + η2 + b2)(dt(ω)− x1)

+ + h21(x1 − dt(ω)),

Hd
2,t(x2) = h2(x2 − dt(ω)), Hd

3,t(a) = η2(a− dt(ω)).
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We then prove by induction. The claim trivially holds for t = 0. Assume V d
t−1(x1, x2 | ω) = v1t−1(x1 |

ω) + v2t−1(x2 | ω), and let gdi,t = ciyi + αvit−1(yi − d(ω) | ω). From the convexity of vit−1(·) and Lemma

3, we can decompose the cost functions of echelon 1 and 2 as follows:

min
x1≤y1≤x2

gd1,t(y1) = min
x1≤y1

{
c1y1 + αv1t−1(y1 − d(ω) | ω)

}
+ Γd

2,t(x2),

min
x2≤y2≤a

gd2,t(y2) = min
x2≤y2

{
c2y2 + αv2t−1(y2 − d(ω) | ω)

}
+ Γd

1,t(a),

where a = ρx1 +Bt(ω). Let y
∗
1,t minimize gdi,t(yi), the induced penalty functions are

Γd
2,t(x2) =

{
c1(x2 − y∗1,t) + α

[
v1t−1(x2 − dt(ω) | ω)− v1t−1(y

∗
1,t − dt(ω) | ω)

]
, x2 ≤ y∗1,t,

0, otherwise,

}

Γd
1,t(x1) =

{
c2(a− y∗2,t) + α

[
v2t−1(a− dt(ω) | ω)− v2t−1(y

∗
2,t − dt(ω) | ω)

]
, a ≤ y∗2,t,

0, otherwise.

}

From Lemma 3, the functions above are convex. Therefore, the following functions are convex:

v1t (x1 | ω) = H2d
1,t(x1) +Hd

3,t(a) + Γd
1,t(a) + min

x1≤y1

{
c1(y1 − x1) + αv1t−1(y1 − dt(ω) | ω)

}
,

v2t (x2 | ω) = Hd
2,t(x2) + Γd

2,t(x2) + min
x2≤y2

{
c2(y2 − x2) + αv2t−1(y2 − dt(ω) | ω)

}
.

Furthermore, V d
t (x1, x2 | ω) = v1t (x1 | ω) + v2t (x2 | ω), completing the proof.

Proof of Proposition 5.

Proof. We write out the �ow conservation of w2 and x1, from t = T to t = 0.∑T

t=1
mt/c2 −

∑T

t=1
µt = Ew2,0 − w2,T , (52)∑T

t=1
z1,t −

∑T

t=1
µt = Ex1,0 − x1,T , (53)

where all expectations are taken over DT , ..., D1. Let (52)×c2 -(53)×p2, we have∑1

t=T
mt −

∑1

t=T
p2z1,t + p2Ex1,0 = c2Ew2,0 − C, (54)

where C = c2w2,T − p2x1,T +(p2 − c2)
∑T

t=1 µt. Note here that
∑1

t=T mt −
∑1

t=T p2z1,t is the retailer's

A/R at the beginning of time 0. Now, if x1,0 > 0, by assumption (2) the retailer can return this

excess inventory, thus, p2x1 is added to the retailer's A/R; if x1,0 < 0, by assumption (1) an additional

replenishment will be made and −p2x1 is subtracted from the retailer's A/R. Therefore, the left hand

side of (54) equals to the retailer's expected A/R at the end of time 0.
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