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Abstract

The mixed model approach to the analysis of repeated measurements allows users
to model the covariance structure of their data. That is, rather than using a univariate or a
multivariate test statistic for analyzing effects, tests that assume a particular form for the
covariance structure, the mixed model approach allows the data to determine the
appropriate structure. Using the appropriate covariance structure should result in more
powerful tests of the repeated measures effects according to advocates of the mixed
model approach. SAS' (1996) mixed model program, PROC MIXED, provides users
with two information criteria for selecting the “best' covariance structure, Akaike (1974)
and Schwarz (1978). Our study compared these log likelihood tests to see how effective
they would be for detecting various population covariance structures. In particular, the
criteria were compared in unbalanced (across groups) nonspherical repeated measures
designs having equal/unequal group sizes and covariance matrices when data were both
normally and nonnormally distributed. The results indicate that neither criterion was
effective in finding the correct structure. On average, for the 26 investigated
distributions, the Akaike criterion only resulted in the correct structure being selected 47
percent of the time while the Schwarz criterion resulted in the correct structure being
selected just 35 percent of the time. Not surprisingly, PROC MIXED default F-tests
based on either of these selection criteria performed poorly according to results reported
by the authors elsewhere.

Key Words: Covariance Structures, Akaike Criterion, Schwarz Criterion, Repeated
Measurements
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A Comparison of Two Approaches For Selecting Covariance Structures
in The Analysis of Repeated Measurements

1. Introduction

The traditional analysis of variance F-tests for repeated measures designs
containing between-subjects variables require that the data conform to the multisample
sphericity assumption in order to be valid (see Huynh & Feldt, 1970; Keselman &
Algina, 1996; Keselman & Keselman, 1993; Rogan, Keselman & Mendoza, 1979;
Rouanet & Lepine, 1970). That is, for a J (between-subjects) x K (within-subjects)
design, Fx = MSg/MSk«s;; and Fyx = MSjx/MSk sy will only be distributed as F
variables when, in addition to multivariate normality and independence assumptions, the
variances for all possible differences between the levels of the repeated measures variable
are equal (i.e., sphericity) and this constant variance holds for each level of the between-
subjects grouping variable (i.e., multisample sphericity, see Mendoza, 1980).
Equivalently, multisample sphericity can be stated as CTZjC = Mk-1,(G=1,...,]J),
where C is an orthonoromalized contrast matrix representing a comparison among the
levels of the repeated measures factor, X; is a variance-covariance matrix for K
associated with a particular level of treatment j, A is a scalar > 0, Iisa K —1x K —1
identity matrix, and * is the transpose operator.

Since the data obtained in applied settings, particularly in the behavioral sciences,
will rarely conform to the multisample sphericity pattern, many authors have
recommended that applied researchers adopt a corrected degrees of freedom (df) test,
such as Greenhouse and Geisser (1958) or Huynh and Feldt (1976), or a multivariate test
statistic, in order to obtain valid tests of repeated measures effects. A corrected df
univariate test attempts to circumvent the multisample sphericity assumption by altering
the df of the traditional test statistics based on a sample estimate of the unknown
sphericity parameter. The multivariate test, on the other hand, does not require sphericity,
only covariance homogeneity and multivariate normality. The empirical evidence
regarding the validity of these two approaches indicates that if the design is balanced they
effectively control the probability of committing a Type I error at the desired level of
significance. However, for unbalanced (unequal group sizes) repeated measures designs,
neither approach effectively maintains control over Type I errors when covariance
heterogeneity exists, a likely outcome with applied data (e.g., see Keselman & Keselman,
1990; Keselman, Lix & Keselman, 1996). That is, current recommendations do not
generally hold in unbalanced (across groups) repeated measures designs when covariance
matrices are heterogeneous. Unfortunately, according to a survey conducted by
Kowalchuk, Lix, and Keselman (1996), repeated measures designs in the applied
sciences are typically unbalanced.

One of the newer approaches to the analysis of repeated measurements is based
on a mixed model approach (see Jennrich & Schluchter, 1986; Laird & Ware, 1982;
Liang & Zeger, 1986; Little, Milliken, Stroup & Wolfinger, 1996). The potential benefit
of this approach is that it allows a user to model the covariance structure of the data
rather than presuming a certain type of structure as is the case with the traditional
univariate and multivariate test statistics. Parsimonously modeling the covariance
structure of the data should result in more efficient estimates of the fixed-effects
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parameters of the model and consequently more powerful tests of the repeated measures
effects. The mixed model approach, and specifically SAS's (SAS, 1996) PROC MIXED,
allows users to fit various covariance structures to the data. For example, some of the
structures that can be fit with PROC MIXED are: (a) compound symmetric (CS), (b)
unstructured (UN), (c) spherical/Huynh and Feldt (1970) (HF), (d) first order
autoregressive (AR), and (e) random coefficients (RC). The CS structure is assumed by
the traditional univariate F-tests in SASs GLM program (SAS Institute, 1990), while the
UN structure is assumed by GLMs multivariate tests of the repeated measures effects.
AR and RC structures more appropriately reflect that measurement occassions that are
closer in time are more highly correlated than those farther apart in time. In addition,
PROC MIXED allows users to specify, separately and jointly, between-subjects and
within-subjects heterogeneity. After a covariance structure is selected, SAS computes,
by default, F-tests which are Wald-type statistics which are asymptotically valid and
whose sampling distribution is approximated by an F in small samples (see McLean &
Sanders, 1988; Wolfinger, 1993).

It is suggested that users first determine the appropriate covariance structure prior
to conducting tests of significance for the repeated measures effects (see Little et al.,
1996; Wolfinger, 1993; 1996). Specifically, a covariance structure can be selected by
comparing the Akaike Information Criterion (AIC) (Akaike, 1974) and/or Schwarz
Bayesian Criterion (BIC) (Schwarz, 1978) values for various potential covariance
structures (see Bozdogan, 1987; Little et al; Wolfinger, 1993; 1996). According to the
authors of SAS manuals these two criteria are likely to result in basically equivalent
results. However, to date, we know of no reported study which has examined this
proposition. Thus, the purpose of our investigation was to compare the two criteria.

2. Methods

The simplest of the higher-order repeated measures designs involves a single
between-subjects factor and a single within-subjects factor, in which subjects i=1, ...
, 1j, Xn; = N) are selected randomly for each level of the between-subjects factor (j = 1,
... ,J) and observed and measured under all levels of the within-subjects factor (k = 1,
..., K). In this design, the repeated measures data are modeled by assuming that the
observations Yj; are normal, independent and identically distributed within each level j,
with common mean vector u; and covariance matrix 33;.

2.1 Test Statistics
The AIC and BIC information criteria, in larger-is-better form, can be specified
as
AICR = ZR(/é) —q
and
BICy = I = I(8) — Slog(n — p),

where 9 is the restricted /residual maximum likelihood estimate of the unknown variance-
covariance parameters 6, g is the number of elements in #, and for the model given
previously p = JK and n = NK (See Wolfinger, 1996).!
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2.2 Study Variables

The conditions of our study were those used by Keselman, Algina, Kowalchuk
and Wolfinger (1997) in their study which compared various approaches, including the
mixed model approach, to the analysis of repeated measurements. Thus, the conditions
(e.g., covariance heterogeneity, nonnormality, unequal group sizes) selected were chosen
primarily for their known effects on tests for mean equality. Nonetheless, we believe that
the conditions they manipulated would be relevant as well in our investigation, when
examining the log likelihood tests, since they were chosen to mirror conditions likely to
be encountered by researchers working in applied settings.

The two criteria (AIC and BIC) for selecting a covariance structure prior to
computing tests for testing repeated measures effects were examined for balanced and
unbalanced designs containing one between-subjects and one within-subjects factor;
there were three and four levels of these factors, respectively. Selected combinations of
six factors were investigated.

Six covariance structures investigated were: (a) UN, (b) ARH, and (c) RCH, (d)
UN;, (e) ARH;, and (f) RCH;, where H in the structure designation refers to within-
subject heterogeneity and the subscript ; denotes between groups heterogeneity (i.e.,
allowing for heterogeneity of a structure across groups) (see Little et al., 1996; SAS,
1995; Wolfinger, 1993; 1966). The authors will provide upon request an enumeration of
the element values used in the simulation study.

For each of the preceding structures, equal (excluding RCH) as well as unequal
between-subjects covariance matrices were investigated. When unequal, the elements of
the matrices were in the ratio of 1:3:5.

Based on the belief that applied researchers work with data that is characterized
by both within and between heterogeneity, eleven covariance structures were fit with
PROC MIXED for the Akaike (1974) and Schwarz (1978) criteria. These structures
were: (a) CS, (b) UN, (c) AR, (d) HF, (e) CSH, (f) ARH, (g) RCH, (h) UN;, (i) HF;, (j)
ARH;, and (k) RCH;. Thus, we allowed PROC MIXED to select from among
homogeneous, within heterogeneous, and within and between heterogeneous structures.

The criteria were investigated when the number of observations in each group
were equal or unequal. Based on the findings reported by Keselman et al. (1993) and
Wright (1995) we considered, like Keselman et al. (1997), a number of cases of total
sample size: N = 30, N = 45, and N = 60. For each value of N, both a moderate and
substantial degree of group size inequality were typically investigated. The moderately
unbalanced group sizes had a coefficient of sample size variation (C) equal to =~ .16,
while for the more disparate cases C ~ .33, where C is defined as (¥(n, —E)z/J)%/ T,
and 7 is the average group size. The C ~ .16 and C ~ .33 unequal group sizes cases
were respectively equal to: (a) 8, 10, 12 and 6, 10, 14 (N = 30), (b) 12, 15, 18 and 9, 15,
21 (N = 45), and (c) 16, 20, 24 and 12, 20, 28 (N = 60).

Positive and/or negative pairings of these unequal group sizes and unequal

covariance matrices were investigated. A positive pairing referred to the case in which
the largest n; was associated with the covariance matrix containing the largest element
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values; a negative pairing referred to the case in which the largest n; was associated with
the covariance matrix with the smallest element values. In short, for each value of N,
four pairings of unequal covariance matrices and unequal group sizes were investigated:
moderately and very unequal njs which were both positively and negatively paired with
the unequal 3;s.

The sphericity index was set at e = 0.75. The 0.75 value characterizes data found
in educational and behavioral science research (Huynh & Feldt, 1976). When ¢ = 1.0,
sphericity is satisfied and for the J x K design the lower bound of € = 1/(K — 1).

The criteria were compared when the simulated data were obtained from
multivariate normal or multivariate nonnormal distributions. The nonnormal distribution
was a multivariate lognormal distribution with marginal distributions based on
Yijk = exp(Xjj) (1= 1, ..., nj) where Xj is distributed as N(0, .25); this distribution has
skewness (7)) and kurtosis (7,) values of 1.75 and 5.90, respectively. The algorithms for
generating the two investigated distributions can be found in Keselman et al (1993) and
Algina and Oshima (1995).

An enumeration of the conditions investigated can be found in Table 1. One
thousand replications of each condition were performed.

Insert Table 1 About Here

3. Results

In the tables that follow we present results for a subset of the selected
combinations investigated; the subset adequately demonstrates differences that exist
between the criteria.

Tables 2 and 3 contain percentages, for each condition investigated, of the three
most frequently selected covariance structures by the AIC and BIC criteria, respectively.
Shaded cells of the table indicate the true covariance structure of the data.

Insert Tables 2 and 3 About Here

The results in Table 2 indicate that, for the AIC criterion,: (a) on average, across
the 26 investigated conditions, the correct covariance struture is selected 47 percent of
the time, (b) when the true structure is UN/UN;-Normal (A-F), another structure (ARH;)
is selected more often than the correct structure, (c) the correct structure is selected more
frequently than any of the other structures when the true structure is ARH;-Normal (H-L),
RCHj-Normal (M-Q), UN;-Lognormal data (R-S), and ARH;-Lognormal data (T-U) and
(d) the correct structure (RCH;) 1s selected approximately as frequently as an incorrect
structure (UN;) for Lognormal data (V-Z).

The picture is quite different when applying the Schwarz criterion. In particular,
(a) in 14 of the 26 conditions investigated the correct covariance structure was never
selected, (b) averaged over the cases in which the correct covariance structure was
selected some percentage of the time, the percent of correct selections was 35, and (c) for
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all structures, except RCH;-Lognormal (V-Z) and distribution Q, an incorrect structure
was selected more frequently than the correct structure.

4. Discussion

The newest approach to the analysis of repeated measurements is a mixed model
analysis. Advocates of this approach suggest that it provides the ‘best' approach to the
analysis of repeated measurements since it can, among other considerations, handle
missing data and allow users to model the covariance structure of the data. The first of
these advantages is typically not a pertinent issue to those involved in controlled
experiments since data in these contexts is rarely missing. The second consideration,
however, could be most relevant to experimenters since, according to the developers of
mixed model analyses, modeling the correct covariance structure of the data should result
in more powerful tests of the fixed-effects parameters. That is, users should obtain more
powerful tests by using test statistics that more accurately model the correct covariance
structure rather than adopting the usual univariate or multivariate tests which presume
specific types of covariance structures for the data.

The mixed model program in SAS (1996) allows users to model many potentially
applicable covariance structures. Additionally, the program allows even greater
flexibility to the user by allowing him/her to model covariance structures that have
within-subjects and/or between-subjects heterogeneity. In order to select an appropriate
structure for ones data, PROC MIXED users can use either an Akaike (1974) or Schwarz
(1978) information criteria. These log likelihood tests, it is believed, should provide
equivalent results. Nonetheless, within the context of unbalanced (across groups)
nonspherical heterogeneous repeated measures designs, comparisons of the crirteria have
not to date been made. Accordingly, we compared these criteria for various between- by
within-subjects repeated measures designs in which we varied the true covariance
structure to the data, the distributional form of the data, as well as group size and
covariance balance/imbalance.

Our data indicate that neither approach uniformly selected the correct covariance
structure. Indeed, for most of the investigated structures investigated, the Akaike (1974),
and in particular the Schwarz (1978) criteria, more frequently picked the wrong
covariance structure. Averaging over the conditions in which a correct structure was
selected some percentage of the time, the correct structure was picked 47 percent of the
time with the Akaike criterion and only 35 percent of the time with the Schwarz criterion.
Thus, though the mixed model approach allows users to model the covariance structure,
two popular criteria for selecting the best' structure perform poorly. Not surprisingly,
Keselman et al. (1997) found that the default F-tests that PROC MIXED computes based
on either of these two criteria were prone to inflated rates of Type I error. Accordingly,
potential presumed power benefits must be discounted when the procedure is prone to
excessive rates of Type I error.

The authors are currently examining whether PROC MIXED tests of repeated
measures effects can be improved by using its Satterthwaite test option. In the meantime
we continue to recommend that for the analysis of repeated measures effects users adopt
the nonpooled multivariate Welch-type statistic presented by Keselman, Carriere and Lix
(1993). For most unbalanced nonspherical heterogeneous repeated measures designs it
typically will be robust even when data is nonnormal (see Keselman et al., 1993). Lix
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and Keselman (1995) show how to apply this statistic to test omnibus and subeffect tests
in most independent and correlated groups designs and present a SAS/IML (SAS, 1989)
program to obtain numerical results.
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FOOTNOTES
1. Release 7.01 of PROC MIXED will compute the Schwarz (1978) criteria with a less
stringent penalty. Specifically, based on Carlin and Louis (1996), n will be equated with
the number of subjects rather than the number of observations as is currently the case in

PROC MIXED releases other than 7.01.
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