Algorithmic Correspondence and Canonicity for Distributive Modal Logic

Willem Conradie Alessandra Palmigiano

TACL 2009, Amsterdam

10 July 2009
Sahlqvist theory

Modal formulas define classes of Kripke frames through the notion of validity. Via validity, every modal formula semantically corresponds to a monadic second order formula. Some modal formulas semantically correspond to first order formulas (undecidable property of modal formulas [Chagrova]).

Sahlqvist theory gives syntactic conditions on modal formulas that are guaranteed a local first order correspondent (Sahlqvist formulas). Effectively computes their first order correspondents (Reduction strategies). Sahlqvist formulas are canonical (proof via correspondence). Sahlqvist formulas generate logics that are strongly complete w.r.t. first-order definable classes of frames.
Modal formulas define classes of Kripke frames through the notion of validity.
Modal formulas define classes of Kripke frames through the notion of validity.

Via validity, every modal formula semantically corresponds to a monadic second order formula.
Sahlqvist theory

- Modal formulas **define** classes of Kripke frames through the notion of **validity**.
- Via validity, every modal formula semantically **corresponds** to a monadic second order formula.
- Some modal fm’s semantically correspond to **first order** fm’s (undecidable property of modal fm’s [Chagrova]).

Willem Conradie, Alessandra Palmigiano
Algorithmic Correspondence and Canonicity for Distributive Modal Logic
Modal formulas define classes of Kripke frames through the notion of validity.

Via validity, every modal formula semantically corresponds to a monadic second order formula.

Some modal formulas semantically correspond to first order formulas (undecidable property of modal formulas [Chagrova]).
Sahlqvist theory

- Modal formulas define classes of Kripke frames through the notion of validity.
- Via validity, every modal formula semantically corresponds to a monadic second order formula.
- Some modal fm’s semantically correspond to first order fm’s (undecidable property of modal fm’s [Chagrova]).

Sahlqvist theory

gives syntactic conditions on modal formulas that are guaranteed a local first order correspondent (Sahlqvist fm’s).
Sahlqvist theory

- Modal formulas define classes of Kripke frames through the notion of validity.
- Via validity, every modal formula semantically corresponds to a monadic second order formula.
- Some modal formulas semantically correspond to first order formulas (undecidable property of modal formulas [Chagrova]).

Sahlqvist theory

- Gives syntactic conditions on modal formulas that are guaranteed a local first order correspondent (Sahlqvist formulas).
- Effectively computes their first order correspondents (Reduction strategies).
Modal formulas define classes of Kripke frames through the notion of validity.

Via validity, every modal formula semantically corresponds to a monadic second order formula.

Some modal fm’s semantically correspond to first order fm’s (undecidable property of modal fm’s [Chagrova]).

Sahlqvist theory gives syntactic conditions on modal formulas that are guaranteed a local first order correspondent (Sahlqvist fm’s).

Effectively computes their first order correspondents (Reduction strategies).

Sahlqvist formulas are canonical (proof via correspondence).
Sahlqvist theory

- Modal formulas define classes of Kripke frames through the notion of validity.
- Via validity, every modal formula semantically corresponds to a monadic second order formula.
- Some modal fm’s semantically correspond to first order fm’s (undecidable property of modal fm’s [Chagrova]).

Sahlqvist theory

- gives syntactic conditions on modal formulas that are guaranteed a local first order correspondent (Sahlqvist fm’s).
- Effectively computes their first order correspondents (Reduction strategies).
- Sahlqvist formulas are canonical (proof via correspondence).
- Sahlqvist formulas generate logics that are strongly complete w.r.t. first-order definable classes of frames.
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

From Kripke frames to their algebraic duals:
Perfect BAOs.

Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs

Sahlqvist formulas for L^K generalize to Sahlqvist inequalities for Distributive Modal Logic [Gehrke Nagahashi Venema].

$\phi ::= p \in \text{AtProp} | \top | \bot | \phi \land \psi | \phi \lor \psi | \Box \phi | \neg \phi | \Diamond \phi | \Leftarrow \phi$

Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

Benefits

Sahlqvist theory available to e.g. PML, intuitionistic modal logics.

Canonicity treated independently of (global) correspondence.

Willem Conradie Alessandra Palmigiano

Algorithmic Correspondence and Canonicity for Distributive Modal Logics
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

ϕ ::= p ∈ AtProp | ⊤ | ⊥ |
ϕ ∧ ψ |
ϕ ∨ ψ |
□ ϕ |
^ ϕ |
⊿ ϕ |
◁ ϕ

Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

Benefits
Sahlqvist theory available to e.g. PML, intuitionistic modal logics.
Canonicity treated independently of (global) correspondence.
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals:

\[\phi ::= p \in \text{AtProp} | \top | \bot | \phi \land \psi | \phi \lor \psi | \Box \phi | \Diamond \phi | \leftarrow \phi \]

Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

Benefits

- Sahlqvist theory available to e.g. PML, intuitionistic modal logics.
- Canonicity treated independently of (global) correspondence.

Willem Conradie Alessandra Palmigiano Algorithmic Correspondence and Canonicity for Distributive Modal Logic
Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals: Perfect BAOs.

- Sahlqvist reduction strategies rephrased in perfect BAOs.

- From perfect BAs to perfect DLs

- Sahlqvist formulas for L^K generalize to Sahlqvist inequalities for Distributive Modal Logic [Gehrke Nagahashi Venema].

- $\phi ::= p \in \text{AtProp} | \top | \bot |

- $\phi \land \psi | \phi \lor \psi | \Box \phi | \Diamond \phi | \triangledown \phi | \triangleleft \phi$

- Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

- Benefits:
 - Sahlqvist theory available to e.g. PML, intuitionistic modal logics.
 - Canonicity treated independently of (global) correspondence.
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals: Perfect BAOs.
- Sahlqvist reduction strategies rephrased in perfect BAOs.
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals: Perfect BAOs.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting
- From Kripke frames to their algebraic duals: **Perfect BAOs**.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs
- Sahlqvist formulas for \mathcal{L}_K generalize to **Sahlqvist inequalities** for Distributive Modal Logic [Gehrke Nagahashi Venema].
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals: Perfect BAOs.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs

- Sahlqvist formulas for L_K generalize to Sahlqvist inequalities for Distributive Modal Logic [Gehrke Nagahashi Venema].

$\phi ::= p \in \text{AtProp} \mid \top \mid \bot \mid \phi \land \psi \mid \phi \lor \psi \mid \Box \phi \mid \Diamond \phi \mid \rhd \phi \mid \rhd \phi$
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting
- From Kripke frames to their algebraic duals: **Perfect BAOs**.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs
- Sahlqvist formulas for \mathcal{L}_K generalize to **Sahlqvist inequalities** for Distributive Modal Logic [Gehrke Nagahashi Venema].
 \[\varphi ::= p \in \text{AtProp} \mathrel{|} \top \mathrel{|} \bot \mathrel{|} \varphi \land \psi \mathrel{|} \varphi \lor \psi \mathrel{|} \Box \varphi \mathrel{|} \Diamond \varphi \mathrel{|} \triangleright \varphi \mathrel{|} \triangleleft \varphi \]
- Sahlqvist reduction strategies are essentially the same as in the Boolean setting!
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting

- From Kripke frames to their algebraic duals: Perfect BAOs.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs

- Sahlqvist formulas for \mathcal{L}_K generalize to Sahlqvist inequalities for Distributive Modal Logic [Gehrke Nagahashi Venema].
 \[\varphi ::= p \in \text{AtProp} \mid \top \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Box \varphi \mid \Diamond \varphi \mid \triangleright \varphi \mid \triangleleft \varphi \]
- Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

Benefits

- Sahlqvist theory available to e.g. PML, intuitionistic modal logics.
Two generalizations of Sahlqvist theory: algebraically

Algebraic perspective on the classical setting
- From Kripke frames to their algebraic duals: **Perfect BAOs**.
- Sahlqvist reduction strategies rephrased in perfect BAOs.

From perfect BAs to perfect DLs
- Sahlqvist formulas for \mathcal{L}_K generalize to **Sahlqvist inequalities** for Distributive Modal Logic [Gehrke Nagahashi Venema].
 \[\varphi ::= p \in \text{AtProp} \mid \top \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Box \varphi \mid \Diamond \varphi \mid \triangleright \varphi \mid \triangleleft \varphi \]
- Sahlqvist reduction strategies are essentially the same as in the Boolean setting!

Benefits
- Sahlqvist theory available to e.g. PML, intuitionistic modal logics.
- Canonicity treated independently of (global) correspondence.
Model-theoretic generalization of Sahlqvist theory

Inductive formulas \[\text{[Goranko Vakarelov]}\] are syntactically defined, proper extension of Sahlqvist formulas. These are in general a proper semantic extension of Sahlqvist formulas.

SQEMA-algorithm \[\text{[Conradie Goranko Vakarelov]}\] based on the Ackermann's lemma. This generates local first-order correspondents of input modal formulas. SQEMA-formulas properly cover all inductive formulas. SQEMA-formulas are canonical. SQEMA-formulas still lack a syntactic characterization.
Model-theoretic generalization of Sahlqvist theory

Inductive formulas [Goranko Vakarelov]

SQEMA-algorithm [Conradie Goranko Vakarelov] based on the Ackermann's lemma. Generates local first-order correspondents of input modal formulas. SQEMA-formulas properly cover all inductive formulas. SQEMA-formulas are canonical. SQEMA-formulas still lack a syntactic characterization.
Inductive formulas [Goranko Vakarelov]

- a syntactically defined, proper extension of Sahlqvist formulas.

SQEMA-algorithm [Conradie Goranko Vakarelov] based on the Ackermann's lemma. It generates local first-order correspondents of input modal formulas. SQEMA-formulas properly cover all inductive formulas. SQEMA-formulas are canonical. However, they still lack a syntactic characterization.
Inductive formulas [Goranko Vakarelov]

- a syntactically defined, proper extension of Sahlqvist formulas.
- are in general a proper semantic extension of Sahlqvist fm’s.
<table>
<thead>
<tr>
<th>Model-theoretic generalization of Sahlqvist theory</th>
</tr>
</thead>
</table>

Inductive formulas [Goranko Vakarelov]

- A syntactically defined, proper extension of Sahlqvist formulas.
- Are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]
Model-theoretic generalization of Sahlqvist theory

Inductive formulas [Goranko Vakarelov]
- a syntactically defined, proper extension of Sahlqvist formulas.
- are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]
- based on the Ackermann’s lemma.
Inductive formulas [Goranko Vakarelov]

- A syntactically defined, proper extension of Sahlqvist formulas.
- Are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]

- Based on the Ackermann’s lemma.
- Generates local first-order correspondents of input modal formulas.
Inductive formulas [Goranko Vakarelov]
- a syntactically defined, proper extension of Sahlqvist formulas.
- are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]
- based on the Ackermann’s lemma.
- generates local first-order correspondents of input modal formulas.
- properly covers all inductive formulas.
Inductive formulas [Goranko Vakarelov]
- a syntactically defined, proper extension of Sahlqvist formulas.
- are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]
- based on the Ackermann’s lemma.
- generates local first-order correspondents of input modal formulas.
- properly covers all inductive formulas.
- SQEMA-formulas are canonical.
Inductive formulas [Goranko Vakarelov]

- a syntactically defined, proper extension of Sahlqvist formulas.
- are in general a proper semantic extension of Sahlqvist fm’s.

SQEMA-algorithm [Conradie Goranko Vakarelov]

- based on the Ackermann’s lemma.
- generates local first-order correspondents of input modal formulas.
- properly covers all inductive formulas.
- SQEMA-formulas are canonical.
- SQEMA-formulas still lack a syntactic characterization.
Merging paths: main contributions [Conradie P.]

Inductive inequalities are a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic, as to their restriction to classical inductive formulas:

- Classical
- Distributive
- Recursive definition
- Forbidden combination
- Sahlqvist fm's
- Van Benthem fm's
- Inductive fm's [GV]
- Inductive fm's [CP]
- Sahlqvist ineq's [GNV]
- Inductive ineq's [CP]

ALBA-algorithm generates local first-order corrected input DM inequalities. Properly covers all inductive (hence all Sahlqvist) inequalities. Consequence: Sahlqvist inequalities have local first-order corrected. ALBA-inequalities are canonical (proof via correspondence).
Inductive inequalities

The slide discusses the main contributions by Conradie P. on inductive inequalities. It mentions a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic. The focus is on how these inequalities apply to classical inductive formulas, contrasting with forbidden combinations in Sahlqvist inequalities and van Benthem inequalities. It also mentions the generation of local first-order corrections by the ALBA-algorithm and the consequence that Sahlqvist inequalities have local first-order corrections. The ALBA-inequalities are noted to be canonical, with a proof via correspondence.
<table>
<thead>
<tr>
<th>Inductive inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.</td>
</tr>
</tbody>
</table>
Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:
Merging paths: main contributions [Conradie P.]

Inductive inequalities:
- A syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- As to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical</th>
<th>Recursive Definition</th>
<th>Forbiden Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributive</td>
<td>Sahlqvist fm’s</td>
<td>van Benthem fm’s</td>
</tr>
<tr>
<td></td>
<td>Inductive fm’s [GV]</td>
<td>Inductive fm’s [CP]</td>
</tr>
<tr>
<td></td>
<td>Sahlqvist ineq’s [GNV]</td>
<td>Inductive ineq’s [CP]</td>
</tr>
</tbody>
</table>

ALBA-algorithm generates local first-order corrected of input DM inequalities. Properly covers all inductive (hence all Sahlqvist) ineq’s. Consequence: Sahlqvist ineq’s have local first-order corrected. ALBA-inequalities are canonical (proof via correspondence).
Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical Distributive</th>
<th>recursive definition</th>
<th>forbidden combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahlqvist fm’s</td>
<td></td>
<td>van Bentham fm’s</td>
</tr>
<tr>
<td>Inductive fm’s [GV]</td>
<td></td>
<td>Inductive fm’s [CP]</td>
</tr>
<tr>
<td>Sahlqvist ineq’s [GNV]</td>
<td></td>
<td>Inductive ineq’s [CP]</td>
</tr>
</tbody>
</table>

ALBA-algorithm
Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical Distributive</th>
<th>recursive definition</th>
<th>forbidden combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahlqvist fm’s</td>
<td>van Benthem fm’s</td>
<td></td>
</tr>
<tr>
<td>Inductive fm’s [GV]</td>
<td>Inductive fm’s [CP]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sahlqvist ineq’s [GNV]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inductive ineq’s [CP]</td>
<td></td>
</tr>
</tbody>
</table>

ALBA-algorithm

- generates local first-order corr’ds of input DM inequalities.
Merging paths: main contributions [Conradie P.]

Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical Distributive</th>
<th>recursive definition</th>
<th>forbidden combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahlqvist fm’s</td>
<td></td>
<td>van Benthem fm’s</td>
</tr>
<tr>
<td>Inductive fm’s [GV]</td>
<td></td>
<td>Inductive fm’s [CP]</td>
</tr>
<tr>
<td>Sahlqvist ineq’s [GNV]</td>
<td></td>
<td>Inductive ineq’s [CP]</td>
</tr>
</tbody>
</table>

ALBA-algorithm

- generates **local** first-order corr’ds of input DM inequalities.
- properly covers all inductive (hence all Sahlqvist) ineq’s.
Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical Distributive</th>
<th>recursive definition</th>
<th>forbidden combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahlqvist fm’s</td>
<td>van Benthem fm’s</td>
<td></td>
</tr>
<tr>
<td>Inductive fm’s [GV]</td>
<td>Inductive fm’s [CP]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sahlqvist ineq’s [GNV]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inductive ineq’s [CP]</td>
</tr>
</tbody>
</table>

ALBA-algorithm

- generates local first-order corr’ds of input DM inequalities.
- properly covers all inductive (hence all Sahlqvist) ineq’s.
- Consequence: Sahlqvist ineq’s have local first-order corr’ds.
Inductive inequalities

- a syntactically defined, proper extension of the Sahlqvist inequalities for Distributive Modal Logic.
- as to their restriction to classical inductive formulas:

<table>
<thead>
<tr>
<th>Classical Distributive</th>
<th>recursive definition</th>
<th>forbidden combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahlqvist fm’s</td>
<td>van Benthem fm’s</td>
<td></td>
</tr>
<tr>
<td>Inductive fm’s [GV]</td>
<td>Inductive fm’s [CP]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sahlqvist ineq’s [GNV]</td>
<td>Inductive ineq’s [CP]</td>
</tr>
</tbody>
</table>

ALBA-algorithm

- generates local first-order corr’ds of input DM inequalities.
- properly covers all inductive (hence all Sahlqvist) ineq’s.
- Consequence: Sahlqvist ineq’s have local first-order corr’ds.
- ALBA-inequalities are canonical (proof via correspondence).
An informal description of ALBA

Based Algorithm

Its core is a DL version of Ackermann's lemma.

Three stages: preprocessing, reduction rules and Ackermann elimination step.

Reduction rules: residuation, approximation.

Crucial use of the perfect DL environment: approximation: both \lor-generated by the c. \lor-primes and \land-gen. by the c. \land-primes; residuation: by completeness, all the operations are either right- or left-adjoints.

Willem Conradie, Alessandra Palmigiano

Algorithmic Correspondence and Canonicity for Distributive Modal Logic
An informal description of ALBA

Ackermann Lemma Based Algorithm

Its core is a DL version of Ackermann's lemma. Three stages: preprocessing, reduction rules and Ackermann elimination step.

Reduction rules: residuation, approximation. Crucial use of the perfect DL environment: approximation: both \lor-generated by the \land-primes and \land-generated by the \lor-primes; residuation: by completeness, all the operations are either right- or left-adjoints.
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages:
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing,
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules and Ackermann elimination step.
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules and Ackermann elimination step.
- Reduction rules: residuation, approximation.

Crucial use of the perfect DL environment:
- approximation: both \bigvee-generated by the c. \bigvee-primes and \bigwedge-gen. by the c. \bigwedge-primes;
- residuation: by completeness, all the operations are either right- or left-adjoints.
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules and Ackermann elimination step.
- Reduction rules: residuation, approximation.
- Crucial use of the perfect DL environment:
An informal description of ALBA

Ackermann Lemma Based Algorithm

- Its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules and Ackermann elimination step.
- Reduction rules: residuation, approximation.
- Crucial use of the perfect DL environment:
 - **approximation**: both \lor-generated by the c. \lor-primes and \land-gen. by the c. \land-primes;
An informal description of ALBA

Ackermann Lemma Based Algorithm

- its core is a DL version of Ackermann’s lemma.
- Three stages: preprocessing, reduction rules and Ackermann elimination step.
- Reduction rules: residuation, approximation.
- Crucial use of the perfect DL environment:
 - approximation: both \lor-generated by the c. \lor-primes and \land-gen. by the c. \land-primes;
 - residuation: by completeness, all the operations are either right- or left-adjoints.
\(\square(\Diamond q \lor p) \land \square q \leq \Diamond (p \land q)\)
\(\Box (\Diamond q \lor p) \land \Box q \leq \Diamond (p \land q) \)

\[
\left\{ \begin{array}{l}
 j \leq \Box (\Diamond q \lor p) \land \Box q, \\
 \Diamond (p \land q) \leq m
\end{array} \right\} \text{first approx.}
\]
\(\Box (\Diamond q \lor p) \land \Box q \leq \Diamond (p \land q) \)

\[
\{ \ j \leq \Box (\Diamond q \lor p) \land \Box q, \ \Diamond (p \land q) \leq m \ \} \text{ first approx.}
\]

\[
\begin{align*}
\{ & \ j \leq \Box (\Diamond q \lor p), \ \Diamond (p \land q) \leq m \\
& \ j \leq \Box q \\
\} \text{ splitting}
\end{align*}
\]
\[\Box (\Diamond q \lor p) \land \Box q \leq \Diamond (p \land q)\]

\[
\begin{align*}
\{ \ j \leq \Box (\Diamond q \lor p) \land \Box q, \ & \Diamond (p \land q) \leq m \ \} \text{ first approx.} \\
\{ \ j \leq \Box (\Diamond q \lor p), \ & \Diamond (p \land q) \leq m \ \\
\ j \leq \Box q \ & \} \text{ splitting} \\
\{ \ \Diamond j \leq \Diamond q \lor p, \ & \Diamond (p \land q) \leq m \\
\ \Diamond i \leq q \ & \} \Box \text{ residuation } \times 2
\end{align*}
\]
\(\Box (\Diamond q \lor p) \land \Box q \leq \Diamond (p \land q) \)

\[
\{ \, j \leq \Box (\Diamond q \lor p) \land \Box q, \quad \Diamond (p \land q) \leq m \, \} \text{ first approx.}
\]

\[
\left\{ \begin{array}{l}
 j \leq \Box (\Diamond q \lor p), \quad \Diamond (p \land q) \leq m \\
 j \leq \Box q
\end{array} \right. \text{ splitting}
\]

\[
\left\{ \begin{array}{l}
 \Diamond j \leq \Diamond q \lor p, \quad \Diamond (p \land q) \leq m \\
 \Diamond i \leq q
\end{array} \right. \Box \text{residuation } \times 2
\]

\[
\left\{ \begin{array}{l}
 \Diamond j - \Diamond q \leq p, \quad \Diamond (p \land q) \leq m \\
 \Diamond j \leq q
\end{array} \right. \lor \text{ residuation}
\]
\(\Box (\Diamond q \lor p) \land \Box q \leq \Diamond (p \land q) \)

\[
\begin{align*}
\{ \ j \leq \Box (\Diamond q \lor p) \land \Box q, \quad \Diamond (p \land q) \leq m \ \} & \text{ first approx.} \\
\{ \ j \leq \Box q, \quad \Diamond (p \land q) \leq m \ \} & \text{ splitting} \\
\{ \ \Diamond j \leq \Diamond q \lor p, \quad \Diamond (p \land q) \leq m \ \} & \Box \text{residuation} \times 2 \\
\{ \ \Diamond i \leq q \ \} & \\
\{ \ \Diamond j \land \Diamond q \leq \Diamond j, \quad \Diamond (p \land q) \leq m \ \} & \lor \text{residuation} \\
\{ \ \Diamond j \leq q \ \} & \\
\{ \ \Diamond j \leq q, \quad \Diamond ((\Diamond j \land \Diamond q) \land q) \leq m \ \} & \text{Ackermann elim. of } p
\end{align*}
\]
\(\square(\triangleleft q \lor p) \land \square q \leq \lozenge(p \land q)\)

\[
\begin{cases}
 j \leq \square(\triangleleft q \lor p) \land \square q,
 \lozenge(p \land q) \leq m \\
 \end{cases}
\text{first approx.}
\]

\[
\begin{cases}
 j \leq \square(\triangleleft q \lor p),
 \lozenge(p \land q) \leq m \\
 j \leq \square q
\end{cases}
\text{splitting}
\]

\[
\begin{cases}
 \lozenge j \leq \triangleleft q \lor p,
 \lozenge(p \land q) \leq m \\
 \lozenge i \leq q
\end{cases}
\square\text{residuation} \times 2
\]

\[
\begin{cases}
 \lozenge j - \triangleleft q \leq p,
 \lozenge(p \land q) \leq m \\
 \lozenge j \leq q
\end{cases}
\lor\text{residuation}
\]

\[
\begin{cases}
 \lozenge j \leq q,
 \lozenge((\lozenge j - \triangleleft q) \land q) \leq m
\end{cases}
\text{Ackermann elim. of } p
\]

\[
\begin{cases}
 \lozenge((\lozenge j - \triangleleft \lozenge j) \land \lozenge j) \leq m
\end{cases}
\text{Ackermann elim. of } q
\]
Unfinished business

Expanding the signature \([CP]\).

Algorithmic proof of canonicity for linear inductive formulas \([CP]\) and for inductive inequalities \([S. van Gool]\).

Algorithmic correspondence in the non-distributive setting \([CP]\).

Syntactic characterization of ALBA inequalities \([CP]\).
Expanding the signature [CP].
Unfinished business

- Expanding the signature [CP].
- Algebraic proof of canonicity for linear inductive formulas [CP S. Sourab]
Expanding the signature [CP].

Algebraic proof of canonicity for linear inductive formulas [CP S. Sourab] and for inductive inequalities [S. van Gool].
Unfinished business

- Expanding the signature [CP].
- Algebraic proof of canonicity for linear inductive formulas [CP S. Sourab] and for inductive inequalities [S. van Gool].
- Algorithmic correspondence in the non-distributive setting [CP].
Unfinished business

- Expanding the signature [CP].
- Algebraic proof of canonicity for linear inductive formulas [CP S. Sourab] and for inductive inequalities [S. van Gool].
- Algorithmic correspondence in the non-distributive setting [CP].
- Syntactic characterization of ALBA inequalities [CP].
Unfinished business

- Expanding the signature [CP].
- Algebraic proof of canonicity for linear inductive formulas [CP S. Sourab] and for inductive inequalities [S. van Gool].
- Algorithmic correspondence in the non-distributive setting [CP].
- Syntactic characterization of ALBA inequalities [CP].