Memory Management

juha.jarvensivu@tut.fi


mailto:juha.jarvensivu@tut.fi
mailto:juha.jarvensivu@tut.fi

Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Static allocation

« Simplest case (in practice usually allocated in heap, but without
programmer interventions)
« Variable is statically allocated to a certain location in the memory

Int X;

int * pointer _to_static()
{

static int y;

return & y;

}

« Restrictions regarding e.g. information hiding, etc.
e String literals



Stack

« Home for transient objects
— Allocation and deallocation is automatic

— No need to make an explicit operating system call for
memory

 References and sharing of data problematic

[l THIS IS NEGATIVE EXAMPLE
Int * pointer_to_int()
{ .

Inty;

return & vy;

}



Example

Running  © Afterexecuting Running other
pointer_to_int | pointer to int | procedure
. stack
e pointer
pointer , e
pointer_to_int X X < other f
activation - stack . activation
pointer -
Calling - Caliing -  Calling -
activation . activation Reffrence - activation
: 0X '




Heap

Home for long-living objects

— Sharing is less problematic than with stack-based variables,
but errors can still occur

— Large or global objects/data/variables that are needed in all
phases of the program

Reference passing commonly advocated in mobile
setting

Management of creation and deletion required

Int * pointer_to_int()

{

return new int(0);

}



Copy
of

Full object
In stack

Example

Activation 1

Activation 2

&X

&X

8X

Reference
In stack




Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Managing memory organization

* Principle: Use the simplest data
structure that offers the necessary
operations

— Consider linear data structures

e Consider other means of benefitting
from memory layout (some basic
principles to follow)

e Consider packing



Non-linear and linear data
structure

Program’s address space| |

Cache window

-':5”-"P_rogram’s address space

_Cache window

List-based data structure

Linear data structure




Benefits of linear data structures

Less fragmentation

Less searching overhead

Design-time management

Cache improvement

Monitoring

Index use less memory than reference



Basic Principles

Allocate all memory at the beginning of a
program

Allocate memory for several items even if you
only need one

Use standard allocation sizes
Reuse objects (pool of free objects)
Release early, allocate late

Use permanent storage or ROM when
applicable

Avoid recursion



Consider packing

e Use compression with care
« Use efficient resource storage format
e Consider word alignment

struct S { struct S {
char b; // boolean char b; // boolean
INt I; char c;
char c; INt I;

} }



Word alignment

S
=




: gt =Y 2
£ T A Pt o o

I=)
o
o

in

char

bool
char
Int

5 i Myl of T
3 T

4

char
bool




Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Motivation

public void push(Object e) {
ensureCapasity(); // Check slots count
elements|size++] = e;

}

public Object pop() {
If (size == 0) throw new EmptyStackException();
return elementsl--sizej;

}

e Ok?



Object stack

size

Stack Objects stored in Stack



Leaking Abstraction

Objects stored in Vector
but not in Stack

size

Stack/Vector Objects stored in Stack



Upgrade

public Object pop() {
If (size == 0)
throw new EmptyStackException();
Object result = elements|--size];
elements|[size] = null;
return result;



Rules of Thumb

Avoid small classes
Avoid dependencies

Select size when relevant and manage
vector/string usage

Consider using array vs. using vector
Use stringBuffer when possible
Manage class and object structure
Generate less garbage

Consider obfuscation

Handle array initialization




Example 1

static final int SIZE = 2000;

private void arraylmp() {

numbers = new Int[SIZE];

for (inti =0; i < SIZE; i++) { numbers]i] = i; }
}

private void vectorimp() {
numberV = new Vector(SIZE);
for (inti = 0; i < SIZE; i++) { numberV.addElement(new Integer(i)); }

}

private void vectorimpSimple() {
numberV2 = new Vector(); // Default size
for (inti=0;i < SIZE; i++) { numberV2.addElement(new Integer(i)); }

}



Results

e Arraylmp (minimal overhead)
— Bytes: 8016
— Objects: 1
e Vectorimp (integers wrapped to objects)

— Bytes: 40000
— Objects: 2002

e VectorlmpSimple (failures in guessing the size)
— Bytes: 52000
— Objects: 2010

[Hartikainen: Java application and library memory consumption, TUT,
2005]



Example 2

static final int AMOUNT = 100;

public void useString() {
String s = ",
for(inti = 0; i < AMOUNT; i++) {
S — S + “a”;
}
}

public void useStringBuffer() {
String s =",
StringBuffer sb = new StringBuffer(AMOUNT);
for(inti = 0; i < AMOUNT; i++) {
sb = sh.append(“‘a™;
}
s = sb.toString();



Results

o UseString (simplest)
— Bytes: 39000
— ODbjects: 450

e UseStringBuffer (optimized)
— Bytes: 304
— Objects: 5

[Hartikainen: Java application and library memory
consumption, TUT, 2005]



Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Naming Conventions

Class names start with C

Kernel class names start with D

Type names start with T

Mixin class names start with M
Enumerated class names start with E
Resource names start with R

Method names start with a capital letter

Names of methods that can throw an exception end with L (or
LC)

Simple getters and setters reflect the name of the variable
Instance variable names begin with i

Argument names begin with a

Constant names begin with K

Automatic variable names begin with lower-case letters



Descriptors

 Symbian way of using strings

_L("Hello"); (depreciated except in demos and debugging)
_LIT(KHelloRom, "Hello");
/[ String In program binary.
TBufC<5> HelloStack(KHelloRom); // Data in thread stack.
HBuUfC* helloHeap = KHelloRom.AllocLC(); // Data in heap.

 Guards against overflows

char userid[8]; // Vanilla C++
strcpy(userid, "santa.claus@northpole.org");

TBuf<8> userid; // Symbian
userid = _L("santa.claus@northpole.org");


mailto:santa.claus@northpole.org")
mailto:santa.claus@northpole.org")
mailto:_L("santa.claus@northpole.org")
mailto:_L("santa.claus@northpole.org")

Some memory layouts

(unmodifiable)
TPtrC

(modifiable)
TPtr

(unmodifiable)
TBufC<12>

(Modifiable)
TBuf<15>

Hello, World!

ROM, heap or stack

iLength iPtr .
12
TDesC TPtrC
iLength iMaxLength| iptr
12 12
TDesC TDes TPtr
iLength iBuf
12 Hello, world!
TDesC TBuUfC
iLength iMaxLength iBuf
12 15 Hello, world
TDesC TDes TBuf



Using Descriptors

Use descriptors rather than degenerate to Ttext*
format

Use TDesC& for arguments
— Light-weight

— Safe (no accidential modifiction)
— Any descriptor can be passed

Use new only with HBufC
— Reserve others from stack
Type casting Is possible
— HBuUfC::Des

— TPtr, TDesC::Alloc
— HBUfC *



Exceptions

TRAPD(error, Behavel()); // try

/[ Exception handler

If (error '= KErrNone)
{ /] catch
If (error == KErrNotSupported) {...}
If (error == KErrUnknown) {...}

}

User::Leave(KOutOfMemory); // throw



Exceptions and Allocation

 All memory allocations use an overridden
version of new operator

c = new (ELeave) CMyClass();
» Corresponding method
¢ = new CMyClass();

If (Ic) User::Leave(KOutOfMemory);
return c;



Problem: What happens to automatic
heap-based variables in an exception?

Before an exception Memory garbaging
= after an exception

B
.

Stack Heap | Stack Heap



Cleanup Stack — An Auxiliary
Data Structure

Cleanup stack enables deallocation during an exception

L/

Stack Heap Cleanup Stack



Using Cleanup Stack

e A programmer responsiblity
« Only for automatic variables, never for others

CMyClass * ¢ = new CMyClass();
CleanupStack::PushL(c)
c->DoSomethingL(); /... c is used
CleanupStack::Pop(); // c

delete c;

c=0;

* Classes derived from CBase get their destructor called, for
others only memory is deallocated

» Also other actions (e.g. CleanupStack::ClosePushL(file);)



Two-Phase Construction

» Cleanup stack cannot help in the creation of
objects

 Therefore, actual constructor should never
fail, and problematic aspects should be
executed only after a reference to the object
has been pushed to the cleanup stack

CData * id = new (ELeave) CData(256),
CleanupStack::PushL(id);
id->ConstructL();



Shorthands

Cltem::NewL() {
Cltem * self = new (ELeave) Cltem;
CleanupStack::PushL (self);
self->ConstructL();
CleanupStack::Pop(); // self
return self;

}

Cltem::NewLC() {
Cltem * self = new (ELeave) Cltem;
CleanupStack::PushL(self);
self->ConstructL();

return self;

}



Content and goals

Basics of memory usage in mobile
devices

— Static and dynamic allocation

— Managing memory organization
Memory management in Mobile Java
Memory management in Symbian OS

Summary



Summary

« Memory related considerations are a practical
necessity

— Even virtual machines require programmer to
consider allocation of variables and the use of
data structures

« Design idioms and patterns have been

Introduced that give general guidelines

— Preallocation and static allocation simplify memory
management

— Linear data structures offer several benefits
— Data packing as the last resort

 Mobile development platforms assume that
the developers are aware of the most
common pitfalls



