Supplemental Information for:

SPRINT: A Cas13a-based platform detection of small molecules

Roman S. Iwasaki and Robert T. Batey

Contents

Figure S1: Optimization of buffer conditions for SPRINT reactions.

Figure S2: Effect of MgCl₂ on riboswitch activation.

Figure S3: Effect of fluoride and serotonin on E. coli RNA polymerase and LwaCas13a

Figure S4: SPRINT assays with the *metE* riboswitch.

Figure S5: Screen of 30 compounds for their effect on the guanine riboswitch *xpt/pbuE**6U.

Figure S6: Effect of phosphate salts on the SPRINT reaction.

Figure S7: Fluorescently labeled RNA oligonucleotides in the portable illuminator device.

Table S1: DNA sequences used in this study.

Table S2: Oligonucleotides used in this study.

Table S3 Chemical compounds screened against *xpt/pbuE**6U.

Supplementary References

Figure S1: Optimization of buffer conditions for SPRINT reactions. All fluorescence measurements were background corrected, bars indicate mean value and error bars indicate s.d. from the mean. (A) SHERLOCK reactions were carried out in SPRINT buffer at varying concentrations of added target RNA. The measurements displayed were taken at 20 minutes reaction time. EC₅₀ values were calculated from a biexponential model that was fit to the data; n = 3 (B) SPRINT reactions were carried out with the guanine riboswitch xpt/pbuE*6U in unmodified SPRINT buffer. The riboswitch was induced with +/- 100 µM hypoxanthine. The other reactions were carried out in a SPRINT buffer with the indicated variation. In the "20 mM HEPES" condition, the Tris buffer was replaced by 20 mM HEPES, pH 8.0; n = 1, (C) SPRINT reactions were carried out with the quanine riboswitch xpt/pbuE*6U in modified SPRINT buffer with or without BSA. The riboswitch was induced with +/- 100 µM hypoxanthine. Bars indicate mean value and error bars indicate s.d. from the mean. All fluorescence measurements are background subtracted; n = 3. (**D**) SPRINT reactions were carried out with the guanine riboswitch $xpt/pbuE^*6U$ in modified SPRINT buffer at varying concentrations of dimethyl sulfoxide (DMSO). The riboswitch was induced with $+/-10 \mu M$ guanine; n = 3.

Figure S2: **Effect of MgCl₂ on riboswitch activation**. The FMN riboswitch was induced with +/- 100 μ M FMN, the SAM riboswitch was induced with +/- 100 μ M SAM, the adenine riboswitch was induced with 1 mM adenine, the guanine riboswitch was induced with +/- 100 μ M guanine. Left panel shows the fluorescent signal after 30 minutes reaction time with ligand. Right panel shows the fold induction at 30 minutes reaction time. All fluorescence measurements are background subtracted and normalized to 125 nM fluorescein. Values indicate the mean; n = 3.

Figure S3: Effect of fluoride and serotonin on *E. coli* RNA polymerase and LwaCas13a. (A) Cas13a in SHERLOCK reactions was activated with 10 nM of purified target RNA. All fluorescence measurements are background subtracted and normalized to 125 nM fluorescein; n = 1. (B) Workflow for two-batch SPRINT reactions. First, *in vitro* transcriptions are carried out. Then transcripts are washed three times with water. Next, washed transcription product is added to SHERLOCK reactions to quantify RNA. (C) SPRINT reactions with the fluoride riboswitch *crcB*; n = 1. (D) SHERLOCK reactions with addition of various small molecules; n = 1. (E) Ligands were added to the transcription step, washed out and the transcription product was added to a SHERLOCK reaction. Bars indicate mean value and error bars indicate s.d. from the mean; n = 1-2. (F) Molecular structures of tested ligands, drawn with ChemDraw 19.0. All fluorescence measurements were background subtracted and all except (E) were normalized to 125 nM fluorescein.

Figure S4: **SPRINT assays with the** *metE* **riboswitch**. (**A**) Workflow for preparing SPRINT template with a genomic riboswitch. First, the riboswitch is amplified by PCR from genome and overhangs are created. In a second PCR, the overhangs are used to attach a *tac* promoter at the 5'-end and the Cas13a target transcript at the 3'-end. After column purification of the PCR product, the DNA can be used for SPRINT assays. (B) Repression of the riboswitch was measured without heparin at different SAM concentrations and varied NTP concentrations; n = 1.

Figure S5: Screen of 30 compounds for their effect on the guanine riboswitch *xpt/pbuE**6U. Fluorescent signal of the SPRINT reactions was measured at 20 minutes reaction time, background was subtracted, and signal normalized to 125 nM fluorescein. Dashed lines indicate value of signal that was measured with just solvent. Full names of the abbreviated compounds and exact concentrations can be found in Table S3. (A) The guanine riboswitch *xpt/pbuE**6U regulated transcription in response to 30 different compounds. Bars indicate mean value and error bars indicate s.d. from the mean; n = 3. (B) The effect of the compounds on transcription from a constitutive promoter was measured. n = 1.

Figure S6: **Effect of phosphate salts on SPRINT reaction.** Addition of MgHPO₄ did not affect response of guanine riboswitch but NaHPO₄ inhibited the reaction entirely. Ligand was 100 μ M guanine; n = 1.

Figure S7: Fluorescently labeled RNA oligonucleotides in the portable illuminator device. Concentrations of fully cleaved RNA oligos were varied. All reactions were carried out in SPRINT buffer.

Tables

Table S1: DNA sequences used in this study. Sequences for promoters are marked yellow, riboswitches green, crRNA cyan, Cas13a target site in magenta, aTF operator sequences red. Aptamer sequences were highlighted in **bold**.

Description	Sequence (5' to 3')					
pUC plasmid	Sequence can be accessed under https://benchling.com/s/seq-					
containing the	UVhTBzr2J14rEuLO8FPc					
sequence for a						
SPRINT template						
with the						
<i>xpt/pbuE</i> *6U						
riboswitch						
pUC plasmid	Sequence can be accessed under					
containing the	https://benchling.com/s/seq-F2XaV8atiR8Jqz1PhtWq					
sequence for a						
SPRINT template						
with the operator						
sequence for smtB						
(zinc aTF)						
SPRINT template	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC					
constant 5' region	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG					
with tac promoter for	CATAAGGCTCGTATAATATATTCa					
<i>E. coli</i> RNAP						
SPRINT template	CTAAGGATGATTTCTGGAATTCTAAAGATCTTAATACGACT					
constant 5' region	CACTATAGGGA					
with T7 promoter						
SPRINT template	GGCCAGTGAATTCGAGCTCGGTACCCGGGGGATCCTCTAG					
constant 3' region	AAATATGGATTACTTGGTAGAACAGCAATCTACTCGACCT					
with sequence for	GCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTT					
Target RNA	TCCTGTGTTTATCCGCTCACAATTCCACACAACATACGAG					
(ssRNA1)	CCGGAAGCATAAAG					
DNA template for	GGCGGCGAATTCTAATACGACTCACTATAGGGGAAGATTT					
transcription of	AGACTACCCCAAAAACGAAGGGGACTAAAACCTACCAAGT					
crRNA against	AATCCATATTTCTAGAGGATC					
ssRNA1						
Full length SPRINT						
template						
none (constitutive	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC					
tac promoter)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG					
	CATAAGGCTCGTATAATATATTCGGGCCAGTGAATTCGAGC					
	TCGGTACCCGGGGGATCCTCTAGAAATATGGATTACTTGgtA					
	GAACAGCAATCTACTCGACCTGCAGGCATGCAAGCTTGG					
	CGTAATCATGGTCATAGCTGTTTCCTGTGTTTATCCGCTCA					
	CAATTCCACACAACATACGAGCCGGAAGCATAAAG					

xpt/pbuE* 6U	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC
(quanine riboswitch)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG
(guainino hisoowitori)	
	ACGATTTTTATAATCGCGTGGATATGGCACGCAAGTTTCT
	TATCAAAACATTTAAGTAAAGGAGTTTGTTATGTTTTTTTG
rihD/nhuE* 711	
(EMN ribeowitch)	
(FIVIN REDOSWIICH)	
	AGIGAAAGICIGGAIGGGAGAAAAAICCIGAIIACAAAAI
	I I G I I A I GACATI I I I I G I AA I CAGGA I I I I I I I A I I A I C
	AAAACATTTAAGTAAAGGAGTTTGTTATGTTTTTTTGGCC
	AGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAAATA
	TGGATTACTTGgtAGAACAGCAATCTACTCGACCTGCAGGC
	ATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGT
	GTTTATCCGCTCACAATTCCACACAACATACGAGCCGGAA
	GCATAAAG
<i>yitJ/pbuE</i> * 6U	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC
(SAM riboswitch)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG
	CATAAGGCTCGTATAATATATTCaAATAAATAGCTATTATC
	ACGATTTT ATCAAGAGAAGCAGAGGGACTGGCCCGACG
	AAGCTTCAGCAACCGGTGTAATGGCGATCAGCCATGACC
	AAGGTGCTAAATCCAGCAAGCTCGAACAGCTTGGAAGAT
	AAAATCCTGATTACAAAATTTGTTTATGACATTTTTTGTAAT
	CAGGATTTTTTATTTATCAAAACATTTAAGTAAAGGAGTTT
	GTTATGTTTTTTTTGGCCAGTGAATTCGAGCTCGGTACCC
	GGGGGATCCTCTAGAAATATGGATTACTTGgtAGAACAGCAA
	TCTACTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATG
	GTCATAGCTGTTTCCTGTGTTTATCCGCTCACAATTCCACA
	CAACATACGAGCCGGAAGCATAAAG
pbuE/pbuE [‡]	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC
(adenine riboswitch)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG
(,	CATAAGGCTCGTATAATATATTCaCACTTGTATAACCTCAA
	TAATATGGTTTGAGGGTGTCTACCAGGAACCGTAAAATC
	CTGATTACAAGCCGTTTTTTCGGCTTGTAATCAGGATTTTT
	TTTGGCCAGTGAATTCGAGCTCGGTACCCGGGGGATCCTC
1	

CTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTC							
	TTTCCTGTGTTTATCCGCTCACAATTCCACACAACATACGA						
	GCCGGAAGCATAAAG						
crcB (fluoride	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC						
riboswitch)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG						
1	CATAAGGCTCGTATAATATATTCTAGGCGATGGAGTTCGC						
	CATAAACGCTGCTTAGCTAATGACTCCTACCAGTATCACTA						
	CTGGTAGGAGTCTATTTTTTT GGCCAGTGAATTCGAGCTC						
	GGTACCCGGGGGATCCTCTAGAAATATGGATTACTTGGTAG						
	AACAGCAATCTACTCGACCTGCAGGCATGCAAGCTTGGC						
	GTAATCATGGTCATAGCTGTTTCCTGTGTTTATCCGCTCAC						
	AATTCCACACAACATACGAGCCGGAAGCATAAAG						
metE (SAM	GCTAGCCACAGCTAACACCACGTCGTCCCTATCTGCTGCC						
riboswitch)	CTAGGTCTATGAGTGGTTGCTGGATAACTTGACAGGCATG						
,	CATAAGGCTCGTATAATATATTCCCAAAAAAATTAATAACATTT						
	TCTCTTATCGAGAGTTGGGCGAGGGATTGGCCTTTTGACC						
	CCAACAGCAACCGACCGTAATACCATTGTGAAATGGGGC						
	GCACTGCTTTTCGCGCCGAGACTGATGTCTCATAAGGCAC						
	GGTGCTAATTCCATCAGATTGTGTCTGAGAGATGAGAGAG						
	GCAGTGTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAA						
	AGAGGCTTTTTGGCCAGTGAATTCGAGCTCGGTACCCGG						
	G <mark>GATCCTCTAGAAATATGGATTACTTGGTAG</mark> AACAGCAAT						
	CTACTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATG						
	GTCATAGCTGTTTCCTGTGTTTATCCGCTCACAATTCCACA						
	CAACATACGAGCCGGAAGCATAAAG						
none (constitutive	CTAAGGATGATTTCTGGAATTCTAAAGATCT <mark>TAATACGACT</mark>						
T7 promoter)	CACTATAGGGGCCAGTGAATTCGAGCTCGGTACCCGGG						
	ATCCTCTAGAAATATGGATTACTTGGTAGAACAGCAATCTA						
	CTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATGGTC						
	ATAGCTGTTTCCTGTGTTTATCCGCTCACAATTCCACACAA						
	CATACGAGCCGGAAGCATAAAG						
Zinc aTF smtB	CTAAGGATGATTTCTGGAATTCTAAAGATCT <mark>TAATACGACT</mark>						
	CACTATAGGGACACATGAACAGTTATTCAGATAGGCCAGT						
	GAATTCGAGCTCGGTACCCGGGGGATCCTCTAGAAATATG						
	GATTACTTGGTAGAACAGCAATCTACTCGACCTGCAGGCA						
	TGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTG						
	TTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAG						
	CATAAAG						
tetracycline aTF	CTAAGGATGATTTCTGGAATTCTAAAGATCTTAATACGACT						
tetR	CACTATAGGGATCCCTATCAGTGATAGAGAGGGCCAGTGAA						
	TTCGAGCTCGGTACCCGGGGGATCCTCTAGAAATATGGATT						
	ACTTGGTAGAACAGCAATCTACTCGACCTGCAGGCATGCA						
	AGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTTTAT						
	CCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAA						
	AG						

Name of	Sequence (5' to 3')
	Sequence (5 to 5)
oligonucleotide	
InsulatorOligo_fwd	GCTAGCCACAGCTAACACCACGTC
ssDNA1_rev	CTTTATGCTTCCGGCTCGTATGTTGTG
CreateSeq_fwd	CTAAGGATGATTTCTGGAATTC
pbuEBB_fwd	ATTTATCAAAACATTTAAGTAAAGGAGTTTG
pbuEBB_rev	AATAGCTATTTAATTTGAATATATTATACGAGCC
CreateSeq_rev	CGCTTCTGCGTTCTG
RiboswitchBB_fwd	GGCCAGTGAATTCGAGCTCG
e.coliProm_rev	GAATATATTATACGAGCCTTATGCATG
CreateBBnogRNA2	GAAGCTTGGGCCCGAACAAAAAC
HA_rev	AGATCTTTAGAATTCCAGAAATCATC
crRNA1_rev	GATCCTCTAGAAATATGGATTACTTGGTAGG
5' gen	GGCGGCGAATTCTAATACGACTCACTATAG
metE_fwd	GCATAAGGCTCGTATAATATATTCCAAAAAATTAATAACATT
	TTCTCTTATCGAGAGTTG
metE rev	CTCATGGGAAAGAGGCTTTTTGGCCAGTGAATTCGAG

Table S2: Oligonucleotides used in this study

					Published K _D
Full Name	Abbreviation	Solvent	LOW	Hign concentration	(Refs.)
6-Thioguanine (2-amino-		140 mM	10 µM	1 mM	1 (1)
6-thiopurine)	6-IG	NaOH	10 uM	1 mM	$0.004 \pm 0.003(1)$
Guanine	G	DMSO		1 11111	2)
7 de este guerino	7 440	DMCO	10 µM	1 mM	0.0495 ± 0.013
7-deazaguanine	7-dAG	DNSO	10 µM	1 mM	(2)
6-bromoguanine (2-	IG	DIVISO	10 µM	1 mM	2.1 ± 0.6 (3)
amino-6-bromopurine)	6-BG	DMSO			(-)
6 chloroguanine	6.00	140 mM	10 µM	1 mM	0.89 ± 0.06 (3)
	8 4 6	Water	10 µM	1 mM	
bypayanthing	0-AG		10 µM	1 mM	0.759 ± 0.066 (2)
		DIVISO	1 µM	100 µM	
	NZ-AG	DIVISO	10 µM	1 mM	4.4 ± 1.2 (3)
2-aminopurine 2.5.6-Triaminopyrimidin-	2-AP	water	1 uM	100 uM	(-)
4(3H)-one	2,5,6-TAP	DMSO		100 μπ	
N2-	PC	DMSO	1 µM	100 µM	
phenoxyacetyiguanine	10	280 mM	10 µM	1 mM	0.1 (1)
N2-methylguanine	N2-MG	NaOH			
2,6-diaminopurine	2,6-DAP	water	10 µM	1 mM	4.1 ± 0.6 (3)
6-mercaptopurine	6-MP	DMSO	10 µM	1 mM	
N2-pivaloylguanine	N2-PG	DMSO	10 µM	1 mM	
Melamine	М	Water	10 µM	1 mM	
N6-methyladenine	N6-MA	DMSO	10 µM	1 mM	
2,4,6-triaminopyrimidine	2,4,6-TAP	Water	10 µM	1 mM	
2,4-diaminopyrimidine	2,4-DAP	Water	10 µM	1 mM	
Cytosine	С	Water	10 µM	1 mM	
Orotate	0	DMSO	10 µM	1 mM	
2,4,5,6-			10 µM	1 mM	
tetraaminopyrimidine	2,4,5,6-TAP	Water	10 µM	1 mM	
Uracil	U	Water		1 mM	>200 (1.2)
Adenine	A	water	10 µM	1 111111	>300 (1, 3)
Xanthine	Х	water	10 µM		39 ± 4.2 (3)
2-fluoroadenine	2-FA	DMSO	10 µM		
Purine	Р	Water	10 µM	1 mM	
Theophylline	Т	Water	10 µM	1 mM	
Adenosine	AR	Water	10 µM	1 mM	

Table S3: Chemical compounds screened against *xpt/pbuE**6U. Limited solubility of some compounds required the use of lower concentrations.

Supplementary References

- 1. Mandal,M., Boese,B., Barrick,J.E., Winkler,W.C. and Breaker,R.R. (2003) Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria. *Cell*, **113**, 577–586.
- 2. Gilbert,S.D., Stoddard,C.D., Wise,S.J. and Batey,R.T. (2006) Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain. *Journal of Molecular Biology*, **359**, 754–768.
- 3. Gilbert,S.D., Reyes,F.E., Edwards,A.L. and Batey,R.T. (2009) Adaptive Ligand Binding by the Purine Riboswitch in the Recognition of Guanine and Adenine Analogs. *Structure*, **17**, 857–868.