Proving what programs do not

Bertrand Meyer

Saint Petersburg Software Engineering Seminar
ITMO, 6 April 2012

Plan

1. Previous language approaches
2. New language approach: the Frame Consistency Principle
3. Verifying the frame condition
4. Assessment and open problems
The frame problem

McCarthy & Hayes (1969):

In proving that one person could get into conversation with another, we were obliged to add the hypothesis that if a person has a telephone he still has it after looking up a number in the telephone book. If we had a number of actions to be performed in sequence we would have quite a number of conditions to write down that certain actions do not change the values of certain fluents. In fact with \(n \) actions and \(m \) fluents we might have to write down \(m \cdot n \) such conditions.
Implementation, specification, client

```
a: ACCOUNT
h: PERSON
b: INTEGER
...
h := a.holder
b := a.balance
a.deposit(100)
check
  a.balance = b + 100
  a.holder = h
end
```

```
class ACCOUNT feature
  holder: PERSON
  balance: INTEGER
  deposit (v: INTEGER)
    do
      balance := balance + v
    ensure
      balance = old balance + v
    end
end
```

Client

```
a.holder = h--?
```

Client

```
a.balance = b + 100-1
```

- 2 -

Previous language approaches
Approach 1: make it explicit

```
class ACCOUNT feature
    holder: PERSON
    balance: INTEGER
    ...
    h := a.holder
    b := a.balance
    a.deposit(100)
end
```

```
check
    a.balance = b + 100
    a.holder = h
end
```

```
Client
    
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Note, however...

The explicit approach works well with inheritance, polymorphism & dynamic binding:

Postconditions and-cumulate

Approach 2: “modifies” clause

"The presence of a modifies-clause asserts that only the set of objects described may have their abstract values newly-defined or changed by the function"

Larch C++ manual

http://www.cs.iastate.edu/~leavens/larchc++manual/lcpp_96.html
Eiffel’s **only** (no longer in language)

```eiffel
class ACCOUNT feature
    holder: PERSON
    balance: INTEGER
    branch: BANK_BRANCH

    deposit (v: INTEGER)
        do
            balance := balance + v
            branch.manager.deposit(1)
        ensure
            balance = old balance + v
            only balance
        end
    end
end
```

Difficulties with **modifies** clauses in O-O programs

Aliasing and remote calls make it difficult to verify the properties

```eiffel
class ACCOUNT feature
    holder: PERSON
    balance: INTEGER
    branch: BANK_BRANCH

    deposit (v: INTEGER)
        do
            balance := balance + v
            branch.manager.deposit(1)
        ensure
            balance = old balance + v
            only balance
        end
    end
end
```
Another problem with **modifies** clauses

```plaintext
class LINKED_LIST[G] feature
  first: LINKABLE[G]
  count: INTEGER
  ...
  set_at(x: G; n: INTEGER)
    -- Set content of n-th item to x.
    require
      positive: n > 0
      possible: n <= count
    local
      a: LINKABLE[G]
    do
      from a := first until i := n loop
        a := a.right; i := i + 1
      end
    end
  end
end

... you can't write them!

![Diagram of a linked list]

May modify: first.item, first.right.item, first.right.right.item, ...
```

Approach 3: dynamic frames (Kassios)

A frame variable denotes a subset of a program's locations

Framing a set of expressions:

\(f \) **frames** \(x, y, z \)

Modification of a frame:

\(\Delta f \)

Theorem:

\(\Delta f \land g \) **frames** \(D \land \text{disjoint}(f, g) \) \(\Rightarrow D' = D \)

Disadvantage of this notion: need to include frames explicitly
- 3 -

A new language approach: the Frame Consistency Principle

Open vs closed world

The previous techniques are “open-world”: anything that is not explicitly specified as unchanged could change.

Reverse convention, “closed world”: anything that is not explicitly specified as changing is implicitly specified as not changing.

("M" specification language, 1985)
Approach 2: “modifies” clause

“The presence of a modifies-clause asserts that only the set of objects described may have their abstract values newly-defined or changed by the function”

Larch C++ manual
http://www.cs.iastate.edu/~leavens/larchc++manual/lcpp_96.html

More about modifies clauses

Note from an informal survey of some JML code: everything that is mentioned in an “assignable” code appears in the postcondition anyway!
A language convention (informal)

Assume a language with contracts (preconditions, postconditions, invariants) such as Eiffel but also JML, Spec# etc.

Further assume a clear distinction between commands and queries

Contract-based frame convention

A routine may only change the value of queries mentioned in the contract

More precise version

The Frame Consistency Principle

No routine may affect a system property unless its postcondition or invariant mentions the property or some part of it

The "parts" of a property are its subexpressions and (recursively) the parts of their prefixes

Example: the parts of

\[f(b).x = c \]

are: \[f(b), x, c, f(b) \]
Notations

For any program element p, we define:

- p^+ --- The set of "variables" that p may modify
- $\succ p$ --- The parts of p

Example: with the instruction

\[
e := a \ast d
\]

--- Instruction i

we have

\[
i^+ = \{e\}
\]

\[
\succ i = \{e, a, d, a \ast d\}
\]

The frame condition

Implementing the Frame Condition principle means verifying, for any routine r, the property

\[
\text{body}_r \subseteq \succ \text{contract}_r
\]

or **frame condition**
Applying the frame condition in practice

\[
\text{body}_r \subseteq \rightarrow \text{contract}_r
\]

\[
\begin{align*}
\text{set}_a & \quad \text{do} & \quad b := b + 1 & & \text{a} := b & & \text{end} \\
\text{set}_c & \quad \text{do} & \quad \text{set}_a & & \text{c} := a & & \text{end} & & \text{ensure} & & c = a
\end{align*}
\]

\[
\begin{align*}
\text{body}_{\text{set}_c} & = \{a, b, c\} & & \subseteq & & \rightarrow & & \text{contract}_{\text{set}_c} = \{a, b, c\} \\
\text{contract}_{\text{set}_c} & = \{a, b\} & & \varphi & & \text{Not OK!} & & \text{OK!} \\
\text{>contract}_{\text{set}_c} & = \{a, c\} & & \text{May add} & & b = \text{old} b + 1 & & \text{Or anything citing } b
\end{align*}
\]

New function in \textbf{ANY}

\[
\text{relevant}(x: \text{ANY}): \text{BOOLEAN} \\
\quad -- \text{Is } x \text{ of interest?} \\
\quad \text{do} \\
\quad \quad \text{Result} := \text{True} \\
\quad \text{end}
\]
Citing a variable

set_a
do
 b := b + 1
 a := b
end

set_c
do
 set_a
 c := a
 ensure
 c = a
end

body_{set_c} = \{a, b, c\}

contract_{set_c} = \{a, b, c\}

\subseteq \text{OK!}
\not\subseteq \text{Not OK!}

May add
b = old b + 1

Example: relevant (b)

body_{r} \subseteq >contract_{r}

Example: relevant (b)
Citing a variable

```plaintext
set_a
  do
    b := b + 1
    a := b
  end

set_c
  do
    set_a
    c := a
    ensure
    c = a
  end

body_{set_e} = \{a, b, c\}

contract_{set_e} = \{a, c\}
```

Not OK!

May add

\[b = \text{old} \ b + 1 \]

Example: `relevant(b)`

Citing several expressions

Because `relevant` takes an argument of type `ANY` we may cite several expressions as a single tuple:

`relevant([b, c, x, f])`
The process for the programmer

1. Write your contracts as you always did.

2. Run the Frame Condition Checker
 (theory for FCC appears next)
 Frame Condition: \(\text{body}_r \subseteq \triangleright \text{contract}_r \)

3. Fix any violations, i.e. element \(x \) of \(\text{body}_r \) not in \(\triangleright \text{contract}_r \), by either:
 - Fixing \(\text{body}_r \) so that it does not change \(x \)
 - Citing \(x \) in postcondition, e.g. by adding \(\text{relevant}(x) \)

You don’t have to be complete!

Example: \(\text{relevant}(b) \)
Can we prove this?

```
class A feature
  a1: B ; a2: A
  a3
  require
    a1.b1 = Current
    a2 = Current
  do
    a1.b3
  ensure
    a1.b1 = Current
    a2 = Current
end
end

class B feature
  b1: A
  b2, whatever: T
  b3
  do
    b2 := whatever
  end
end
```

Change set includes `a1.b2`
Need to add: `relevant(a1.b2)`

What about information hiding?

It just works. Ignore secret features; they can't hurt you.
(Selective exports are a bit more tricky.)

```
class A feature
  a1: B ; a2: A
  a3
  require
    a1.b1 = Current
    a2 = Current
  do
    a1.b3
  ensure
    a1.b1 = Current
    a2 = Current
end
end

class B feature
  b1: A
  b2, whatever: T
  b3
  do
    b2 := whatever
  end
end
```

Need to prove its own frame conditions!

Now OK as it is
Some invariant properties are listed

```java
class A feature
    a1: B; a2: A
    a3
        require
            a1, b1 = Current
        do
            a2 = Current
            a1, b3
        ensure
            a1, b1 = Current
            a2 = Current
end end
```

```java
class B feature
    b1: A
    b2, whatever: T
    b3
        do
            b2 := whatever
        end
end
```

We would have to prove this, as part of the Frame Condition, if `a1, b1` and `a2` were not listed in the postcondition.

Can also be written

```
a1, b1 = old a1, b1
a2 = old a2
```

So let's do it!

Adjustment to frame condition: `old`

The appearance of an expression

`old e`

must not cause the inclusion of `e` in `contract_r`

We simply consider that `e` is not a subexpression of `old e`

Examples:

- `f = old e`
- `f = old e + 1`
- `e = old e`
- `e = old e + 1`
Overview of the requirements task

Verifying the frame condition

Where we are

We have the language design (or non-design) and the rule for the programmers: the frame condition.

We now need to devise the theory that will enable the construction of a Frame Condition Checker.

In the frame condition

\[\text{body}_r \subseteq \text{>contract}_r \]

>contract$_r$ is easy to determine

What remains is to compute

\[\text{body}_r \]

for any routine r

Minor detail: in O-O, body_r is often infinite. But wait...
Ensuring the Frame Condition

The practical task is to compute

\[p^\rightarrow \]

for any construct \(p \)

(including \(\text{body}_r \) for a routine \(r \))

Universe of discourse

What are the elements of the sets of interest

\[p^\rightarrow \]

\[\triangleright p \]

\(?\)

Pointer Path Expression: finite sequence of attribute names, written with dots:

\[x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_n \]

Denotes a path starting from current object
Pointer Path Expressions: semantics

- \(x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n \)

- Path starting from current object
- All the corresponding functions are partial, but we rely on type checking to assume that any expression we use is meaningful
- References can be void, but we don’t mind

The change set can be infinite

Change set: \(\{ \text{first.right, first.right.right, first.right.right.right,...} \} \)

```
class LINKED_LIST[G] feature
    first: LINKABLE[G]
    count: INTEGER
    ...
    set_at(\( x: \text{LINKABLE}[G]; n: \text{INTEGER} \))
    -- Set content of \( n \)-th item to \( x \).
    require
        positive: \( n > 0 \)
        possible: \( n \leq \text{count} \)
    local
        a: \text{LINKABLE}[G]
    do
        from a := first until i = n loop
            a := a.right; i := i + 1
        end
        a.put_right(\( x \))
    end
```
Terminology

If $e = a \cdot b \cdot c \cdot d$, its prefixes (the first three proper prefixes) are the expressions

- a
- $a.b$
- $a.b.c$
- $a.b.c.d$

Canonical forms

In the frame condition $body^\rightarrow_r \subseteq >contract^\rightarrow_r$:

- $body^\rightarrow_r$ may be infinite
- If a may change, then $a.x$ may change for any x!

Canonical form of a change set $body^\rightarrow_r$:

- remove any element e such that a proper prefix of e is also in the set

Theorem: the change set has a finite set of prefixes (i.e. the canonical form of a change set is finite)

Proof: by König’s lemma
Revised Frame Condition

\[\text{body}_p \subseteq \text{Prefixes} (\text{contract}_p) \]

Computing change sets \(p' \): easy cases

\[
\begin{align*}
[v := e] & \rightarrow = \{v\} \\
[i1; i2] & \rightarrow = i1 \cup i2 \\
[\text{if } c \text{ then } i1 \text{ else } i2 \text{ end}] & \rightarrow = i1 \cup i2 \\
[\text{from } i \text{ until } c \text{ loop } b \text{ end}] & \rightarrow = i \cup b \\
[\text{create } v] & \rightarrow = \{v\} \\
[\text{require } pre \text{ do } b \text{ ensure } post \text{ end}] & \rightarrow = b \\
\quad r & \rightarrow = \text{decl}_r \\
\end{align*}
\]
\[p \mapsto: \text{the Qualified Call case} \]

The aliased call conjecture:

\[[a.r] \mapsto = a.[r \mapsto] \]

Aliases of \(a \):

\(\text{Current} \)

- Aliases of \(a \): \(b, c, d, e \)

\(r \mapsto \): Objects modified by \(r \) when applied to this object

- 4 -

Assessment
Assessment

For programmers, simpler than all the techniques proposed so far - assuming they write contracts already

Relies on extensive static analysis; feasibility remains to be demonstrated

Closely connected to the alias calculus

Usual problem of dealing with advanced language constructs, such as agents and exceptions