

Non-targeted analysis supported by data and cheminformatics delivered via the US EPA CompTox Chemicals Dashboard

Antony Williams, Alex Chao, Tom Transue, Tommy Cathey, Elin Ulrich and Jon Sobus

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 2) Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 3) GDIT, Research Triangle Park, North Carolina, United State

4) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

August 2019 ACS Fall Meeting, San Diego

An intro to the Dashboard

- Freely available web-based database from the National Center for Computational Toxicology
- Providing data for 875,000 substances including
 - Experimental and predicted physicochemical properties
 - In vivo toxicity data harvested from dozens of public resources
 - In vitro bioactivity data for thousands of chemicals and assays
 - Exposure data including chemicals in consumer products
 - Real time predictions for >20 physchem and toxicological endpoints
- Dashboard is used by mass spectrometrists for chemical identification
- A quick view of general capabilities...

CompTox Chemicals Dashboard

https://comptox.epa.gov/dashboard

875k Chemical Substances

Sepa United States Environmental Agency	Protection Home Advanced Search Batch Search Lists 🗸 Predictions Downloads	Share 🔻				
UNITED STATES	875 Thousand Chemicals					
Envi	Chemicals Product/Use Categories Assay/Gene					
Rommer	Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey					
TAL PROTECT	Identifier substring search See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here					
	Latest News					
	Read more news					
	Journal of Cheminformatics article regarding "MS-Ready structures"					
	March 9th, 2019 at 1:09:45 PM					
	A recent article describes "MS-Ready structures", what they are, how they are generated and details regarding the benefits of these structures in navigating structure relationships across the dashboard. The article is published in the Journal of Cheminformatics here.					
	• • • •					

Detailed Chemical Pages

EPA Environmental Protection	Home Advanced Search Batch Search Lists v Predictions Down	
	Bisphenol A 80-05-7 DTXSID70201 Searched by DSSTox Substance Id.	82
DETAILS		Wikipedia 🔹
EXECUTIVE SUMMARY		Bisphenol A (BPA) is an organic synthetic compound with the chemical formula (CH ₃) ₂ C[C ₆ H ₄ OH) ₂ belonging to the group of diphenylmethane derivatives and
PROPERTIES		bisphenols, with two hydroxyphenyl groups. It is a colorless solid that is soluble in organic solvents, but poorly soluble in water (0.344 wt % at 83 °C). BPA is a starting material for the synthesis of plastics, primarily certain polycarbonates
ENV. FATE/TRANSPORT	H ₃ C CH ₃	
HAZARD		Intrinsic Properties 🔹
ADME		
EXPOSURE		Molecular Formula: C ₁₅ H ₁₆ O ₂ de Mol File Q. Find All Chemicals
BIOACTIVITY		Average Mass: 228.291 g/mol Mass Distribution
SIMILAR COMPOUNDS	НО ОН	Monoisotopic Mass: 228.11503 g/mol
GENRA (BETA)		Structural Identifiers 4
RELATED SUBSTANCES		Linked Substances
SYNONYMS		
LITERATURE		Presence in Lists 4
LINKS		Record Information 4
COMMENTS		Quality Control Notes 4

Access to Chemical Hazard Data

DETAILS							Ha	zard				
EXECUTIVE SUMMARY	DataType											
PROPERTIES	Toxic	ity Value	~									
ENV. FATE/TRANSPORT							🛉 Huma	an 💋 Eco				
HAZARD	a Dowr	nload 🔻	Columns N	·								Search query
► ADME	More	Priority	Туре♥	Subtype 🗘	Risk assessment class 🕈	Value	Units 🗘	Study type [‡]	Exposure route 🕈	Spacies \$	Subsource 🗢	Source 🗢
EXPOSURE		7	MEG	Short-term Critical Air	short-term	500	mg/m3	-	inhalation	-	TG 230 Military Exposure Guidelines Table	DOD
BIOACTIVITY		· ·			shore-term		-					
SIMILAR COMPOUNDS		7	MEG	Short-term Marginal Air	short-term	100	mg/m3		inhalation	-	TG 230 Military Exposure Guidelines Table	DOD
GENRA (BETA)		7	MEG	Short-term Negligible Air	short-term	15	mg/m3	-	inhalation	-	TG 230 Military Exposure Guidelines Table	DOD
RELATED SUBSTANCES		7	MEG	Soil Negligible Soil	chronic	106000	mg/kg	-	soil	-	TG 230 Military Exposure Guidelines Table	DOD
		7	MEG	Long-Term, 5L/d Negligible Water	chronic	7	mg/L	-	oral	-	TG 230 Military Exposure Guidelines Table	DOD
SYNONYMS		6	<u>RfD</u>		chronic	0.05	mg/kg-day	-	oral	rat	Wignall	Wignall
LITERATURE		5	<u>RfD</u>		chronic	0.05	mg/kg-day	-	-	-	MSC Table 5	Pennsylvania DEP ToxValues
LINKS		4	<u>RfD</u>	-	chronic	0.05	mg/kg-day	chronic	oral	rat	IRIS	Chiu
COMMENTS		3	<u>RfD</u>	-	chronic	0.6	mg/kg-day		oral	rat	EPA/ORNL/OLEM	HEAST
		1	<u>RfD</u>	-	chronic	0.05	mg/kg-day	-	oral	-	EPA NCEA	IRIS

Sources of Exposure to Chemicals

DETAILS	earched by DSSTox Substance Id.			
		Product and Us	se Categories (PUCs) 🚯	
EXECUTIVE SUMMARY	L Download 🔻		-	
PROPERTIES	Columns V 10 V			Search query
ENV. FATE/TRANSPORT	Product or Use Categorization	Categorization ty	pe	r of Unique Products
HAZARD	manufacturing, metals	CPCat Cassette	17	
ADME	adhesive	CPCat Cassette	17	
EXPOSURE		CPCat Cassette	16	
EXPOSORE		CPCat Cassette	12	
PRODUCT & USE O	ATECODIES	CPCat Cassette	11	
FRODUCT & USE	ATEGORIES	CPCat Cassette	8	
		CPCat Cassette	8	
CHEMICAL WEIGH	TERACTION	CPCat Cassette	8	
		CPCat Cassette	7	
CHEMICAL FUNCT	ONAL USE	CPCat Cassette	6	
TOXICS RELEASE	INVENTORY	First << < 1 2 3	4 5 6 7 8 9 10 > >>	Last
MONITORING DATA	4	_		
EXPOSURE PREDI	CTIONS			

Link Access

Bisphenol A 80-05-7 | DTXSID7020182

	Searched by Approve	d Name.	
DETAILS	General	Toxicology	Publications
EXECUTIVE SUMMARY	EPA Substance Registry Service	ACTOR	Toxline
PROPERTIES	🖑 Household Products Database	оң. DrugPortal	Environmental Health Perspectives
PROPERTIES	Chemical Entities of Biological Interest	CCRIS	NIEHS
ENV. FATE/TRANSPORT	(ChEBI)	ChemView	National Toxicology Program
HAZARD	PubChem	CTD	G Google Books
HAZARD	R Chemspider	🐭 eChemPortal	Google Scholar
► ADME	CPCat	Gene-Tox	G Google Patents
	2 DrugBank	HSDB	PPRTVWEB
EXPOSURE	Amp HMDB	ToxCast Dashboard 2	PubMed
▶ BIOACTIVITY	W Wikipedia	LactMed	IRIS Assessments
	Q MSDS Lookup	International Toxicity Estimates for Risk	🖲 EPA HERO
SIMILAR COMPOUNDS	Chembl	ATSDR Toxic Substances Portal	NIOSH Skin Notation Profiles
GENRA (BETA)	Q Chemical Vendors	Superfund Chemical Data matrix	🚾 NIOSH Pocket Guide
RELATED SUBSTANCES	CalEPA Office of Environmental Health Hazard Assessment	MIOSH IDLH Values	C RSC Publications
RELATED SUBSTANCES	NIOSH Chemical Safety Cards	ACToR PDF Report	🕌 BioCaddie DataMed
SYNONYMS	ToxPlanet	Toxics Release Inventory	2 Springer Materials
	ACS Reagent Chemicals	CREST	Federal Register
LITERATURE	W Wikidata	National Air Toxics Assessment	Regulations.gov
LINKS	ChemHat: Hazards and Alternatives Toolbo:	x	Bielefeld Academic Search Engine
COMMENTS	🌞 Wolfram Alpha		🖆 CORE Literature Search
COMMENTS	ScrubChem		
	ECHA Brief Profile		

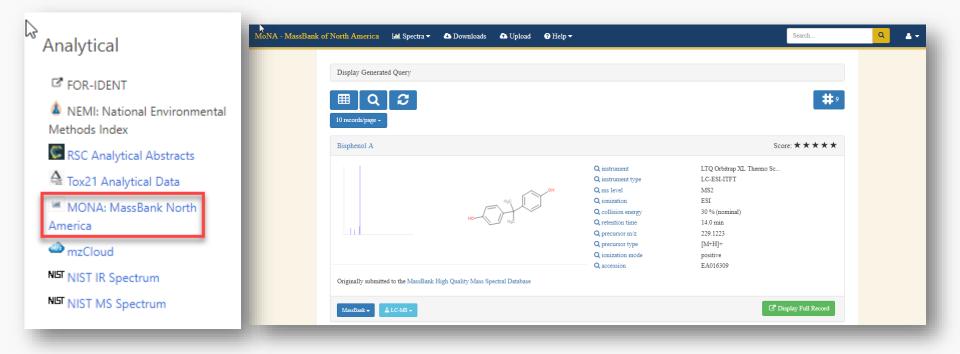
Analytical FOR-IDENT

NEMI: National Environmental Methods Index RSC Analytical Abstracts A Tox21 Analytical Data

- MONA: MassBank North America
- area and a construction and a co NST NIST IR Spectrum
- NIST MS Spectrum

Prediction

2D NMR HSQC/HMBC Prediction


Carbon-13 NMR Prediction Proton NMR Prediction

ChemRTP Predictor LSERD

Links based on chemical identifiers to dozens of online resources including analytical data

MassBank of North America https://mona.fiehnlab.ucdavis.edu

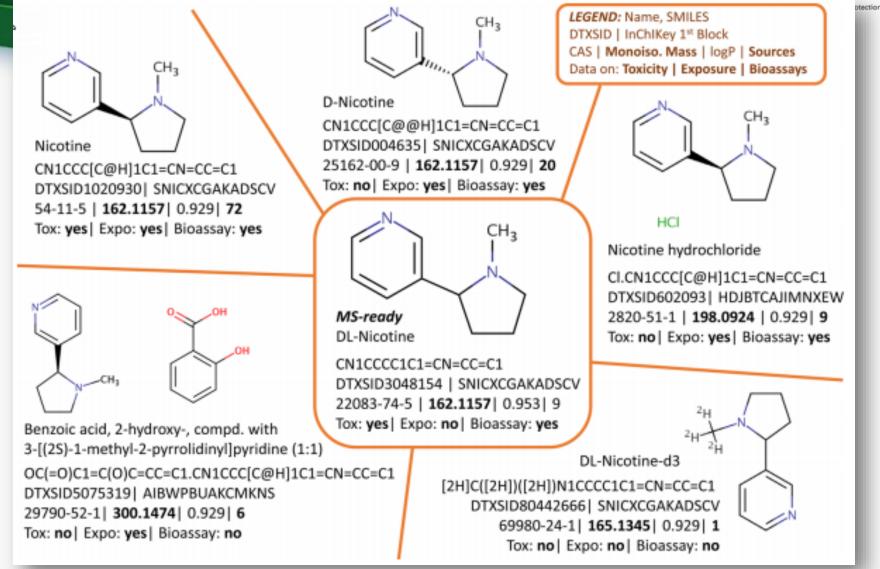
"MS-ready" structures

McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2

Journal of Cheminformatics

METHODOLOGY

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

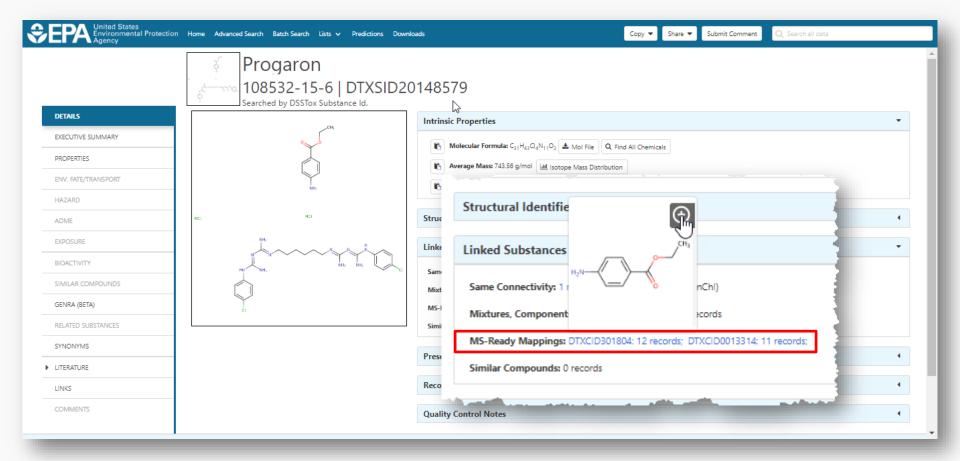

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

Overview of MS-Ready Structures

United States Environmental Protection Agency

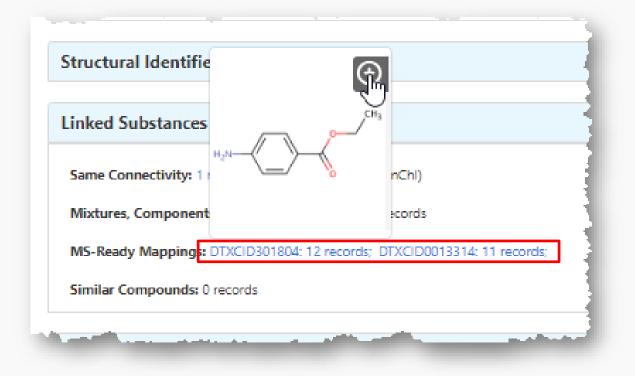
- All structure-based chemical substances are algorithmically processed to
 - Split multicomponent chemicals into individual structures
 - Desalt and neutralize individual structures
 - Remove stereochemical bonds from all chemicals
- MS-Ready structures are then mapped to original substances to provide a path between chemicals detected by mass spectrometry to original substances

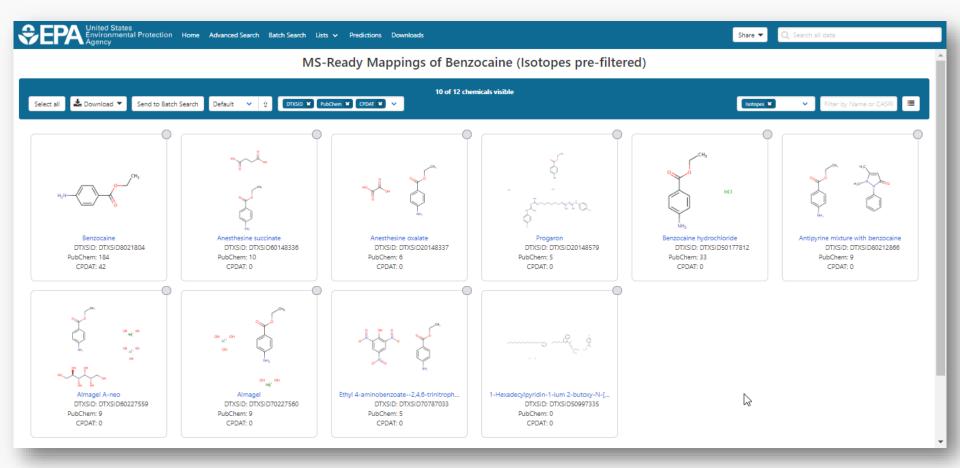
€EPA



Open Science for Identifying "Known Unknown" Chemicals Emma L. Schymanski*¹⁰ and Antony J. Williams^{*†0}

Viewpoint


MS-Ready Mappings from Details Page


Two MS-Ready Mappings Set

MS-Ready Mappings Set All substances containing component

Mass/Formula Searching and Metadata Ranking


Advanced Searches Mass Search

Advanced Searches Mass Search

MS-Ready Structures for **Formula Search**

Molecular Formula Search 🚺

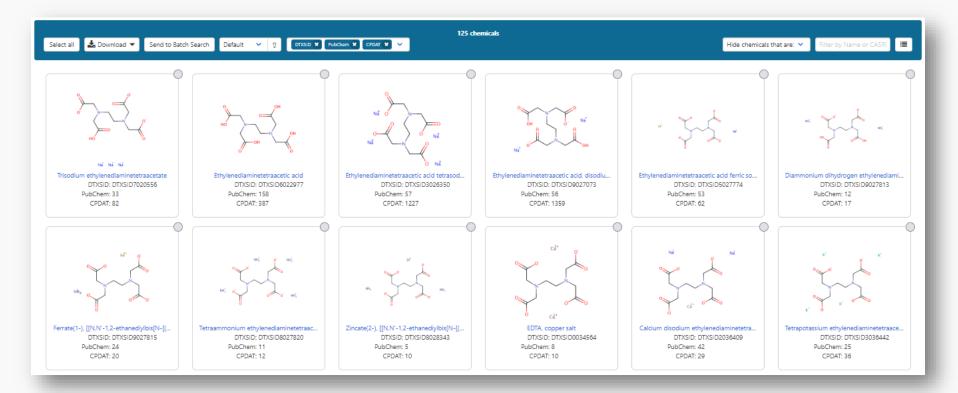
💿 MS Ready Formula 🚯 🔿 Exact Formula 🚯

Formula

Please use the format of the following example: C6H8O2 or C6H(8-10)O(0-2)

Search Q

MS-Ready Mappings


• EXACT Formula: C10H16N2O8: 3 Hits

	O MS F Formula C10H16	Ready Formula 🚯 🧿 Exact Formu	ila 🚯
ý.	Select all 🛃 Download 🔻 Send to B	atch Search Default 👻 🕆 🛛 🗙	3 of 3 chemi
	$\begin{array}{c} & \stackrel{0}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } \\ & \stackrel{+}{ } $	$\begin{array}{c} & \overset{\circ}{\underset{H^{O}}{\leftarrow}} \overset{\circ}{\underset{H^{O}}{\overset}} \overset{\circ}{\underset{H^{O}}{\leftarrow}} \overset{\circ}{\underset{H^{O}}{\overset}} \overset{\leftarrow}{\overset}{\overset}{\overset}{\underset{H^{O}}{\overset}} }{\underset{H^{O}}{\overset}} }{\underset{H^{O}$	$i = \frac{1}{2} \int_{H_2} $

MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

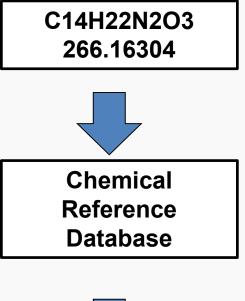
MS-Ready Mappings

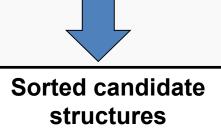
Exact Formula – 3 hits

- MS-Ready Formula 125 hits!!

 ONLY 8 of the 125 are single component chemicals
 3 are neutral compounds and 2 are charged
- How can we rank the candidates list?

Candidate ranking using metadata


C American Society for Mass Spectrometry, 2011


J. Am. Soc. Mass Spectrom. (2012) 23:179-185 DOI: 10.1007/s13361-011-0265-y

RESEARCH ARTICLE

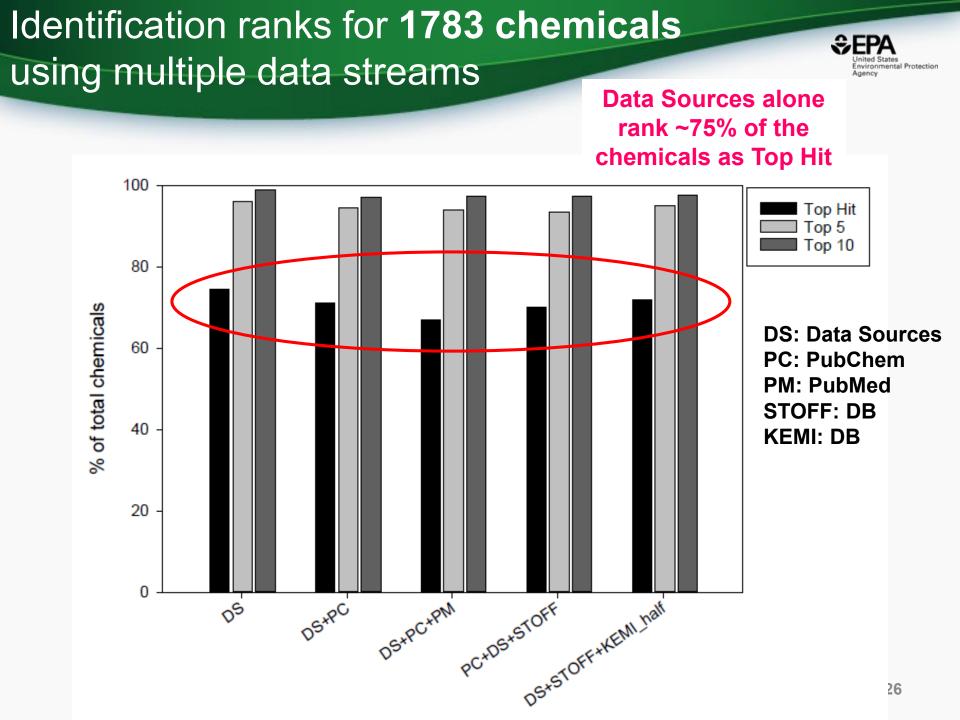
Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

- A mass and/or formula search is for an *unknown* chemical but it is a *known* chemical contained within a reference database
- Most likely candidate chemicals have the most associated data sources, most associated literature articles or both

The original ChemSpider work

Compound class	Number in class	Average rank			of compounds in each ank-ordered			
			#1	#2	#3	#4	#5+	
Pharmaceutical drug	72	1.4	55	9	6	2		
Industrial chemicals	42	5.5	28	6	3		5	
Personal care products	8	6.1	3	1			4	
Steroid hormones	7	1.0	7					
Perfluorochemicals	6	1.2	5	1				
Pesticides	12	2.3	6	2	3		1	
Veterinary drugs	3	1.3	2	1				
Dyes	2	1.0	2					
Food product/natural compounds	4	3.8	2			1	1	
Illicit drugs	2	2.0	1		1			
Misc. molecules	3 ª	1.3	2	1				

- ChemSpider was 26 million chemicals for the original work
- Much BIGGER today
- Is bigger better??



• Are there other metadata to use for ranking?

Using Metadata for Ranking

- Chosen dashboard metadata to rank candidates
 - Associated data sources
 - Lists in the underlying database (more about lists later)
 - Associated data sources in PubChem
 - Specific source types (e.g. water, surfactants, pesticides)
 - Number of associated literature articles (Pubmed)
 - Chemicals in the environment the number of products/categories containing the chemical is an important source of data (from CPDat database)

Comparing Search Performance

United States Environmental Protection

CrossMark

Änal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran¹ · Jon R. Sobus² · Antony J. Williams³

- When dashboard contained 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered					
			#1	#2	#3	#4	#5+	
Pharmaceutical drug	72	1.4	55	9	6	2		
Industrial chemicals	42	5.5	28	6	3		5	
Personal care products	8	6.1	3	1			4	
Sterbid homones Permuorochemicals		SAME	7 5) A	TA	SE	Т	
Pesticides	12	2.3	6	2	3		1	
Veterinary drugs	3	1.3	2	1				
Dyes	2	1.0	2					
Food product/natural compounds	4	3.8	2			1	1	
Illicit drugs	2	2.0	1		1			
Misc. molecules	3 ^a	1.3	2	1				

	Mass-based sear	rching	Formula-based	searching
	Dashboard	ChemSpider	Dashboard	ChemSpider
Average rank position	1.3	2.2 ^a	1.2	1.4
Percent in #1 position	85%	70%	88%	80%

^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

For the same 162 chemicals, Dashboard outperforms ChemSpider for both Mass and Formula Ranking

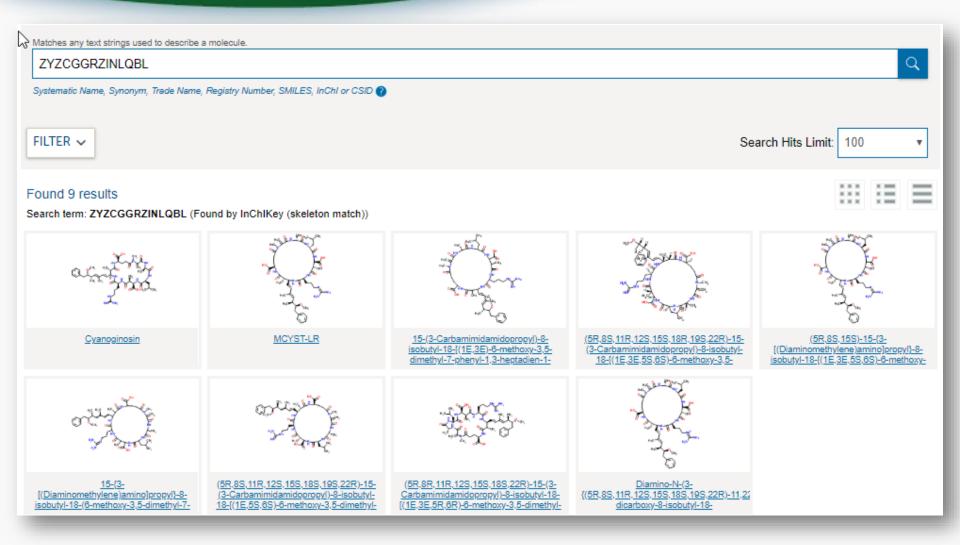
Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average rank	x	Numbe	er in eac	h positi	on rank-	ordered
		(±SD)		#1	#2	#3	#4	#5+
Mass-based	Dashboard	1.2 ± 0.7		77 ^a	5	3	3	
	ChemSpider	2.2 ± 6.1^{b}		68	8	7	1	5
Formula-based	Dashboard	1.1 ± 0.4		78 ^a	8	2		
	ChemSpider	1.3 ± 1.0		77	8	2	1	2

^aOne chemical (tephrosin) not present in the Dashboard

Data Quality is important

Data quality in free web-based databases!

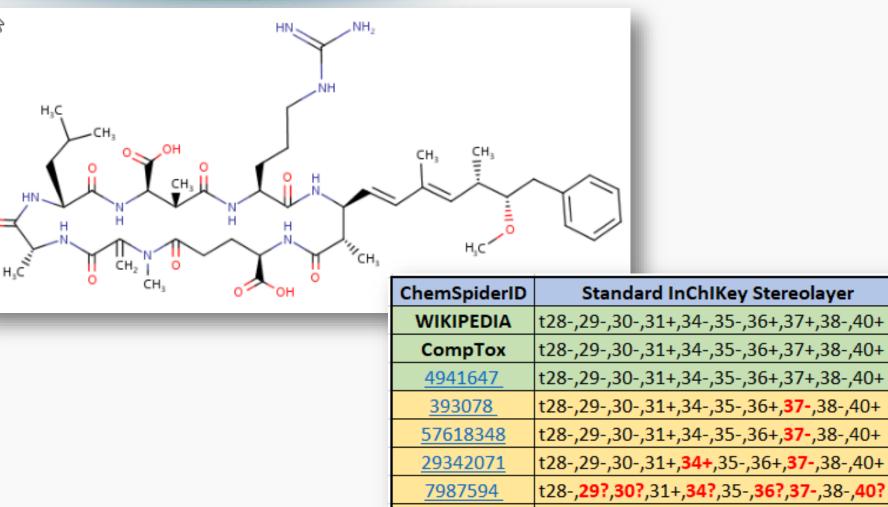


Public Databases require curation

- There is significant bloating in the public databases because of lack of curation
- The number of hits retrieved based on mass or formula searching can explode based on poorly represented chemicals – especially stereochemistry issues
- MS-Ready structures will map back to multiple versions of "the same chemical".

mental Protection

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search



United States Environmental Protection

Agency

Comparing ChemSpider Structures

2

t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
t28-,29-,30-,31+, 34+ ,35-,36+, 37- ,38-,40+
t28-, 29?,30? ,31+, 34? ,35-, 36?,37- ,38-, 40?
t28-, 29?,30+,31-,34+,35+,36-,37- ,38-, 40-
NONE
NONE

invironmental Protection

Agency

Comparing ChemSpider Structures

ChemSpiderID	InChlKey	# Stereocenters	# Different
WIKIPEDIA	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
CompTox	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>4941647</u>	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>393078</u>	ZYZCGGRZINLQBL-GWRQVWKTSA-N	10/10	1
<u>57618348</u>	ZYZCGGRZINLQBL-UPPCHHEJSA-N	10/10	1
<u>29342071</u>	ZYZCGGRZINLQBL-IIJTUTQBSA-N	10/10	2
<u>7987594</u>	ZYZCGGRZINLQBL-BESLYTPASA-N	5/10	6
<u>22900854</u>	ZYZCGGRZINLQBL-QAXSDTKVSA-N	9/10	8
<u>19692240</u>	ZYZCGGRZINLQBL-ORZJCNCZSA-N	0/10	10
<u>2831283</u>	ZYZCGGRZINLQBL-UHFFFAOYSA-N	0/10	10

Other Searches

UniChem

Pub Chem About

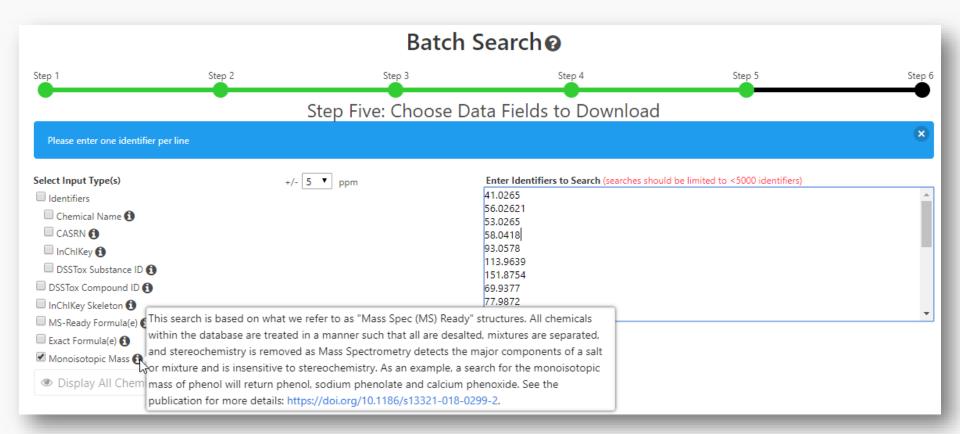
ZYZCGGRZINLQBL

Treating this query as a text search.

Compounds (17)

Show All entries						
	CMR. Query InChl	src_id	Source	src_compound_id		
	matches	1	ChEMBL	CHEMBL444092		
	matches	4	Guide to Pharmacolog	y <u>4735</u>		
	matches	6	KEGG Ligand	<u>C05371</u>		
	matches	7	ChEBI	<u>6925</u>		
	matches	9	ZINC	ZINC000169715525		
	matches	9	ZINC	ZINC000255288110		
	matches	9	ZINC	ZINC000255288111		
	matches	9	ZINC	ZINC000255288112		
	matches	9	ZINC	ZINC000255288113		
	matches	9	ZINC	ZINC000255288114		
	matches	9	ZINC	ZINC000255288115		
	matches	9	ZINC	ZINC000583653042		
	matches	9	ZINC	ZINC000669680403		
	matches	10	eMolecules	<u>26754757</u>		
	matches	10	eMolecules	<u>31239828</u>		
	matches	11	IBM Patent System	DA3C2F25F29692734272194ED0E2C009		
	matches	matches 14 FDA SRS		EQ8332842Y		

Batch Searching mass and formula


Batch Searching

• Singleton searches are useful but we work with **thousands** of masses and formulae!

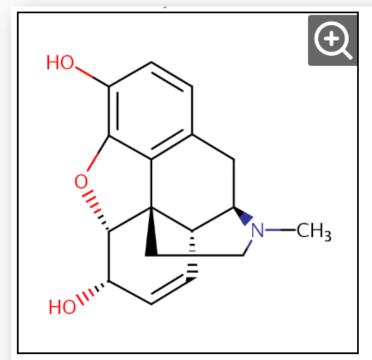
- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?

Batch Searching Formula/Mass

Invironmental Protection

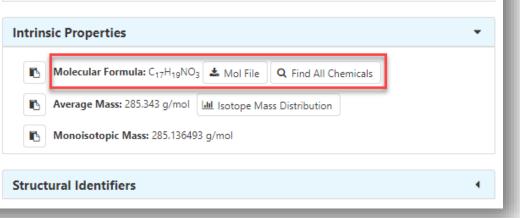
Agency

Searching batches using MS-Ready Formula (or mass) searching

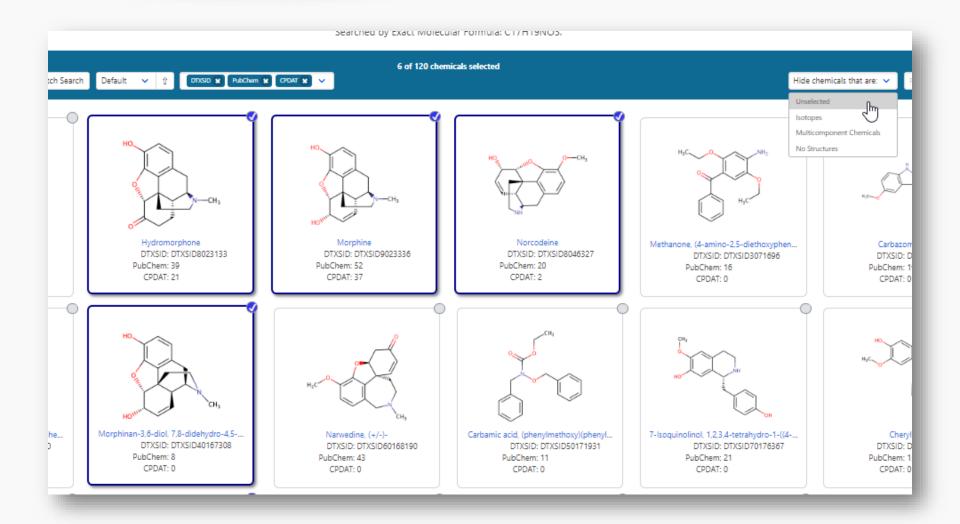

4	A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3	266.163042576	20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3	266.163042576	19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3	266.163042576	14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3	266.163042576	12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3	266.163042576	7
10	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S	406.213757997	35
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride	C18H35CIN2O6S	442.1904357	22
		DTXSID20849438			C18H35CIN2O6S	442.1904357	1
	C10H12N2O		486-56-6	Cotinine	C10H12N2O	176.094963014	40
16	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O	176.094963014	22
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O	176.094963014	18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O	212.0716407	11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7
23	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O	176.094963014	6
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O	176.094963014	6
25	C14H18N4O3		17804-35-2	Benomyl	C14H18N4O3	290.137890456	68
26	C14H18N4O3		738-70-5		C14H18N4O3		51
27	C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
28	C14H18N4O3	DTXSID70204210	55687-49-5	Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,	C14H18N4O3	290.137890456	5
29	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
30	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-		290.137890456	3
	C14H18N4O3	DTXSID30219608	69449-07-6	2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)·		308.14845514	3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
33	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
	C14H18N4O3	DTXSID20143781	101204-93-7	1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3	290.137890456	3
35	C12H11N7	DTXSID6021373	396-01-0		C12H11N7	253.107593382	52
36	C12H11N7	DTXSID00204465			C12H11N7	253.107593382	7
37	C12H11N7		7300-26-7		C12H9N7	251.091943318	4
38	C12H11N7	DTXSID00848025			C12H13N7O4S	351.074973101	1
39	C12H11N7	DTXSID50575293	92310-83-3	(1E)-N-Phenyl-1,2-bis(1H-1,2,4-triazol-1-yl)ethan-1-imine	C12H11N7	253.107593382	1
40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2		75
11	CSHONO2	DTVSID6026667	13/ 20 3	Mothyl 2 aminohonzoato	C8H0NO2	161.063328534	50

Mass Spectrometry Related Searches

Find me "related structures" Formula-Based Search



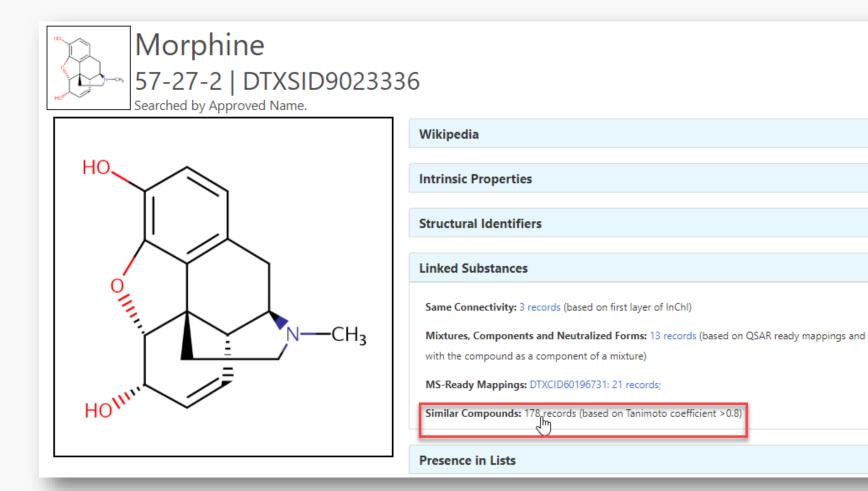
Wikipedia


Morphine is a pain medication of the opiate family which is found naturally in a number of plants and animals. It acts directly on the central nervous system (CNS) to decrease the feeling of pain. It can be taken for both acute pain and chronic pain. It is frequently used for pain from myocardial infarction and during labor. It can be given by mouth, by injection into a muscle, by injection under the skin, intravenously, injection into the space around the

Read more

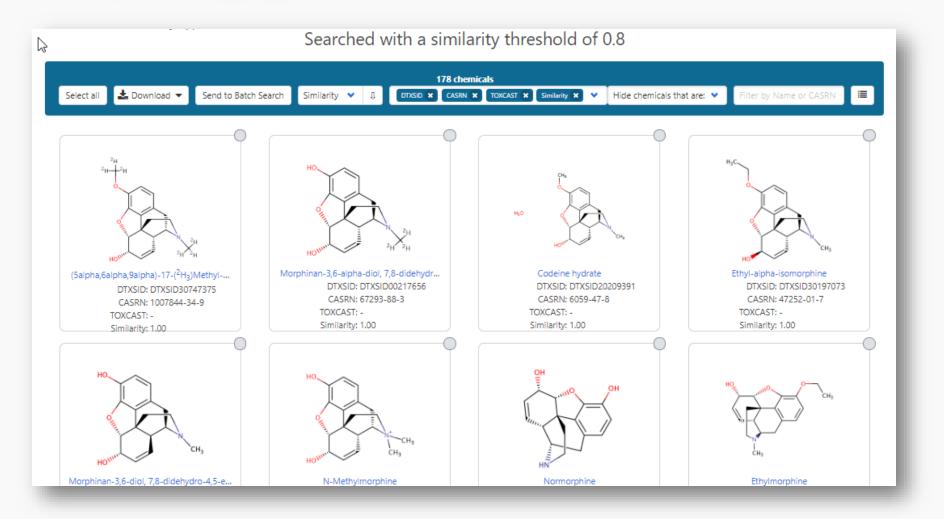
Select Chemicals of Interest

Find me "related structures" Based on Structure Similarity

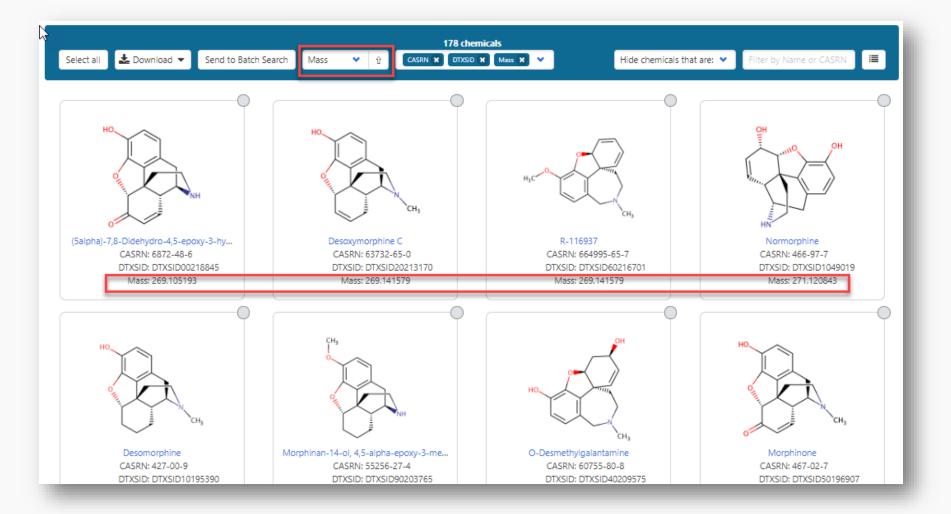


•

•


•

-


Find me "related structures" Based on Structure Similarity

Find me "related structures" Structure Similarity – sort on mass

Chemical Lists

Chemical Lists

Copy Filtered Lists URL

mass

 Home
 Advanced Search
 Batch Search
 Lists
 Predictions
 Downloads

 Lists of Chemicals
 Lists of Chemicals
 List of Assays
 List of Assays

📩 Download 🔻

Columns ~

List Acronym 🗢	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description \$
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

EPAHFR: Hydraulic Fracturing

49

6

WATER|EPA; Chemicals associated with hydraulic fracturing

🔍 Search EPAHFR Chemicals

Identifier substring search

List Details

Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. <u>https://www.epa.gov/hfstudy</u>

*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing. **Number of Chemicals:** 1640

2 Cſ NĤa NH. OH Alkylbenzenesulfonate linear Ammonium chloride Ammonium hydroxide Diammonium citrate DTXSID: DTXSID3020041 DTXSID: DTXSID0020078 DTXSID: DTXSID5020079 DTXSID: DTXSID4020080 PubChem: 82 PubChem: 0 PubChem: 19 PubChem: 83 CPDAT: 83 CPDAT: 260 CPDAT: 18 CPDAT: 857

PFAS lists of Chemicals

Select List

📥 Download 🔻 🛛 Columns 🗸

PFAS

🖪 Copy Filtered Lists URL

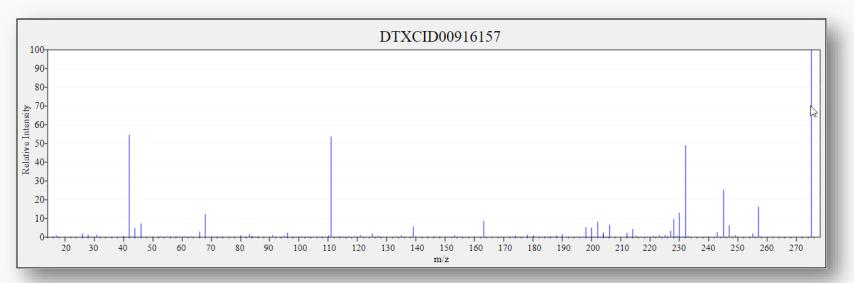
List Acronym \$	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description \$
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)

Research in Progress

Predicted Mass Spectra

http://cfmid.wishartlab.com/

- February 2015, Volume 11, <u>Issue 1</u>, pp 98–110 | <u>Cite as</u>


Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification

Authors and affiliations

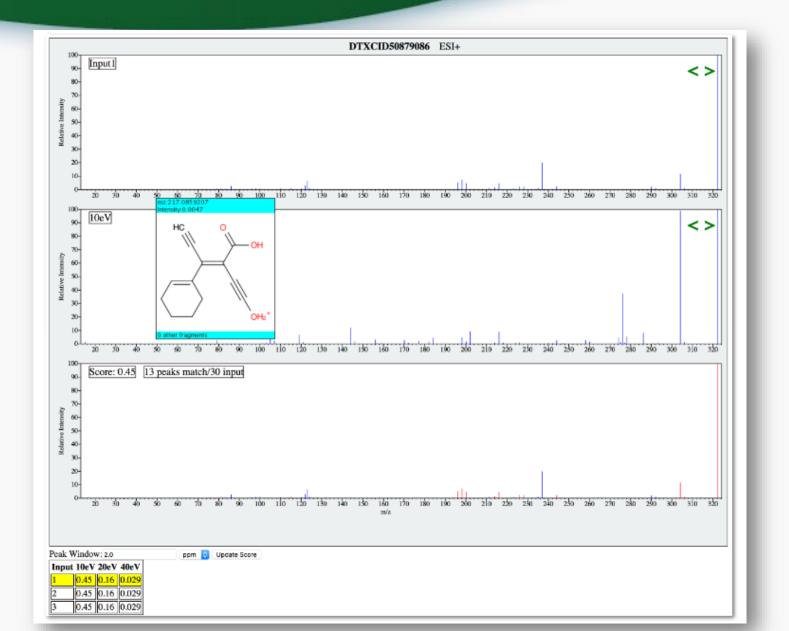
Felicity Allen 🖂 , Russ Greiner, David Wishart

Authors

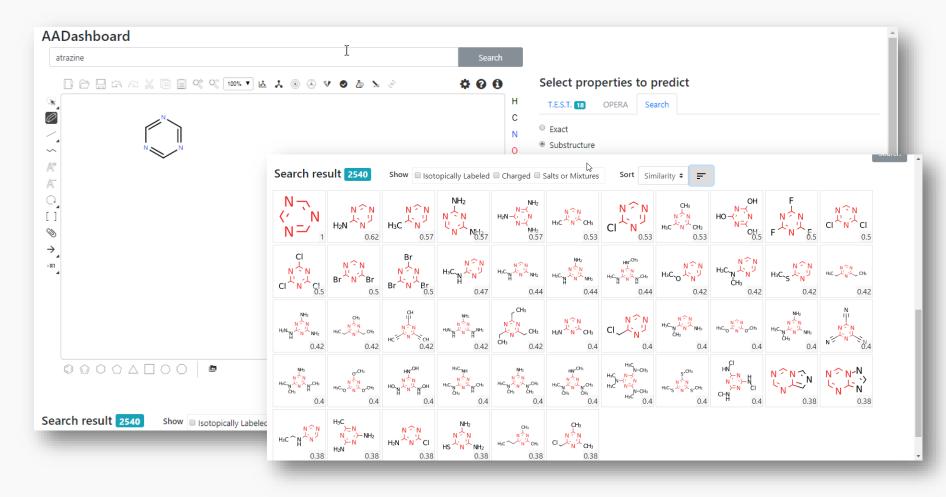
- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard

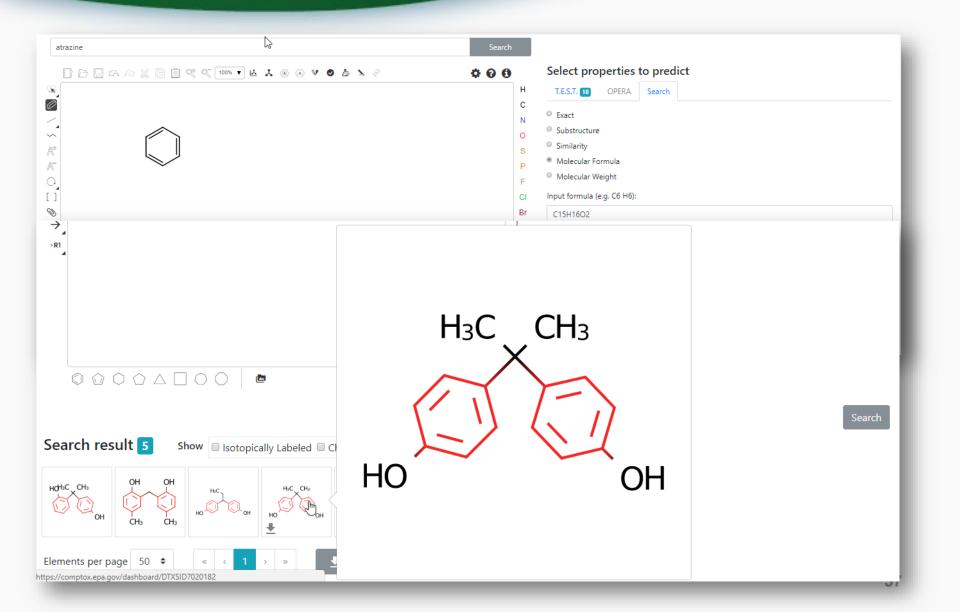
Search Expt. vs. Predicted Spectra

SEPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🛩 Predictions Downloads	Share - Q. Search all data
	Non Target Analysis Prototype	Â
	Mass Search <u>± Min/Max</u> 321.138493476 Da <u>± 0.0000002 Da ppm</u>	
	Molecular Formula Search	
	Mass or Formula must be entered before searching spectrum Ionization Type ESI+ ESI+ ESI- EI Spectra Input	
	Single Energy Multiple 304.1332052 11.6199475 • 198.0913404 7.306439699 • 123.0440559 6.538348292 • 196.0756904 6.269463115 • 216.1019051 4.700461978 •	
	Peak Match Window: 0.02 Da ppm	


Search Expt. vs. Predicted Spectra

United States Environmental Protection Home Adv Agency	ranced Search Batch Search Lists 🛩 Predictions Downloads	Share 🔻 🔍 Search all data
Spectra Inpu Single Ener	Chemical Structure ID	Score (10eV)
304.1332052 11.61 198.0913404 7.30 123.0440559 8.53 196.0756904 5.26	DTXCID101048191	0.22
218.1019051 4.70	DTXCID101181567	0.19
Peak Match Search	DTXCID50879086	0.17
TSV CSV Excel	DTXCID60686349	0.14
Chemical Structure ID	DTXCID00830900	0.13 m of Scores
DTXCID101181567	DTXCID10971176	0.12
DTXCID60688349 DTXCID00830900	DTXCID60301242	0.12
DTXCID10971178 DTXCID60301242	DTXCID40703048	0.11
DTXCID40703048 DTXCID60349982	DTXCID60349982	0.11
DTXCID10316649 .	DTXCID10316649	0.09


Spectral Viewer Comparison


Prototype Development

Prototype Development

API services and Open Data

- Present API and web services available at <u>https://actorws.epa.gov/actorws/</u> but major redevelopment is underway
- Downloadable data available via the downloads page

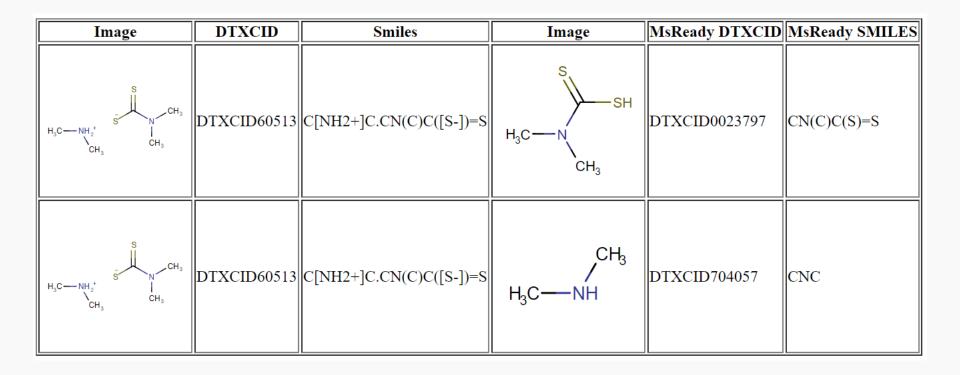
The		apped to CAS Numbers and News file is in Excel format and in	Names File Posted: 11/14/2016 ncludes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name.
	casrn	dsstox_substance_id	
2	26148-68-5	DTXSID7020001	A-alpha-C
3	107-29-9	DTXSID2020004	Acetaldehyde oxime
4	60-35-5	DTXSID7020005	Acetamide
5	103-90-2	DTXSID2020006	Acetaminophen
6	968-81-0	DTXSID7020007	Acetohexamide
7	18523-69-8	DTXSID2020008	Acetone[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazone
8	75-05-8	DTXSID7020009	Acetonitrile
9	127-06-0	DTXSID6020010	Acetoxime
10	65734-38-5	DTXSID6020012	N'-Acetyl-4-(hydroxymethyl) phenylhydrazine
		istry Dashboard can be used b	Posted: 11/14/2016 by mass spectrometrists for the purpose of structure identification. A normal formula search would search the exact formula solvents of hydration, salts or multiple components. However, mass spectrometry detects ionized chemical structures and molecular

This zip file contains the entire chemical structure collection of over 700,000 chemicals from the DSSTox database contained in one large SDF file. The file contains the structure, The DSSTox Structure Identifier (DTXCID), The DSSTOX Substance Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated synonyms and DSSTox Structure Identifier (DTXCID). The DSSTOX Substance Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated synonyms and DSSTox Structure Identifier Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated converse is the associated Dashboard URL, associated Converse is the structure. The DSSTox Structure Identifier (DTXCID) is the structure is the structure of the structure is the structure. The structure is the

Web Services https://actorws.epa.gov/actorws/

Data in UI, JSON and XML format

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=80-05-7


https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=DTXCID60513

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N

InChIKey to DTXCIDs

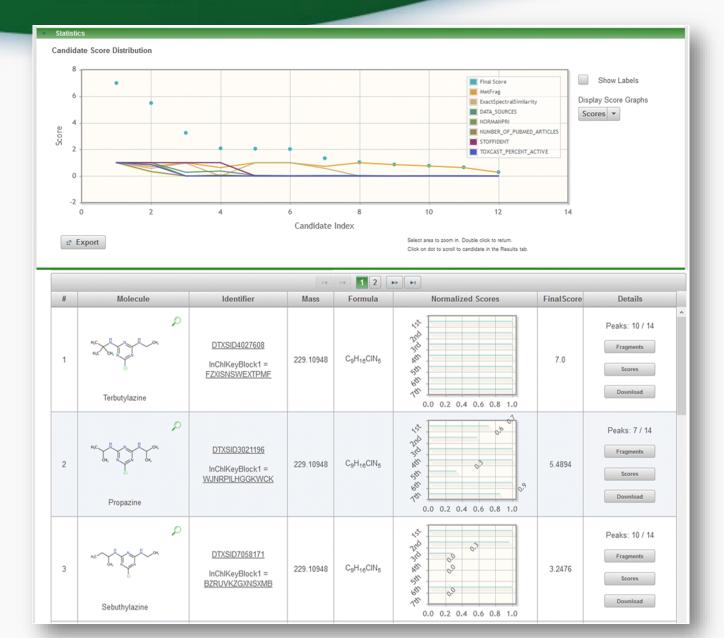
https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier =UVOFGKIRTCCNKG-UHFFFAOYSA-N

Data and Services used by the Community

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

NORMAN


Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

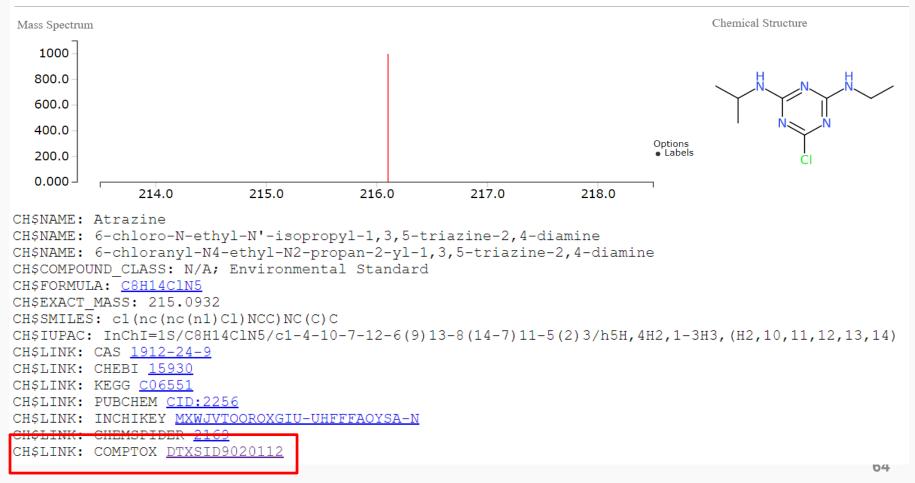
Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0299-2

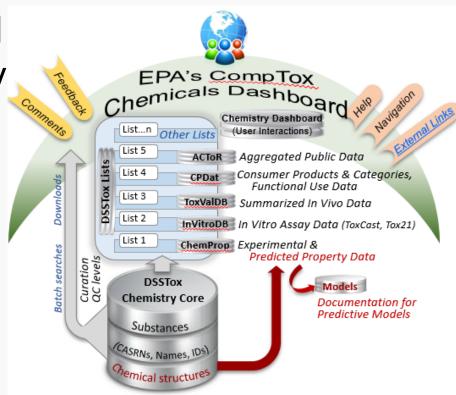
63

MassBank mapping to Dashboard Based on Web Service lookup



MassBank Record: EA028808

Home Search Record Index Data Privacy MassBank ID:


Go

Atrazine; LC-ESI-ITFT; MS2; CE: 15%; R=15000; [M+H]+

Conclusion

- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Dashboard and contents are one part of the solution
- New developments in progress, especially API development, will be very enabling...

nvironmental Protection

- IT Development team especially Jeff
 Edwards and Jeremy Dunne
- Chris Grulke for the ChemReg system
- NERL colleagues Jon Sobus, Elin Ulrich, Mark Strynar, Seth Newton, Alex Chao
- Emma Schymanski, LCSB, Luxembourg
- NORMAN Network and all contributors

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology EMAIL: <u>Williams.Antony@epa.gov</u> ORCID: https://orcid.org/0000-0002-2668-4821