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This paper presents computational �uid dynamics simulations of the cold gas operation
of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters,
replicating experiments performed in both sub-Torr and vacuum environments. This
work takes advantage of �ow velocity choking to circumvent the invalidity of modeling
vacuum regions within a CFD simulation, while still preserving the accuracy of the desired
results in the internal regions of the microthrusters. Simulated results of the plenum
stagnation pressure is in precise agreement with experimental measurements when slip
boundary conditions with the correct tangential momentum accommodation coef�cients
for each gas are used. Thrust and speci�c impulse is calculated by integrating the �ow
pro�les at the exit of the microthrusters, and are in good agreement with experimental
pendulum thrust balance measurements and theoretical expectations. For low thrust
conditions where experimental instruments are not suf�ciently sensitive, these cold gas
simulations provide additional data points against which experimental results can be
veri�ed and extrapolated. The cold gas simulations presented in this paper will be
used as a benchmark to compare with future plasma simulations of the Pocket Rocket
microthruster.

Keywords: microthruster, thrust, computational �uid dynamic s, �ow velocity choking, choked �ow, slip boundary
conditions, tangential momentum accommodation coef�cient, bo undary layer friction

1. INTRODUCTION

In recent years, there has been a steady impetus in the satellite industry toward miniaturized
microsatellites and microspacecraft, primarily driven by the desire to reduce spacecraft mass in
order to reduce launch costs. This has led to the development of micro- (� 100 kg), nano-
(� 10 kg), and picosatellites (� 1 kg), where the dramatic reduction in cost increases the
accessibility to space, and brings with it the possibility of funding more missions and more frequent
launches. The QB50 mission [1,2] is an example of a scienti�c endeavor enabled by the a�ordability
of CubeSats—a type nanosatellite made up of multiples of 1 kg, 10-cm cubic units. The mission
employs a network of 50 CubeSats, built by university teams allover the world, to study the lower
thermosphere. It also demonstrates the possibility of using alarge �eet of low-cost microspacecraft
to reduce mission risk by distributing functionality and incorporating redundancy, where the loss
of one or even multiple microspacecraft will not jeopardize the entire mission.
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The rise in popularity of microspacecraft has in turn
produced a strong interest and demand in the development of
micropropulsion devices. These devices must meet the unique
propulsion needs of each speci�c mission, which may include
attitude control, orbital station-keeping, drag compensation
to slow orbital decay, de-orbit manoeuvres, or constellation
formation and maintenance. At the same time, micropropulsion
devices must also adhere to the stringent design requirements
imposed due to severe mass, volume, and power constraints of
the microspacecraft.

Two main classes of propulsion technologies have been
envisioned and �own for spacecraft. The �rst is gas and
chemical propulsion, which ranges from the traditional or
microelectromechanical systems-based (MEMS) cold gas
thrusters [3], to warm gas and chemical propellant systems.
The second is electric propulsion, which can be grouped into
three distinct categories: electrothermal, electrostatic, and
electromagnetic. Electrothermal propulsion includes devices like
arcjets [4–6], resistojets [7], hollow cathode thrusters [8, 9], and
the Pocket Rocket microthruster [10] which is the subject of this
paper. Electrostatic propulsion has been dominated by a large
variety of gridded ion thrusters, the most recent developments
including NASA's annular-geometry ion engine (AGI-Engine)
[11, 12] and the NASA evolutionary xenon thruster (NEXT)
[13, 14], but also include experimental technologies like the
�eld emission electric propulsion (FEEP) concept [15] and its
precedent colloid thrusters. Finally, electromagnetic propulsion
boasts the mature Hall-e�ect thruster [16] and its variants [17–
19], as well as newer technologies like magnetoplasmadynamic
(MPD) thrusters [20, 21] and ablative pulsed plasma thrusters
(PPTs) [22]. For more information, a comprehensive review of
electric propulsion is available in Charles [23] and Mazou�re
[24], while Micci and Ketsdever [25] and Scharfe and Ketsdever
[26] compiles a review of both classes of propulsion technologies
with a speci�c focus on micropropulsion for microspacecraft.

2. OUTLINE

This paper presents computational �uid dynamics simulations
of the cold gas operation of Pocket Rocket and Mini
Pocket Rocket radiofrequency electrothermal microthrusters,
replicating experiments performed in both sub-Torr and
vacuum environments. The simulations are performed using
the commercial CFD-ACEC multiphysics package, chosen for
its ability to model plasmas in addition to �uids. The cold gas
simulations presented in this paper will be used as a benchmark
to compare with future plasma simulations of the Pocket Rocket
microthruster.

The following section will introduce the Pocket Rocket
microthruster experiment with reference to previously published
results, and subsequent sections will discuss the reasons for
using a �uid simulation technique over other techniques before
detailing the Pocket Rocket simulation mesh and the parameters
used for the simulations. The main results of the cold gas
simulations are presented in the results and discussion section,
along with a theoretical de�nition and discussion of concepts
such as �ow velocity choking, thrust and speci�c impulse, as well
as the boundary layer friction force.

The list of the simulations presented in this paper is as follows.
The �rst set of simulations “PR laboratory condition” is a direct
representation of the PR experiment, performed for the purpose
of verifying the correct simulation parameters and settings
required to reproduce experimental results. The second set of
simulations “PR nozzle choked �ow condition” is performed
using a PR mesh which is slightly modi�ed to incorporate a
converging-diverging nozzle. This is aimed at validating the
treatment of �ow velocity choking in CFD-ACEC, and its ability
to handle the simulation of vacuum in the downstream region
(by setting the outlet pressure to zero) without compromising
the results in the other upstream regions. The third set of
simulations “PR vacuum condition” models the performance of
PR in a vacuum environment, and provides thrust results that
are otherwise currently unobtainable from experiment. Finally,
the fourth set of simulations “MiniPR vacuum condition” is
a direct representation of the MiniPR experiment performed
in the Wombat space simulation chamber [27]. The simulated
thrust is compared to the experimentally measured values and
the theoretical expectation in order to verify the reliability of
the results obtained by simulation. The main results of the
simulations are summarized inTable 1.

3. POCKET ROCKET MICROTHRUSTER
EXPERIMENT

Pocket Rocket (PR) is a radiofrequency plasma electrothermal
microthruster currently under development by the Space Plasma,
Power, and Propulsion (SP3) Laboratory at the Australian
National University. The speci�cations of PR have been
previously described in depth in Charles and Boswell [10] and
Greig [28]. The detailed dimensions and geometry of PR are
speci�ed later in the description of the PR simulation mesh.
In summary, PR (Figure 1) primarily consists of an annular
electrode �tted coaxially around the middle section of an alumina
(Al2O3) tube (hereafter called the plasma cavity or discharge
volume), through which a propellant gas is pu�ed. PR can
operate with a wide range of gas propellants, but performs best
with monatomic inert gas propellants such as Ar and Xe. The
propellants may be stored either in a pressurized vessel or in
a solid form (e.g., I2). In the laboratory, a mass �ow controller
regulates a steady �ow of gas into PR. In a microspacecraft,
this function may be performed by a combination of a pressure
regulator and a solenoid valve, or by MEMS devices. Overall, the
construction of PR is lightweight, simple, and robust, and canbe
manufactured at low cost.

Radiofrequency (RF) power (typically 13.56 MHz) supplied
to the electrode will ignite a plasma in the discharge volume.
The amount of power required to provide su�cient voltage
to ignite a plasma varies depending on the Paschen minimum
of the propellant gas. In PR, breakdown of Ar gas occurs
within 10� 4 s [29, 30] and is achievable with only a few watts
of power, which can be supplied from small solar panels or
batteries on board a microspacecraft. For normal low power
operation, there is no concern for wear, corrosion, or thermal
fatigue on PR. Unlike gridded ion thrusters and Hall-e�ect
thrusters, no neutralizer is necessary as the ions and electrons
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TABLE 1 | Summary of the main simulation results for selected �ow ra tes and set outlet pressure: plenum stagnation pressure, sp eci�c impulse, total
cold gas thrust, boundary layer friction force, and references to related experiments.

Set Mesh Pm [SCCM] p0 [Torr] ps [Torr] Isp [s] Ft [mN] Fbl [mN] Reference

1 PR 100, Ar 0.349 1.367 26.8 0.762 1.155 [10]

2a PR nozzle 100, Ar 0.349 2.760 29.1 0.843 3.629 –

2b PR nozzle 100, Ar 0 2.759 48.3 1.368 3.745 –

3 PR 100, Ar 0 1.345 46.4 1.293 1.228 –

4 MiniPR 60, Xe 0 8.751 26.4 1.364 1.041 [27]

FIGURE 1 | Schematic of the Pocket Rocket experiment showing th e
plasma operation mode with Ar propellant.

in the PR plasma exit the microthruster together along with
the neutral gas propellant. This is advantageous as the lifetime
of most electrostatic and electromagnetic thrusters is limited
by the lifetime of the neutralizer and other plasma-facing
components.

Depending on the amount of RF power supplied (0.1–50 W),
the plasma heats the gas to temperatures in excess of 1000 K
[30–33] by depositing power directly into the propellant, thereby
enhancing thrust production over cold gas performance levels,
with minimal increase in thruster complexity. By controlling the
propellant �ow rate and the RF power in continuous or pulsed
operation, PR can produce precisely manipulable thrust on the
milliNewton-scale.

The PR experimental apparatus has been previously described
in Charles and Boswell [10]. Presently, PR is attached to a glass
expansion tube (d D 4.5 cm,l D 10 cm), and mounted to one
face of a 20 -L six-way cross vacuum chamber (d D 20 cm,
l D 40 cm) in which a base pressure of� 1 mTorr is achieved
with a scroll pump. A 10 -Torr capacitance manometer is used
to measure the static pressure of the gas inside the plenum of
PR, while a Pirani gauge and another capacitance manometer
tracks the pressure in the chamber. The mass �ow controller used
in the PR experimental setup is calibrated for 100 SCCM of N2,
and equivalently 144 SCCM of Ar, which has a theoretical gas

correction factor (GCF) of 1.44. Increasing the �ow rate of the
selected gas into PR from 0 SCCM to the full scale increases the
pressure in both the plenum and the chamber. At the maximum
pumping rate, the ratio of the PR plenum pressure to the chamber
pressure is about 4: 1, primarily dependent on the diameter
and length of the discharge volume and the expansion tube, and
secondarily on the species of gas. In earlier experiments [30–
33], the pressure ratio was maintained at 2: 1 by limiting the
pumping rate.

Mini Pocket Rocket (MiniPR), previously described in
Charles et al. [27, 34, 35], is a variation of the PR microthruster
with a narrower discharge volume. For thrust experiments
[27], MiniPR is mounted on a pendulum thrust balance
inside a 1700 -L cylindrical space simulation chamber (d D 1 m,
l D 2.2 m), evacuated to a base pressure of� 10� 6 Torr by a series
of scroll, turbomolecular, and cryogenic pumps. Performing
cold gas and plasma thrust measurement experiments of this
nature is challenging due to the current prototype design of
MiniPR (and PR), as the gas propellant and the RF power must
be routed to the microthruster from external sources. The gas
line and the RF cable used for this purpose introduce mechanical
resistance, which can be slightly alleviated by anchoring them
to the thrust balance. Similar challenges were observed in Böhrk
and Auweter-Kurtz [6], in which they opted to use indirect
measurement methods employing a ba�e plate and a Pitot
probe. A solution would be to use integrated autonomous
propellant and RF subsystems on the microthruster. However, as
such a system is not yet available, simulation of the microthruster
is able to produce more accurate thrust results than experiments
at the present time.

4. CFD-ACEC SIMULATION

The Knudsen number Kn is a dimensionless parameter which
determines whether a �ow is better characterized by continuum
or statistical mechanics, de�ned as the ratio of the mean free path
� of a molecule to the characteristic length of the �ow system (i.e.,
the radius of the plenum, discharge volume, and expansion tube).
The mean free path is de�ned as:

� D
kBT

p
2� D2p

(1)

where kB D 1.38064852� 10� 23J � K� 1 is the Boltzmann
constant, T and p are the local temperature and static
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pressure respectively, andD is the Lennard-Jones length or
collision diameter of the chosen molecule. This paper uses
the kinetic mean free path instead of the �uid mean free
path which is calculated with the �uid dynamic viscosity, as
the former de�nition preserves its accuracy even in high Kn
�ows.

Generally, computational �uid dynamics (CFD) simulations
are limited to modeling continuum regime �ow (Kn. 0.01),
and the treatment of rare�ed �ows with higher Knudsen numbers
require techniques such as molecular dynamics (MD) or direct
simulation Monte Carlo (DSMC). However, MD simulations
are extremely computationally expensive for all but very small
systems as it scales by the square of the number of molecules
involved. A more practical solution is DSMC simulations, which
use a characteristic particle to represent a large ensemble of
real molecules. While this reduces the scale of the problem,
DSMC simulations are nevertheless still very much more
computationally expensive than CFD simulations for modeling
weakly rare�ed �ows, particularly in the continuum (Kn. 0.01)
and slip (0.01. Kn . 0.1) regimes. Typically, studies seeking to
model �ows spanning a wide range of Knudsen numbers resort
to a hybrid CFD/DSMC approach, applying CFD techniques
to regions of low Kn, and using the results obtained thus as
a boundary condition for the neighboring regions of high Kn
where DSMC techniques are employed [36].

This paper presents CFD cold gas simulations of the PR and
MiniPR microthrusters performed with the commercial CFD-
ACEC multiphysics package. For the purposes of this work,
DSMC techniques are not required as the primary interest is in
modeling the low-Kn internal regions of the microthrusters. This
work takes advantage of the �ow velocity choking phenomenon
to circumvent the invalidity of modeling vacuum regions within a
CFD simulation, while still preserving the accuracy of the desired
results in the internal regions of the microthrusters. The �ow
velocity choking phenomenon will be further discussed in detail
later in the text.

Flow velocity choking is a compressible �ow e�ect. Modeling
compressible �ows in CFD-ACEC requires the �ow and heat
transfer simulation modules. The �ow module numerically solves
the Navier-Stokes equations for the �ow velocity and pressure
�eld over a given meshed geometry. The simulation volume is
discretized and the continuity equations numerically integrated
over each cell via the �nite volume method. The result is
assigned to the cell center, and interpolated to the cell faces to
determine the �ux across each cell interface. Mass conservation
is implemented, and pressure is calculated using the iterative
SIMPLEC algorithm until convergence. Fixed value boundary
conditions (e.g., inlets, outlets, isothermal walls) are imposed
by setting a source term in a �ctitious cell on the external
boundary of the volume, while zero-�ux boundary conditions
(e.g., symmetric boundaries, adiabatic walls) are achieved simply
by setting the cell interface coe�cients to zero. Most importantly,
the heat transfer module keeps track of energy transfers arising
from work done on and by the gas during compression and
expansion, as well as to impose thermal boundary and initial
conditions. Energy conservation is implemented via the total
enthalpy equation, and solved similarly to those described above.

The simulations are self-consistent, with no arti�cial source terms
or limits used.

The key advantage of simulations is the ability to generate
a complete three-dimensional picture of all the measurable
variables. This presents a valuable edge over experiments,
especially in the �eld of microthrusters, which due to their small
geometry can be di�cult or not feasible to access with ordinary
instruments. The results of the cold gas simulations presented
in this work will be compared with published cold gas thrust
measurement experiments [27] and theoretical expectations to
establish their validity and accuracy. The cold gas performance
results of PR will be used as a benchmark for future plasma
operation studies to be performed also in CFD-ACEC.

4.1. Pocket Rocket Simulation Mesh
The two-dimensional simulation mesh for PR is shown in
Figure 2. It is axisymmetric, and represents the top-half cross
section of the microthruster. The mesh is divided into four main
regions, which include three �uid volumes: the plenum (r D
20 mm,l D 12 mm), discharge volume (r D 2.1 mm,l D 18 mm),
and downstream (l D 51 mm), and one solid volume being the
cavity wall (1 r D 1.0 mm,l D 18 mm). Rotating the mesh about
the horizontal axis of symmetry renders the cylindrical geometry
of PR and a hemispherical downstream region. The total number
of cells in the PR mesh is 25405; the MiniPR mesh has 22525 cells,
given its narrower discharge volume (r D 0.8 mm) and thinner
cavity wall (1 r D 0.7 mm), but is otherwise identical to the PR
mesh. Most of the simulation studies of this work are performed
using the PR mesh, as the higher number of cells across the
radius of the discharge volume (21 vs. 8 in the MiniPR mesh) is
bene�cial for the accuracy and resolution of the simulations.

FIGURE 2 | Two dimensional cross section of the axisymmetric top half
of the PR mesh, with the four regions: plenum (cyan), discharge
volume (green), downstream (yellow), and cavity wall (gray) . Blue lines
denote the interfaces between adjacent regions or subregions. The magenta
lines show the position of the median cell in each region or subregion. The inlet
is de�ned to be the cylindrical surface of revolution formed by the top edge of
the plenum, and the outlet is the hemispherical surface on the far right of the
downstream region. The front plenum wall is de�ned to be the left internal face
of the plenum region, while the rear plenum wall is the right internal face of the
plenum region surrounding the entrance to the discharge volume region.
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The discharge volume is the region of primary interest,
and features a uniform orthogonal square grid consisting of
0.1� 0.1 mm cells. The cavity wall region and the �rst adjacent
downstream subregion also have the same-sized cells. The cells
in the plenum region smoothly increase in size with increasing
distance from the discharge volume region (up to 0.5� 0.5 mm in
the top left corner). Orthogonality and zero skew are maintained
in these regions for compatibility with the CFD-ACEC plasma
module, which will be used for plasma CFD simulations in
the future. The grids of the remaining downstream subregions
smoothly increase in size with increasing distance from the�rst
downstream subregion. There is some unavoidable skew as the
shape of the grid transitions from a square to a quadrant. This
is acceptable as the plasma studies will mainly be performed in
the upstream regions. As for the boundaries, the inlet is de�ned
to be the cylindrical surface of revolution formed by the top
edge of the plenum, and the outlet is the hemispherical surface
on the far right of the downstream region. Walls enclose the
remaining external edges of the mesh. Interfaces exist between
adjacent regions, allowing the two regions to communicate
information.

There are several reasons for choosing a hemispherical shape
for the downstream region. The downstream region represents
either the experimental expansion tube, vacuum chamber, or
space. When the Knudsen number is not too high (Kn. 0.1),
the results of the simulation is insensitive to the shape of
the downstream region, and thus the mesh need not exactly
reproduce the experiment apparatus (e.g., the expansion tube).
On the other hand, when modeling vacuum in the downstream
region (e.g., in the 1700 -L space simulation chamber), �uid
dynamics become invalid as the �ow enters the transitional
(0.1 . Kn . 10) and free molecular regimes (Kn& 10). To
mitigate unphysical behavior, the vacuum outlet boundary has to
be placed a su�cient distance away from the important regions
of the simulation. A hemispherical outlet boundary is equidistant
from the exit of discharge volume and isotropic, eliminating
the directional bias and circulation e�ects that arise from
having boundaries at unequal distances, as well as computational
anomalies caused by corners. These are problems that would
arise if a cylindrical mesh were used for the downstream
region. To accommodate the hemispherical outlet boundary,
the downstream region is divided into six subregions that are
designed to allow for optimal smooth expansion of cells in both
radial and polar directions with minimal skew.

4.2. Simulation Parameters
In order to produce realistic and accurate results, it is imperative
that the correct boundary and volume conditions are applied.
The boundary conditions refer to the �ow and heat properties
at the boundaries of each region of the simulation mesh. For each
simulation, a �xed mass �ow rate of the gas is speci�ed at the
inlet. The temperature of the incoming gas is set at 300 K, and the
pressure at the inlet is calculated automatically as the simulation
progresses. At the outlet, a �xed pressure is speci�ed, with the
value of either the experimentally measured chamber pressure
or zero depending on the investigation. The temperature of the
back�ow gas is set at 300 K for the former case, and is irrelevant

for the latter case. The inlet mass �ow rate and the outlet pressure
are the only independent variables in the simulations.

For the simulations presented in this paper, the walls (front
and rear plenum walls, external cavity wall, and the downstream
wall) are set to be isothermal, with the temperature �xed at 300K
to reproduce laboratory conditions. The gas-facing surfaces
(front and rear plenum walls, internal cavity wall, and the
downstream wall) are de�ned to be zero-�ux boundaries with
either inviscid, no-slip, or slip boundary conditions depending
on the investigation.

The �ow boundary condition is one of the most in�uential
parameters a�ecting the �ow behavior in the PR and MiniPR
simulations. Due to the small size of microthrusters, the
large surface area to volume ratio of the �ow system and
a nonnegligible Knudsen number mean that the boundary
layer accounts for a signi�cant portion of the �ow system,
and e�ectively dictates the behavior of the main �ow. In
microthrusters and other systems operating in the slip regime
where the Knudsen number is in the range of 0.01. Kn . 0.1,
the solution to the Navier-Stokes equations are only valid in the
main �ow and not in the boundary layer. In this regime, it is
necessary use the slip boundary condition, where the interaction
between the gas molecules and the wall is characterized by an
accommodation coe�cient� , a number between 0 and 1.

The tangential momentum accommodation coe�cient
(TMAC) � u was �rst introduced by Maxwell [37] to describe the
nature of the re�ection of a molecule o� a wall:� u D 0 represents
specular re�ection, while� u D 1 represents di�usive re�ection.
In reality, molecular re�ection is a mixture of di�use and specular
re�ection, with the exact value of� u dependent on the species
of gas. Measurements of� u are typically performed by tracking
the �ow of gas through a microchannel. These experiments
[38–46] are performed over a wide range of pressures at room
temperature, and use microchannels with di�erent shapes
and diameters, constructed of various materials and surface
treatments. Since the� u of each gas remains roughly constant
across di�erent conditions and �ow regimes, it is justi�ed to use
the mean value of� u for each gas in the simulations.

Similar to the concept of the TMAC, the original formulation
of the thermal accommodation coe�cient (TAC)� T is attributed
to Smoluchowski von Smolan [47]. In general,� T is not the same
as� u for each gas species.� T is measured experimentally [48–
53] using a variety of techniques often involving two walls held
at di�erent temperatures. While� T is roughly constant for each
gas across di�erent surface materials and roughnesses, it appears
to decrease as the temperature di�erence between the two walls
increases [54]. However, due to the lack of extensive studies [55]
on this behavior, the mean value from Vargaftik [48], Porodnov
and Kulev [49], Song and Yovanovich [50], Rader et al. [51],
Ganta et al. [52], and Trott et al. [53] is used for each gas in the
simulations.

Using the slip boundary condition produces the correct
solution for the main �ow, but at the cost of introducing a
�ctitious slip velocity and temperature jump at the wall, which
come about as a result of extrapolating the Navier-Stokes solution
from the correct main �ow solution to the boundary layer. Since
the primary interest is in the main �ow, it is more important
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to obtain accurate results there than at the wall. For most cases
where� is high, the aberrations in the solution arising from the
slip velocity and temperature jump are relatively small, andcan
be tolerated. Kogan [56] presents a cogent explanation for the
necessity of slip boundary conditions for treating �ows at small
Knudsen numbers. A primer on the compressible Navier-Stokes
equations, accommodation coe�cients, and the slip velocity
and temperature jump boundary conditions can be found in
Karniadakis et al. [57].

The volume conditions refer to the material properties of
the �uid (N 2, Ar, and Xe gas) and the solid (Al2O3) used
in the simulations. For the former, CFD-ACEC contains a
database of elemental and molecular species with their respective
atomic or molecular mass available by default. The Lennard-
Jones length or collision diameter for each species is entered
into the database using values from Poling et al. [58]. It is
also necessary to input values for the isobaric speci�c heat,
thermal conductivity, and dynamic viscosity of each gas species.
These parameters are obtained from the NIST Thermophysical
Properties of Fluid Systems database [59] as a piecewise linear
function of temperature (in increments of 1 K from the boiling
point) at a constant pressure of 1 Torr (as PR and MiniPR operate
in the 0–10 Torr range). The mass di�usivity data of the each
gas species are collected from Amdur and Mason [60], Amdur
and Schatzki [61], Dymond [62], Hutchinson [63], Winn [ 64],
and Winter [65], wherein the values are quoted for atmospheric
pressure (760 Torr). For self-di�usion in gases, the empirical
relationD / p� 1 [66] is used to calculate the respective values for
1 Torr. A �fth-order Maclaurin series in temperature is �ttedto
the 1 -Torr mass di�usivity data, and the polynomial coe�cients
are entered into the CFD-ACEC database. Finally, while it is
possible to input the density using a piecewise linear functionof
temperature as before, the ideal gas law is used instead due to
the requirements for modeling compressible �ows. As for solid
materials, similar parameters that are required are obtained from
sources like [67, 68].

5. RESULTS AND DISCUSSION

5.1. Set 1: PR Laboratory Condition
The main input for the CFD cold gas simulations is the inlet
�ow rate of the selected gas and the outlet pressure. The �rst
set of simulations with the PR mesh was ran with 25–144 SCCM
of Ar and 25–100 SCCM of N2 (to verify the calibration of
the mass �ow controller GCF for Ar), and the outlet pressure
of each case is set to the experimentally measured chamber
pressure.Figure 3 plots the PR experimental plenum pressure
(blue line) and chamber pressure measurements (black line) for
Ar. Also plotted are the simulated plenum pressure using inviscid
(magenta crosses), no-slip (magenta plusses), and slip boundary
conditions with various accommodation coe�cients (circles) for
Ar. The results for N2 are very similar, and not discussed here.

It is found that the simulated plenum pressure matches
the experimental plenum pressure only when a slip boundary
condition is used with the recommended value of� u D 0.9
for both N2 and Ar [38–46]. The plenum pressure is very
slightly overestimated with a no-slip boundary condition,and

FIGURE 3 | Experimental plenum pressure (blue line) and chambe r
pressure (black line) measurements against mass �ow rate of Ar i nto
PR. Set 1: Simulated plenum pressure using inviscid (magenta crosses),
no-slip (magenta plusses), and slip boundary conditions with � u D 0 (red
circles),� u D 0.5 (cyan circles), and� u D 0.9 (blue circles). Set 3:� u D 0.9
(black triangles).

severely underestimated with an inviscid boundary condition.
Using � u D 0 produces results similar to the inviscid case, as
expected. Notably,� u D 0.5 gives only slight underestimates,
while the results for� u D 1 (not shown for clarity) is almost
indistinguishable from that of� u D 0.9. This is expedient, as it
means that the simulations are insensitive to small errors in� u
for values close to 1.

The plenum pressure is a very unambiguous and spontaneous
indicator of the �ow characteristics in PR. For the experimental
100 SCCM Ar case, the steady state plenum pressure is measured
to be 1.365 Torr, while the chamber pressure is at 0.349 Torr. For
reference, the simulated steady state pressure pro�le (solidblue
line) of the� u D 0.9 case, which matches the experiment best, is
plotted inFigure 4.

The experiment begins in the initial state where the whole
system is at the base pressure of� 1 mTorr. Immediately after
the mass �ow controller is turned on, Ar gas entering the system
causes the pressure to increase in the plenum, thereby settingup
a small pressure di�erence between the plenum and the chamber.
The pressure di�erence is bridged by the discharge volume, which
tries to balance the pressure on both ends by moving gas from
the plenum where the pressure is higher to the chamber where
the pressure is lower. However, the rate at which the gas can be
moved is dependent on the steepness of the pressure gradient. In
the beginning while the pressure di�erence is still small, the �ow
rate through the discharge volume will be less than the imposed
�ow rate into the plenum. Consequently, the pressure in the
plenum will continue to increase until the pressure gradient inthe
discharge volume can support the full �ow rate, at which point
the system attains equilibrium. This happens on the time scale of
about 10 s.

While it is possible to model the temporal evolution of the
cold gas �ow in PR from the initial state with CFD-ACEC, the
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FIGURE 4 | Axial pro�les of the pressure (blue) and Knudsen nu mber
(red) at r D 0 mm for the 100 SCCM Ar PR simulations in Set 1 (solid
lines) and Set 3 (dash-dotted lines). � 30 mm � z < � 18 mm is the
plenum, � 18 mm � z � 0 mm is the discharge volume, andz > 0 mm is the
downstream region.

normal operation of PR is in the steady state with constant gas
�ow. The simulated steady state axial velocity pro�le (solidblue
line) is plotted inFigure 5along with the local sound speed (solid
red line), calculated using the equation:

cs D

r

 kBT

m
(2)

where
 is the adiabatic index,kB D 1.38064852� 10� 23J�K� 1

is the Boltzmann constant,T is the local temperature of the gas,
andm is the atomic mass of the gas. As the plenum has a much
larger diameter than the discharge volume, it acts as a reservoir
where the pressure is constant throughout most of its volume,
and the �ow there is e�ectively stagnant. As the diameter of the
system shrinks from the plenum to the discharge volume, thereis
an increase in the axial velocity accompanied with a decreasein
the pressure due to the Venturi e�ect. In the discharge volume,
the �ow is further accelerated by the pressure gradient up to the
local sound speed near the exit. Past the exit, the �ow decelerates
as it expands into the downstream region, where the pressure is
at a constant 0.349 Torr.

It can be seen from the Knudsen number pro�le (solid red
line) in Figure 4that for a pressurized downstream region which
reproduces the laboratory conditions, the �ow in the plenum and
downstream regions are in the continuum regime (Kn. 0.01)
while the �ow in the discharge region is in the slip regime (0.01 .
Kn . 0.1). The �ow characteristics in PR is dominated by the
�ow in the discharge region, and hence ultimately dictated by
the slip regime �ow behavior. This substantiates the necessity of
using the correct slip boundary conditions and� u for modeling
PR and other systems operating in the slip regime.

5.2. Flow Velocity Choking
Before proceeding to the CFD simulations involving vacuum
regions, it is �rstly necessary to examine the theory of �ow
velocity choking. Consider isentropic �ow of a compressible

FIGURE 5 | Axial pro�les of the axial velocity (blue) and loca l sound
speed (red) at r D 0 mm for the 100 SCCM Ar PR simulations in Set 1
(solid lines) and Set 3 (dash-dotted lines).

�uid through a stream tube. Assume that the cross-sectional
area of the stream tube varies su�ciently slowly with distance
along the z-axis, so that the �ow depends only on the distance
along the stream tube and is approximately one-dimensional.
Then, from using Bernoulli's equation, the conservation of mass,
and the isentropic �ow relations [69], the variation in the axial
velocity of the �ow duz=uz can be related to the variation of the
cross-sectional area dA=A by:

duz

uz
D

1
Ma2 � 1

�
dA
A

(3)

where MaD uz=cs is the Mach number, de�ned as the ratio of the
axial velocityuz to the local sound speedcs.

Equation (3) reveals that when the �ow is subsonic (Ma< 1),
a decrease inA will result in an increase inuz (duz / � dA).
Conversely, when then �ow is supersonic (Ma> 1), increasing
A will also increaseuz (duz / dA). At the critical state of
Ma D 1, dA=A must necessarily be zero. This means that
either the �ow must expand into an in�nite area, or that the
cross-sectional area of the stream tube must be at a minimum,
i.e., at the vena contracta. This fact is of great signi�cance in
high speed �ows, as it dictates that a subsonic �ow cannot be
accelerated to supersonic speed without �rst having satis�ed
either of the aforementioned conditions. Hence, for a converging
nozzle, the maximum �ow velocity attainable will be the local
sound speed, occurring at the exit. To achieve supersonic �ow,a
converging-diverging nozzle is required. The convergent section
of the nozzle accelerates the subsonic �ow, which then attains
the local sound speed when the cross-sectional area narrows to
the minimum at the throat. Thereafter, the divergent section
of the nozzle further accelerates the sonic �ow to supersonic
speed.

As discussed in the previous section, the acceleration of the
�ow is directly related to the pressure gradient. If the pressure
gradient is insu�ciently steep, the �ow will not become sonic.
Thus, there is a minimum pressure di�erence across the vena
contracta required for achieving sonic �ow. For a polytropic
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gas with the adiabatic index
 , the ratio of the stagnation
pressureps upstream of the vena contracta to the critical
downstream pressurep�

0 required for achieving sonic �ow is
given by:

ps

p�
0

D
�


 C 1
2

� 


 � 1

(4)

Equation (4) is exact only if the pressure di�erence occurs in
the immediate vicinity of the vena contracta. In such case, the
critical pressure ratio is 2.053 for a monatomic ideal gas with

 D 5=3, and 1.893 for a diatomic ideal gas with
 D 7=5.
The critical pressure ratio varies almost linearly with
 , and
is of the same order of magnitude for all gases (ps=p�

0 � 2).
When the critical pressure ratio is satis�ed, the �ow velocity
attains the local sound speed at the vena contracta. Further
decreasing the downstream pressure will not cause the �ow
velocity at the vena contracta to increase past the local sound
speed, since MaD 1, if it occurs, must occur at the vena
contracta. This phenomenon is known as �ow velocity choking.
When the �ow is choked, the �ow conditions upstream of
the vena contracta become insensitive to the �ow conditions
downstream.

In reality, the pressure drop is not immediate but instead
manifests over a nonzero distance. In the example of PR, as
shown in Figure 4, the pressure falls continuously along the
entire length of the discharge volume. Hence, the critical pressure
ratio given by Equation (4) cannot be used to determine if the
�ow velocity choking condition is met. For choked �ow to occur,
the pressure must fall su�ciently sharply in a local region, which
is only possible if the stagnation pressure in the plenum is many
times higher than the downstream pressure.

5.3. Set 2: PR Nozzle Choked Flow
Condition
To demonstrate and to test the treatment of �ow velocity choking
in CFD-ACEC, the second set of simulations uses a slightly
modi�ed version of the PR mesh. The only di�erence between the
original PR mesh and the mesh used in Set 2 is the introduction
of a constriction atz D � 3 mm to replicate a simple converging-
diverging nozzle. The convergent section is at� 6.5 mm < z <
� 3 mm, and the divergent section is at� 3 mm < z < 0 mm.
The diameter of the throat is 2.1 mm, half that of the discharge
volume diameter, while the diameter of the exit is unchanged.
The simulations in this set are run in pairs, one with the outlet
pressurep0 set to the experimentally measured outlet pressure
pc, and the other withp0 D 0 Torr, with 25–144 SCCM of Ar.

Figure 6 illustrates the geometry of the Set 2 mesh, focusing
in particular on the �ow conditions through discharge volume
and the converging-diverging nozzle. Displayed here are the
simulations using 100 SCCM of Ar, withp0 D 0.349 Torr (top)
andp0 D 0 Torr (bottom). The velocity magnitude is mapped in
color, while the isocurves (black lines) represent Mach numbers
0.25, 0.5, 0.75, and 1. In both cases, the �ow enters the discharge
volume uniformly across most of the diameter, with a slow
boundary layer near the wall. Before the nozzle, the velocity
magnitude is much lower than Mach 0.25. As the cross-sectional
area begins to decrease, the �ow is accelerated very quickly in the
short convergent section, up to close to the local sound speed at
the throat. The actual Mach 1 sonic surface occurs very slightly
behind the throat due to boundary layer e�ects. In the divergent
section, the �ow is further accelerated to supersonic speeds. In
thep0 D 0.349 Torr case however, the �ow is almost immediately
decelerated upon leaving the discharge volume as it encounters
the static gas present in the downstream region.

FIGURE 6 | Set 2: PR nozzle using 100 SCCM of Ar, with p0 D 0.349 Torr (top) and p0 D 0 Torr (bottom) . Velocity magnitude is mapped in color from 0 m�s� 1

(blue) to 527.9 m�s� 1 (magenta) in logarithmic scale, while the isocurves (blacklines) represent Mach numbers 0.25, 0.5, 0.75, and 1. With a converging-diverging
nozzle, the �ow velocity becomes choked at the throat, and the�ow conditions upstream are identical despite the large difference in downstream pressure.
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Most importantly, Figure 6 shows that the �ow velocity
does indeed become choked at the throat of a converging-
diverging nozzle. When the �ow is choked, the �ow conditions
upstream of the throat are identical in the two cases despite the
large di�erence in the downstream pressure. This behavior is
consistent for thep0 D pc andp0 D 0 Torr pairs of simulations
for all the �ow rates tested, with small di�erences in the exact
position and shape of the sonic surface due to the di�erent
thicknesses of the boundary layer for di�erent �ow rates.

Figure 7 plots the plots the pressure (blue) and Knudsen
number (red), andFigure 8 plots the axial velocity (blue) and
sound speed (red) pro�les on the central axis for the Set 2
100 SCCM Ar,p0 D 0.349 Torr case (solid lines) andp0 D 0 Torr
case (dash-dotted lines). The respective parameters are congruent
for both cases in the whole range from the front wall of the
plenum atz D � 30 mm, through the discharge volume and the
converging-diverging nozzle, up to very near the exit.

FIGURE 7 | Axial pro�les of the pressure (blue) and Knudsen nu mber
(red) at r D 0 mm for the PR simulations in Set 2 (Figure 6) with
100 SCCM Ar, p0 D 0.349 Torr (solid lines) and p0 D 0 Torr (dash-dotted
lines). The throat of the nozzle is located atz D � 3 mm.

FIGURE 8 | Axial pro�les of the axial velocity (blue) and loca l sound
speed (red) at r D 0 mm for the PR simulations in Set 2 (Figure 6) with
100 SCCM Ar, p0 D 0.349 Torr (solid lines) and p0 D 0 Torr (dash-dotted
lines).

The plenum pressure in the Set 2 PR nozzle 100 SCCM Ar
simulation is 2.760 Torr, about twice as high as the 100 SCCM
Ar simulation from Set 1, due to the constriction of the discharge
volume. With a converging-diverging nozzle, the pressure in the
discharge volume remains high with only a very slight gradient
through most of its length as distinct from the result in Set 1,and
most of the pressure di�erence is dropped in the vicinity of the
throat. For the present case, Equation (4) may be used to give a
rough estimate of the critical downstream pressure required for
sonic choked �ow to occur. Finally, near the exit atz D 0 mm,
the pressure in thep0 D 0 Torr case decreases monotonically
to zero to match the set outlet boundary condition. In thep0 D
0.349 Torr case, the �ow is slightly overexpanded in the divergent
section of the unoptimized nozzle, and the pressure �uctuates
slightly at z D 0–3 mm before settling to the downstream
pressure.

As for the axial velocity (Figure 8), the increase in velocity
due to the Venturi e�ect at the entrance of the discharge
volume is smaller than in Set 1 (Figure 5), since the pressure
in the discharge volume is similar to the plenum pressure.
Also, the small pressure gradient in the discharge volume does
not accelerate the �ow, resulting in an almost constant axial
velocity in the discharge volume. As discussed earlier, most of
the acceleration takes place in the converging-diverging nozzle.
Overall, the �ow behavior in the PR nozzle simulations is
consistent with the theory of �ow velocity choking laid out in the
previous section.

For the p0 D 0 Torr cases in this set of simulations and
hereafter, the high Knudsen number pastz D 0 mm means that
the results in the downstream region are not guaranteed to be
valid and therefore should not be used for analysis. Even so, this
set of simulations demonstrates that CFD-ACEC is able to treat
�ow velocity choking correctly and reliably provides valid results
in the regions upstream ofz D 0 mm, even if the downstream
region, which accounts for a signi�cant volume of the simulation
mesh, has Knudsen numbers higher than what CFD techniques
usually allow.

5.4. Set 3: PR Vacuum Condition
Relying on the principles established by Set 2, the third set
of simulations uses the original PR mesh, with 25–144 SCCM
of Ar, � u D 0.9, and the outlet pressurep0 set to 0 Torr to
model the performance of PR in vacuum.Figures 4, 5show the
pressure (blue), Knudsen number (red), axial velocity (blue), and
sound speed (red) pro�les on the central axis of the 100 SCCM,
p0 D 0 Torr simulation (dash-dotted lines) compared with the
100 SCCM,p0 D 0.349 Torr result (solid lines) from Set 1. The
general �ow behavior in both cases are very similar, and also
analogous to the other �ow rates. The �ow starts o� at zero
velocity in the plenum at the stagnation pressure; it is then
accelerated by the pressure gradient in the discharge volume, and
leaves PR at high velocity.

It can be seen inFigure 5 that the axial velocity reaches the
local sound speed, or Mach 1, atz D � 0.58 mm for the Set
1 case, and slightly further upstream atz D � 1.56 mm for
the Set 3 case. Otherwise, the axial velocity pro�les of the two
cases are approximately the same up toz D 0 mm. Another
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sign that the conditions upstream are unchanged can be seen in
Figure 3, where the plenum pressures in the Set 3 simulations
(black triangles) match with both the Set 1 simulations and the
experimentally measured values across di�erent �ow rates.

The results from the Set 3 simulations are only valid in the
plenum and the discharge volume where the �ow is in either
the continuum or slip regime and the Knudsen number is low
(Kn . 0.1). Past the exit atz D 0 mm, the Knudsen number
rises sharply, and the �ow progresses to the transitional regime
(0.1 . Kn . 10) and beyond. Despite the large di�erence in the
downstream pressure, the pressure pro�le in the plenum and the
discharge volume for Set 3 remain approximately the same as Set
1 for each set �ow rate. This is due to �ow velocity choking in the
discharge volume for the Set 3 simulations.

Figure 9 provides a visualization of the cross sectional �ow
pro�le for both the Set 1 (top) and the Set 3 (middle) cases with
100 SCCM of Ar. As before, the velocity magnitude is mapped in
color, while the isocurves (black lines) represent Mach numbers
0.25, 0.5, 0.75, and 1. Again, it shows the �ow entering the
discharge volume uniformly across most of the diameter, except
in the boundary layer near the wall. The parabolic shape of the
velocity magnitude pro�le reveals that the middle of the �ow
accelerates faster than the boundary layer �ow, which remains

slow until near the exit. The Mach 1 sonic surface for the Set 3
case is parabolic in shape and curves slightly inward near the wall
[70], with supersonic �ow leaving the exit across most of the area
for r � 1.64 mm. Disregarding the boundary layer, the Set 3 case
is considered to be fully choked. This behavior is representative of
the rest of the simulations in Set 3 where the �ow is fully choked
for all the set �ow rates.

On the other hand, the �ow is slightly slower in the Set 1
case. As such, the sonic surface is not developed to the full extent
within the discharge volume, leaving only a supersonic �ow area
for r � 0.73 mm. Hence, the �ow in the Set 1 case is only
partially choked. For Set 1, this behavior only manifests at �ow
rates beyond about 75 SCCM. Below this value, the �ow velocity
in PR is completely subsonic. This shows that the 4: 1 pressure
ratio, although being higher than the critical pressure ratio given
by Equation (4), is still insu�cient for choked �ow to occur.This
further reinforces that Equation (4) cannot be used in cases where
the pressure drop is not immediate.

5.5. Thrust
The thrust from cold gas or electrothermal thrusters is derived
from the momentum of the exhausted neutral gas propellant, as
distinct from electrostatic or electromagnetic thrusters, where the

FIGURE 9 | Set 1: PR with 100 SCCM of Ar, p0 D 0.349 Torr (top) ; Set 3: PR with 100 SCCM of Ar(middle) ; Set 4: MiniPR with 60 SCCM of Xe(bottom) . The
color map and isocurves use the same scale as inFigure 6 .
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thrust is de�ned as the force in reaction to the accelerationof
ions through an electric �eld [71, 72]. PR belongs to the former
class of neutral gas thrusters; it operates as an electrothermal
microthruster when RF power is supplied to ionize and heat the
neutral gas propellant [30, 31], and as a cold gas microthruster
when no RF power is supplied.

The general thrust equation is used to calculate the thrust
generated by neutral gas thrusters, including conventional
rockets:

Ft D Pm
�
uz,e � uz,0

�
C

�
pe � p0

�
Ae (5)

where Pm is the mass �ow rate of the gas,A is the area, and the
subscripts “e” and “0” denote exit and the ambient free stream
respectively. For the present purpose, the free stream velocityuz,0
is zero, and the free stream pressure is de�ned to be equal to
the outlet pressure. The �rst term in Equation (5) represents the
component of the thrust force arising from the momentum of the
ejected propellant, while the second term represents the pressure
force di�erence between the exit area and the equivalent areaon
the (external) front of PR.

In cases wherepe � p0 and uz,e � cs across the exit, the
equationQFT D Pmcs may be used to give a rough estimation of the
thrust. For high pressure and large geometries as in conventional
rocket nozzles, this approximation is valid as the mass density,
axial velocity, and pressure are typically uniform in the main
�ow across most of the exit area. However, for low pressure and
small geometries like in microthrusters, boundary layer e�ects
near the wall are nontrivial and often signi�cant compared to
the main �ow, resulting in nonuniform pro�les for all the three
parameters. This is evident in PR, as shown inFigure 10, which
displays the axial velocity (red), density (black), and pressure
(blue) pro�les across the exit for the 100 SCCM Ar simulation
in Set 1 (solid lines) and Set 3 (dash-dotted lines). The pro�les for

FIGURE 10 | Radial pro�les of the axial velocity (red, scale:
� 102 m�s� 1), density (black, scale: � 10� 3 kg �m � 3), and pressure (blue,
scale: Torr) at the exit z D 0 mm for the 100 SCCM Ar PR simulation in
Set 1 (solid lines) and Set 3 (dash-dotted lines).

the rest of the simulations of other �ow rates are not shown as
they are very similar in shape, with the only di�erence being the
heights of the respective pro�les.

Additionally, as shown inFigure 9for cylindrical geometries,
the sonic surface is not planar and its position does not coincide
with the exit surface, and can vary signi�cantly depending on
the gas and the choked �ow conditions. Furthermore, the local
sound speedcs at the exit is dependent on the local temperature,
which may be di�erent from the initial temperature or stagnation
temperature of the gas upstream, and di�cult to measure. In
cases wherepe 6D p0, and especially for space applications
when pe > p0, the pressure thrust can be signi�cant and its
contribution must be taken into account with the addition of
a term in the form ofpeAe, though in practicepe cannot be
measured easily.

In these circumstances, calculation of the thrust requiresthe
integral form of the general thrust equation:

Ft D 2�
Z R

0
r

�
� eu2

z,e C pe � p0
�

dr (6)

with the radial density� e, axial velocityuz,e, and pressurepe
pro�les across the exit, integrated from the axis atr D 0 mm to
the wall atr D 2.1 mm.

To ascertain the accuracy of the thrust calculations, a similar
integration of the mass �ow rate of the gas is performed across
the exit area. It is found that the �ow rate across the exit
to be consistently 2.8–2.2% below the range of set values (for
ascending �ow rates) in Set 1, and 4.9–4.1% in Set 3. In Set 3,
the corresponding values are 1.5–0.4% for thep0 D pc cases
and 3.4–2.7% for thep0 D 0 Torr cases. This small error may
be attributed to the use of only 21 cells across the radius of the
exit, resulting in the trapezoidal underestimation of the concave
down pro�les, or the de�ciencies of the CFD-ACEC code in
dealing with supersonic �ows at Mach numbers higher than 2.
Additionally, because the axial velocity at the wall is not zero
due to the �ctitious slip velocity imposed by the slip boundary
conditions, the thrust contribution from the boundary layer will
be very slightly overestimated. However, while this uncertainty
is not quanti�able, it should be negligible compared to the
mass �ow rate error. Consequently, it is likely that the thrust
calculation underestimates the real thrust by the aforementioned
amounts.

Figure 11 plots the calculated raw thrust values for the Set
1 and Set 3 simulations using 25–144 SCCM of Ar. The thrust
for the Set 1 simulations is 47–38% less (for ascending �ow
rates) than the Set 3 simulations primarily due to the much
larger pressure thrust arising from the large di�erence between
the exit pressurepe and the ambient pressurep0 D 0 Torr,
which accounts for 48–32% of the total thrust in Set 3. In Set 1,
particularly for higher �ow rates, the exit pressure is very close to
the ambient pressure, therefore the pressure thrust is very small,
and mass thrust accounts for almost all of the total thrust (65%
for 25 SCCM, 82–92% for 50–144 SCCM).

For comparison, the calculated raw thrust values for the Set
2 PR nozzle simulations are plotted inFigure 12. The p0 D
0 Torr cases in Set 2 perform only 1.3–6.6% better than the
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FIGURE 11 | Calculated thrust (blue) and speci�c impulse (red ) for PR
simulations in Set 1 (circles) and Set 3 (triangles). Thrust increases linearly
with �ow rate, while speci�c impulse remains roughly constant. The speci�c
impulse for Set 3 is close to the theoretical maximum value of57.0 s for Ar.

FIGURE 12 | Calculated thrust (blue) and speci�c impulse (red ) for PR
converging-diverging nozzle simulations in Set 2: laborato ry condition
(circles) and vacuum condition (triangles). Thrust increases linearly with
�ow rate, with a slightly higher gradient compared to Set 1 andSet 3. The
speci�c impulse for Set 2 vacuum condition is higher than Set 3, and close to
the theoretical maximum value of 57.0 s for Ar.

simulations in Set 3. On the other hand, thep0 D pc cases in Set
2 perform 2.9–12.6% better than the Set 1 simulations for �ow
rates 50–144 SCCM, but sees a 6.6% decrease in performance for
the 25 SCCM simulation. This decrease in thrust for the 25 SCCM
simulation in Set 2 is due the premature deceleration of the �ow
while it is still inside the divergent section of the nozzle by the
static gas present in the downstream region. For thep0 D 0 Torr
cases, the �ow at the exit is slightly less underexpanded thanin Set
3, meaning that the pressure thrust is less dominant, accounting
for 38–17% of the total thrust. For thep0 D pc cases however, the
�ow at the exit is overexpanded for �ow rates above 50 SCCM,
meaning that the pressure thrust is negative, and detracts from
the total thrust.

Overall, there is not a large di�erence between the
performance of the PR nozzle model and the original PR

model mainly due to the fact that the present design of the
nozzle is not optimized for either vacuum or any pressure in
particular. However, this comparison serves to demonstrate that
the generated amount of thrust is ultimately determined by
the mass �ow rate of the propellant rather than the stagnation
pressure, as the Set 2 simulations generate only marginally higher
thrust even though they have about twice the stagnation pressures
of their counterparts in Set 1 and Set 3 for the same �ow rates.

5.6. Speci�c Impulse
The speci�c impulse is a measure of the e�ciency of a thruster,
de�ned as the change in momentum delivered per unit of
propellant. For neutral gas thrusters, the theoretical maximum
speci�c impulse a gas can achieve is given by the following
thermodynamic relation:

NIsp D
1
g

�

(
kBTs

m
�

2


 � 1

�

"

1 �
�

p0

ps

� 
 � 1



#) 1
2

(7)

whereg D 9.81 m�s� 2 is the standard acceleration due to gravity,
kB D 1.38064852� 10� 23J�K� 1 is the Boltzmann constant,
 is
the adiabatic index,m is the atomic mass of the gas, andTs andps
represent the stagnation temperature and pressure respectively.
Thep0 term within the parentheses assumes that the �ow at the
exit is perfectly expanded such thatpe D p0. For expansion into
vacuum,NIsp becomes independent ofps, and is solely determined
byTs. ForTs D 300 K, the theoretical maximum speci�c impulse
for monatomic Ar gas is 57.0 s.

Figures 11, 12 plots the speci�c impulse of all the preceding
simulations, calculated via dividing Equation (6) by the
integrated mass �ow rate across the exit area of the respective
simulations. Overall, theNIsp is approximately constant across
the range of �ow rates, as expected from theory. There is some
deviation from the constant value in the Set 3 simulations asseen
in Figure 12, indicating that the converging-diverging nozzle is
more e�cient at higher �ow rates.

To obtain the maximum possible total thrust, an optimized
nozzle should be used to expand the exhaust such thatpe D
p0, and all of the thrust is derived from the momentum of the
ejected propellant. While this is easily achieved in a pressurized
environment even with just a cylindrical tube as shown in theSet
1 simulations, it is in practice impossible to achieve in vacuum
as it would require an in�nitely long nozzle. Despite that fact,
the lower downstream pressure of the Set 3 simulations allow the
propellant to be accelerated to a higher axial velocity acrossmore
of the exit area, resulting in an average speci�c impulse that is
considerably closer to the theoretical maximum value.

Using the 100 SCCM Ar case for comparison, the calculated
speci�c impulse and the relative percentage to the theoretical
maximum value are as follows: Set 1: 26.8 s (72.4% ofNIsp); Set 3:
46.4 s (81.4% ofNIsp); Set 2,p0 D 0.349 Torr: 29.1 s (68.0% ofNIsp);
and �nally Set 2,p0 D 0 Torr: 48.3 s (84.8% ofNIsp). Note thatNIsp is
calculated with the respectivep0 andps values of each simulation.
From these values, it can be concluded that the converging-
diverging nozzle is more e�cient than the cylindrical geometry
for expansion into a vacuum environment. In a pressurized

Frontiers in Physics | www.frontiersin.org 12 January 2017 | Volume 4 | Article 55



Ho et al. PR Microthruster Cold Gas CFD

environment however, the unoptimized nozzle will overexpand
the �ow, resulting in a lower e�ciency than the underexpanded
�ow in the cylindrical geometry case.

5.7. Boundary Layer Friction Force
Figure 13shows two equivalent methods for calculating thrust,
using the geometry of PR as an example. The general thrust
equation involves summing all the forces acting upon the volume
of gas from the exterior, while the internal forces method involves
summing all the forces acting upon the surroundings from
within the interior of the gas. As mentioned previously, the
general thrust Equation (5) takes into account both the force
from the momentum of the ejected propellant and the pressure
force di�erence between the external front and rear faces of the
microthruster.

On the other hand, when using the alternative internal forces
method, the total thrust is given by:

Ft D
�
ps � pe

�
Ae � Fbl (8)

whereps is the stagnation pressure of the gas in the plenum, and
Fbl is the friction force between the boundary layer and the wall.
To explain the origin ofFbl, suppose an inviscid �uid was used
with a frictionless, adiabatic wall. Then the axial velocity of the
�ow would be high and uniform across the diameter and length
of the discharge volume, andps in the plenum would be low as
the gas is able to exit without any resistance. In this hypothetical
case, sinceFbl D 0, the total thrust is just the force di�erence
between the internal front and rear faces given by

�
ps �

pe
�

Ae.
Suppose the �owing �uid was then imbued with the viscosity

and friction (represented by� u) of a real gas. Then the gas
molecules incident on the wall must slow down due to the
friction, and the axial velocity of the surrounding �ow would also
decrease due to the viscosity of the �uid. This produces a velocity
pro�le that is peaked in the middle of the discharge volume,
as expected with laminar pipe �ow in the continuum and slip
regimes. The deceleration of the boundary layer �ow compared
to the main �ow is evidence that momentum is being transferred
from the �ow to the wall through friction and viscosity e�ects,

FIGURE 13 | Force diagrams for the general thrust equation (left ) and
the internal forces method(right) , where Pmuz,e represents the force from the
ejected propellant at the exit,p0 is the ambient pressure,pe is the exit
pressure,ps is the stagnation pressure in the plenum, andFbl is the boundary
layer friction force acting upon the wall of the discharge volume.

resulting in a forceFbl acting in the direction of �ow. Since this
direction is opposite to the direction of intended motion,Fbl
detracts from the total thrust.

As a direct consequence ofFbl, ps in the plenum would
increase as the �ow through the discharge volume becomes
restricted by the boundary layer e�ects. Additionally, if the
wall were nonadiabatic, the wall material would act as a
thermal source (or sink), and further increase (or decrease) ps
accordingly. For �ows on larger scales or where Kn! 0, ps
remains mostly una�ected and the magnitude ofFbl is negligible
when compared with the net pressure force term in Equation (8).
However, on miniature scales as in PR,ps is greatly in�ated and
Fbl manifests as an unavoidable and signi�cant fraction of the
in�ated net pressure force. Hence, using the in�atedps without
accounting forFbl will result in a overestimation of the total
thrust.

In practice,Fbl by itself is di�cult to quantify. Nevertheless,
Fbl can be calculated by equating Equations (5) and (8) when
all the other variables are known. SinceFbl is dependent on the
location and extensiveness of the boundary layer, it is ultimately
dependent on the geometry of the microthruster. In the case of
the original PR geometry used in Set 1 and Set 3,Fbl is 0.56–
1.46 mN (for ascending �ow rates), acting upon the wall of the
discharge volume. As for the converging-diverging nozzle PR
geometry used in Set 2,Fbl mostly acts upon the wall of the
divergent section of the nozzle, where the velocity of the main
�ow relative to the wall is the highest, with the component in
the axial direction (as opposed to parallel with the wall) being
1.24–5.04 mN.

These values show thatFbl can be, and is in fact often higher
than the total thrust generated by PR. This is clear evidence that
boundary layer e�ects are signi�cant and must be accounted for,
and calculations which are usually used for conventional rockets
cannot be used for microthrusters operating at low pressure
and with dimensions similar to or smaller than PR. Despite
its inconvenience, information on the magnitude ofFbl can
be used to optimize the surface properties or geometry of the
microthruster, and thereby maximize thrust.

5.8. Set 4: MiniPR Vacuum Condition
To validate the CFD simulation and thrust calculation results, a
fourth set of simulations is performed using the MiniPR mesh to
compare with published experimental results of MiniPR in the
Wombat space simulation chamber [27]. The chamber pressure
was under 1 mTorr with full gas �ow; having veri�ed that the
simulation results are insensitive to the outlet pressure at this
pressure range, the outlet pressure was set atp0 D 0 Torr for each
case with 15–60 SCCM of Xe.

Using � u D 1.0 for Xe [38, 44], the simulated plenum
pressures obtained across the range of �ow rates closely match
the experimentally measured values, with a small systematic
discrepancy of aboutC0.28 Torr, or equivalent to� 2.3 SCCM
attributed to the miscalibration of the mass �ow controllerif
the pressure measurements are taken to be the baseline. This
error is reasonable as the mass �ow controller in the experiment
was calibrated for Xe by measuring the volume displacement of
the gas in water. Following the same data analysis procedure as
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above, it is found that the mass �ow rate error at the exit is
10.8–10.1% under the set values, somewhat higher than the PR
simulations due to the MiniPR mesh only having 8 cells across
the radius of the exit.

As MiniPR has the same cylindrical geometry as PR, the
�ow behavior is very similar to that shown inFigures 4, 5. For
reference,Figure 9includes an illustration of the �ow conditions
in MiniPR (bottom). Note that the sound speed in Xe is lower
than in Ar, so the �ow velocities in MiniPR is lower than in
PR. Since the sonic surface is determined by geometry, the sonic
surface in MiniPR has the same parabolic shape as that in PR.

The cold gas thrust for MiniPR is calculated as before, with
the axial velocity, density, and pressure pro�les across the exit
(red, black, and blue dash-dotted lines) plotted inFigure 14.
Figure 15plots the calculated thrust (blue triangles) along with
the experimental results (magenta squares) from Charles et al.
[27]. In the experiment, the cold gas thrust was measured after
the gas �ow had been shut o� at the mass �ow controller. This
means that the gas entering MiniPR was from the residual volume
of gas trapped in the gas line (d D 1 mm, l D 4 m) between
the mass �ow controller and MiniPR. As the trapped gas require
many hours to be fully depleted, it is reasonable to approximate
a constant but slightly diminished �ow rate in the short duration
when each measurement was taken. Assuming a 30% decrease in
the �ow rate after the �ow was turned o�, the corrected cold gas
thrust values (green squares) become in line with the simulated
thrust values. Since MiniPR has the same geometry as PR,pe will
not be expanded to zero. Thus, the pressure thrust is signi�cant
and accounts for 33–27% of the total thrust for ascending �ow
rates of Xe. For comparison,Fbl in MiniPR is 0.55–1.04 mN.

The theoretical maximum speci�c impulse of Xe is 31.4 s
for Ts D 300 K. The averageIsp calculated from the MiniPR
Xe simulations is 26.2 s (83.4% ofNIsp), showing a relative

FIGURE 14 | Radial pro�les of the axial velocity (red dash-do tted line,
scale: � 102 m� s� 1), density (black dash-dotted line, scale:
� 10� 2 kg � m � 3), and pressure (blue dash-dotted line, scale: Torr) at the
exit z D 0 mm for the 60 SCCM Xe MiniPR simulation in Set 4,
representative of the experiment in Charles et al. [ 27].

performance consistent with the Set 3 PR simulations using Ar.
The lower cold gasIsp reported in Charles et al. [27] is unlikely to
be due to a lowerTs as MiniPR was in thermal contact with the
surrounding environment through the thrust balance. Operating
with a plasma raises the e�ectiveTs, which increases the thrust
and Isp performance; the highestIsp was obtained at the lowest
�ow rate, as a smaller mass of propellant is able to reach higher
temperatures when a constant amount of power was applied [27].

In the current cylindrical geometry of PR and MiniPR,
the experimentally measuredIsp cannot be used to accurately
estimate the temperature of the plasma-heated gas in the
discharge volume since the gas is not stagnant but moving at
a signi�cant fraction of the localcs where the heating occurs.
The implementation of a converging-diverging nozzle will allow a
better estimation ofTs and the real gas temperature in the region
upstream of the throat where the axial velocity of the gas is slow.
Apart from the advantage of being able to generate more thrust
from the expansion of the exhaust propellant in the nozzle, the
longer transit time through the discharge volume will result in
more e�ective gas heating, and bring about higher thrust andIsp
performance.

6. CONCLUSION

In summary, cold gas simulations of PR and MiniPR with
multiple gases have been performed using CFD-ACEC to
construct �ow models to complement and compare with
cold gas experimental measurements of the PR and MiniPR
microthrusters. This work demonstrates that using a slip
boundary condition with the correct tangential momentum
accommodation coe�cient results in precise agreement with
the experimentally measured plenum pressure and realistic �ow
behavior. The upstream behavior of the expansion of gas from
PR and MiniPR into vacuum can be accurately modeled even
with a �uid solver, provided that the simulation program is

FIGURE 15 | Calculated thrust (blue) and speci�c impulse (red ) for Set
4 MiniPR simulations (triangles), along with the experimenta lly
measured thrust from Charles et al. [ 27] (magenta squares) and their
corrected values (green squares). The speci�c impulse for Set 4 is close to
the theoretical maximum value of 31.4 s for Xe.
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able to treat �ow velocity choking. The thrust was calculated
by integrating the �ow pro�les at the exit, and the uncertainty
was deduced by evaluating the discrepancy between the set mass
�ow rate and the integrated mass �ow rate at the exit. The
simulated thrust is veri�ed to be reasonable as the calculated
speci�c impulse of each simulation is very close to the theoretical
maximum value. Finally, the simulation results for thrust and the
plenum stagnation pressure are validated by comparing them to
experimentation results, and are found to be in good agreement.

The concurrence of the simulated speci�c impulse to the
theoretical maximum values as well as the good agreement with
the experimental measurements indicate that the simulations
produce sound and reliable models for the cold gas operations
of both PR and MiniPR. For low thrust conditions where
experimental instruments are not su�ciently sensitive, cold gas
simulations can provide additional data points against which
experimental results could be veri�ed and extrapolated. The
cold gas simulations presented in this paper will be used as a

benchmark to compare with future plasma simulations of PR also
performed in CFD-ACEC.
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