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Context: Mitochondria play a vital role in producing the energy needed for different cellular activities. 
The role of mitochondria in different diseases and the aging process is gradually being clarified. 
Different studies have suggested that mitochondrial dysfunction due to mutations in genes that 
maintain the integrity of mitochondrial DNA (mtDNA), mitophagy, and apoptosis can lead to many 
neurological and muscular phenotypes as well as diseases in other organ systems including liver, 
gastrointestinal tract, heart, and kidneys. We examined the current knowledge of mitochondrial 
dysfunction and its role in renal pathophysiology. Additionally, we examined how chronic kidney 
diseases can lead to mitochondrial dysfunction through oxidative stress accumulation, which can 
subsequently lead to other pathological complications. 
Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), 
LISTA (EBSCO), and Web of Science have been searched.
Results: The renal pathological manifestation of mitochondrial dysfunction includes tubular defects, 
focal segmental glomerular sclerosis (FSGS), glomerular dysfunction, interstitial nephritis, and 
cystic kidney disease or renal tumors. These conditions can be caused by mutations in the nuclear 
genes that are involved in mtDNA replication and transcription or due to mtDNA mutations in the 
genes involved in the respiratory chain. 
Conclusions: Clearly, mtDNA plays an important role in renal pathology, and mitochondria may 
serve as a potential therapeutic target to treat different renal pathologies. 

ABSTRACT

Implication for health policy/practice/research/medical education:
Mitochondria are essential to the bioenergetics of the body. Dysfunction thereof due to genetic mutations is associated with a wide array of 
diseases, including those of the kidneys. Tubular defects, focal segmental glomerular sclerosis, glomerular dysfunction, interstitial nephritis, 
and cystic kidney disease or renal tumors are correlated with mitochondrial dysfunction and attributed to mutations in both nuclear and 
mitochondrial DNA. Chronic kidney disease can lead to mitochondrial dysfunction, creating a domino effect that leads to other pathological 
complications. Thus, mitochondria may serve as a potential therapeutic target to treat different renal pathologies.
Please cite this paper as: Al Dalbhi SK, Alqarni FA, Bahatheq NM, Alrasheed RS, Alkhowaiter RA, Alnughaimshi AA. Mitochondrial 
dysfunction and kidney disease. J Nephropathol. 2019;8(2):exx. DOI: 10.15171/jnp.2019.xx.

1. Introduction
The mitochondrion is the energy-producing organelle 
responsible for maintaining energy homeostasis and 
cellular redox within the cell (1). Mitochondria play a 
role in the generation of adenosine triphosphate (ATP) 
through the process of oxidative phosphorylation and are 
essential in metabolic signaling in heme biosynthesis and 
the pyrimidine, fatty acid β-oxidation, and tricarboxylic 

acid (TCA) Pathways (1,2). Mitochondria also participate 
in thermogenesis, calcium ion (Ca2+) homeostasis, and 
regulation of the intrinsic apoptotic pathway (1,3). 
Thus, mitochondria constitute an important source of 
intracellular oxidative stress (1,4).

Mitochondrial dysfunction is implicated in many 
neurological and muscular phenotypes as well as in diseases 
of other organ systems including the liver, gastrointestinal 
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tract, heart, and kidneys (3). The human kidney 
comprises multiple cell populations that are involved in 
the maintenance of body homeostasis through processes 
such as blood pressure regulation, nutrient reabsorption, 
acid-base and electrolyte balance, and hormone secretion 
(5,6). For proper function, the human kidney receives 
about 20% of cardiac output while consuming 10% of 
the systemic oxygen (3). The incidence of chronic kidney 
disease (CKD) among people 65 years or older was found 
to double between 2000 and 2008, from 1.8% to 4.3%, 
whereas from 1980 to 2001, the incidence of end-stage 
renal disease (ESRD) increased from 5% to 37% (7).

Mitochondrial dysfunction is recognized as a leading 
factor in many renal diseases, including both acute and 
chronic or ESRD (1,8,9). This review examines the 
current knowledge of mitochondrial dysfunction and 
genetic kidney diseases. Beginning with an overview of 
the physiology and pathophysiology of mitochondria, 
the article evaluates the role of inherited mitochondrial 
diseases in kidney diseases, how CKD can lead to 
mitochondrial dysfunction, and the use of mitochondria 
as a therapeutic target for treating kidney diseases.

2. Physiology and pathophysiology of mitochondria
Mitochondria are double-membrane organelles found 
in most eukaryotic cells in the body, except mature 
erythrocytes (10). Mitochondria have two compartments 
and three distinct regions formed by the double 
membrane; the outer mitochondrial membrane (OMM), 
cristae or intermembrane space, which is formed by the 
inner mitochondrial membrane (IMM), and the matrix 
(11,12). The OMM is selectively permeable; molecules 
less than 5,000 Da passively diffuse across this membrane, 
while larger molecules are moved through the organelle via 
translocases on the membrane (10,13). The permeability 
of the OMM increases when there is permanent damage 
to cells, allowing proteins such as cytochrome c to flow 
out of the intermembrane space and initiate the process 
of apoptosis (12,13). The folds of the cristae contain 
oxysomes, while the IMM surrounds the matrix, which 
contains genetic material for the mitochondria and 
oxidative phosphorylation enzymes. The IMM contains 
proteins that play various roles, including in ATP 
synthesis, redox reactions, regulation of mitochondrial 
dynamics, and blockage of ionic diffusion (10).

Mitochondrial DNA (mtDNA) is distinct from nuclear 
DNA (nDNA). This circular molecule comprises two 
strands, the light (L) and heavy (H) strands. Germ cells 
have low numbers of mitochondria and are selectively 
degraded. As a result, mtDNA is mostly maternally 
inherited (14,16). Human mtDNA has a mutation rate 
10 to 1000 times greater than that of nDNA (1,3,10). 
Factors such as reactive oxygen species (ROS), ionizing 

irradiation, ultraviolet light, base analogs, aging, alkylating 
agents, and modifier-induced base-pair variations can 
cause damage to mtDNA. In addition, mtDNA is affected 
by natural damage such as spontaneous base changes, base 
mismatches during the process of replication, breakage 
of single and double strands, and crosslinking between 
strands (17,19). Human mtDNA also lacks adequate 
and efficient repair mechanisms (10,20,21). As a result, 
mtDNA mutations lead to mitochondrial dysfunction, 
including increased intracellular calcium levels due to 
inactivation of the calcium pumps, reduced ATP synthesis, 
breakdown of membrane phospholipids, and activated 
phospholipases (22,23).

Mitochondrial DNA (mtDNA) repair mechanisms 
involve different pathways, including base excision repair, 
nucleotide excision repair, mismatch repair (MMR), and 
recombinational repair. These repair mechanisms are 
considered insufficient regarding the wide array of lesions 
in mtDNA that are known to occur. However, recent 
studies have revealed an expanded range of mtDNA 
repair processes, including long-patch base excision repair, 
MMR homologous recombination, and homologous end 
joining. These repair processes largely act by removal 
of oxidative DNA damage from the nucleus or ROS or 
repair of lesions (24).

The number of mitochondria in cells varies based 
on the energy demands of various tissues and organs, 
ranging from about 16 in human germ cells to about 
100 000 in oocytes (10). Mitochondria also have different 
sizes, metabolic activity, membrane potential, and mass. 
They can change their shape and turnover to maintain 
homeostasis within the cell (1,3).

3. The mitochondrial respiratory chain
Mitochondria are responsible for 90% of the body’s 
energy production through oxidative phosphorylation 
(10). The main process in ATP production involves 
coordination between the electron transport chain and 
TCA cycle (25,26). Pyruvate molecules produced through 
glycolysis pass through mitochondrial membranes and are 
converted to acetyl-coenzyme A (acetyl-CoA); pyruvate 
dehydrogenase serves as a catalyst for this process. Acetyl-
CoA enters the TCA cycle to produce flavin adenine 
dinucleotide and nicotine adenine dinucleotide with 
hydrogen ions. These reducing substrates provide protons 
and electrons for the mitochondrial respiratory chain 
(25,27,28).

During the respiratory process, oxygen is converted 
into superoxide radicals. This conversion occurs through 
electron leakage from the mitochondrial respiratory 
chain (28,30). The superoxide radicals released into the 
intermembrane space or matrix are converted into oxygen 
and hydrogen peroxide by Cu/Zn-superoxide dismutase 
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(SOD) and Mn-SOD. The excessive generation of ROS 
damages mtDNA and can lead to impaired electron 
transport chain function, reduced synthesis of ATP, 
cell injury, mitochondrial dysfunction, and apoptosis 
(10,28,31).

Mitochondrial membrane integrity can be 
compromised by cellular stress, leading to dysfunction 
and ultimately cell death through a variety of mechanisms 
(32,33). Such cell death may involve release of apoptotic 
molecules—apoptosomes and cytochrome c—from the 
intermembrane space of the mitochondria. Conversely, 
dissipation of the IMM potential can be triggered by 
the activation of mitochondrial permeability transition 
(mPT), leading to loss of energy production (31,34,35). 
However, mitochondria also have an antioxidant system 
in which H2O2 is effectively scavenged by glutathione 
peroxidase, glutathione, and the thioredoxin reductase/
thioredoxin/peroxiredoxin-3,5 system. Cytochrome c 
represents another powerful ROS scavenger (11).

4. Mitochondrial mitophagy
The integrity of mtDNA, regulation of cell death 
and survival, participation in metabolic processes, 
and transmission of redox-sensitive signals as well 
as mitochondrial morphology are maintained by 
mitochondrial fusion and fission (31). Mitochondrial 
fusion involves fusing of the OMM, IMM, and GTPase 
OPA1 (36). The proteins dynamin-related protein 1 
(Drp1), which is a GTPase, and fission protein 1 (Fis1) are 
responsible for the mitochondrial fission process. Excessive 
or inadequate mitochondrial fission can be detrimental 
to the function and survival of mitochondria (10,37). 
Mitophagy is a type of macroautophagy that is targeted 
toward mitochondrial degradation. The process removes 
damaged mitochondria from the body and recycles useful 
components. Mitophagy is initiated by mitochondrial 
fission, which is triggered by opening of mPT pores 
(mPTP) and reduction in the membrane potential of 
the mitochondria (31,38). The relationship between 
apoptosis and mitophagy is not fully known. However, 
excessive mitophagy can lead to type II programmed cell 
death (10,39,40).

5. Inherited mitochondrial disease and kidney disease 
As detailed in Figure 1, inherited mitochondrial diseases 
are rare, with an incidence of 1 in 5000 (41), which, 
warrant proper understanding in terms of the relationship 
with the human kidney. The human adult kidney is 
composed of about three million nephrons, which are the 
functional units of the organ. The primary structure of 
the nephrons comprises a glomerular filtration unit and 
numerous tubular segments (3,42). Glomerular filtration 
is a process in which blood is filtered, resulting in the 

retention of useful macromolecules and circulating cells. 
The tubular segments function in active transportation 
including reabsorption of water, nutrients, and 
electrolytes to maintain homeostasis in the body, whereas 
tubular secretion (involving transfer of materials from the 
peritubular capillaries to the renal tubular lumen) is the 
opposite process (42-44). The coordination of glomerular 
filtration and active transportation maintains the body’s 
homeostasis while facilitating the excretion of metabolic 
waste. Thus, kidney dysfunction and diseases impact 
other systems of the body (3,42,45,46).

Mutations in mtDNA not only affect mitochondrial 
function but also result in kidney diseases. Inherited 
mtDNA or mitochondria-related nDNA mutations are 
known as mitochondrial cytopathies or mitochondriopathy. 
Most mitochondrial proteins are encoded by nDNA, and 
mutations in mitochondria-related nDNA genes can 
result in mitochondrial dysfunction. Both mutant and 
normal mtDNA can coexist in a cell, a condition known 
as heteroplasmy. When the numbers of mutant mtDNA 
exceed a certain threshold, cellular dysfunction results. 
This threshold is determined based on the oxidative 
phosphorylation rate of the cell (10,47–49). Because of the 
processes of fission and fusion, mitochondria possessing 
different mutational loads may also mix. Almost all organs 
can therefore be affected by mitochondria-related genetic 
defects, with varying clinical outcomes. In the kidneys, 
such mitochondrial cytopathies manifest primarily as 
focal segmental glomerulosclerosis (major), glomerular 
dysfunction, tubular defects, interstitial nephritis, and 
cystic kidney disease or renal tumors (47–49). Well-
known genetic defects that are related to renal diseases 
involve coenzyme Q10, tRNALEU mutations, impaired 
complex III assembly, and complex IV inactivation (10).

Genetic disorders affecting mitochondrial function 
can be attributed to two primary causes: mtDNA or 
nDNA mutations (10,50). Such disorders are clinically 
heterogeneous, with effects mostly observed in organs 
that are metabolically active (51,52). Mitochondrial 

Figure 1. Inherited mitochondrial diseases and kidney diseases
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mutations can be primary (inherited) or derived from 
secondary predisposition to oxidative stress injury or from 
environmental predisposition to drugs (47,48).

The mitochondrial syndrome MELAS (mitochondrial 
encephalopathy, lactic acidosis, and stroke-like 
symptoms) manifests in patients 40 years old or younger 
with symptoms such as muscle myopathy, lactic acidosis, 
seizure, and stroke-like episodes as well as maternally 
inherited diabetes and deafness (3,53,54). Renal biopsies 
of patients with MELAS reveal abnormal mitochondria 
in the tubular cells and podocytes, which indicates that 
mitochondrial dysfunction is central to the pathogenesis 
of the disease (54-56).

Mitochondrial DNA deletion represents another way 
through which genetic mutations cause kidney disease 
(52). This type of mutation is different from mtDNA 
point mutations; in this case, large mtDNA deletions 
at different locations in the genome affect tubular 
pathologies. Diseases caused by this type of mutation 
include Kearns-Sayre and Pearson syndrome. Kearns-
Sayre syndrome involves proximal or distal renal tubular 
acidosis. Pearson syndrome manifests as pancreatic fibrosis 
in insulin-dependent diabetes (3,10,50). 

6. How chronic kidney disease can lead to mitochondrial 
dysfunction? 
Both acute and chronic renal diseases involve the generation 
of toxic reactive oxygen and nitrogen species (3,57,58). 
Oxidative stress injury is induced by energy shortage due 
to mitochondrial dysfunction, ischemia/reperfusion, ATP 
energetics, or mitophagy (6,50). All these conditions 
can lead to recruitment of immune cells, tissue injury, 
inflammatory cytokine accumulation, and apoptosis (52). 
Renal phenotypes of mitochondrial dysfunction include 
tubular interstitial disease, podocytopathy, proximal 
tubular dysfunction, nephrotic syndromes, and cystic 
kidney disease (50,57). 

All diseases that impact mitochondrial function can 
lead to cardiovascular disease (58). Acute kidney injury 
(AKI) is a clinical condition that occurs in cases of septic 
shock, trauma, and kidney transplant (52,59). The 
condition is related to acute episodes of local or systemic 
disorders such as dehydration. The symptoms of AKI 
include acute decline in the glomerular filtration rate, 
tubular necrosis, concomitant decreased urinary output, 
vascular permeability changes, and tubular interstitial 
inflammation (3,60). Renal ischemia/reperfusion injury is 
one of the common causes of post-transplantation kidney 
allograft dysfunction and AKI (which commonly manifest 
as acute tubular necrosis). Renal ischemia/reperfusion 
injury is caused by an acute decline in the localized or 
general renal nutrient supply to affected tissues as well 
as impairment of the timely removal of metabolic waste 

located in kidney cells (57,58,60). The subsequent 
oxidative stress, damages the tubular epithelial cells, 
leading to inflammation and cell death (necrosis) (61-63). 
Damaged mitochondria, including damaged cristae and 
matrix, are characteristic of ischemic AKI (3,58,59).

Nephrotoxic AKI occurs when an individual is exposed 
to nephrotoxins including some medications and 
chemotherapy drugs, trace heavy metals, intravascular 
contrast media, and certain chemicals and drugs or 
partakes in drug abuse. Altered hemodynamic AKI may 
also occur with the use of nonsteroidal anti-inflammatory 
drugs (60-64). Septic AKI or septic shock is a common 
condition that accounts for nearly half of the AKI in 
patients who are critically ill (65). Mitochondrial damage 
and dysfunction are contributing factors in septic AKI 
(59,64,66). CKD manifests as persistent renal dysfunction 
that lasts over three months. The condition is associated 
with comorbid conditions such as hypertension and type 
2 diabetes mellitus (60,67). CKD is distinct from AKI and 
is a progressive and irreversible pathological condition.

Diabetic nephropathy is a progressive microvascular 
disease associated with diabetes mellitus. The condition 
affects individuals that have type 1 or type 2 diabetes 
mellitus and represents one of the major causes of CKD. 
Diabetic nephropathy is characterized by reduction in 
glomerular filtration, renal fibrosis, gradual renal function 
decline, proteinuria, glomerular hypertrophy, and kidney 
failure. The pathogenesis of diabetic nephropathy includes 
endoplasmic reticulum stress, increased glucose metabolite 
flux, overproduction of ROS, advanced formation of 
glycation end-products, and pro-inflammation as well as 
apoptotic cell death of podocytes (58,64). 

Glomerulonephritis is characterized by inflammation 
and dysfunction at the glomerular filtration barrier—a 
key feature of CKD. This condition thus accounts for 
about 10% of CKD. In glomerulonephritis, the glomeruli 
are inflamed with clinical symptoms such as hematuria, 
edema, hypertension, and proteinuria. Genetic mutations 
in mitochondrial proteins can also lead to congenital 
glomerulonephritis. Abnormally shaped mitochondria are 
observed before the condition progresses into acquired or 
secondary focal segmental glomerulosclerosis, its severe 
form (57,58,68). 

7. Mitochondrial as a therapeutic target for treating 
kidney diseases
Much research has been focused on the protection of 
mitochondria as a potential therapeutic strategy. Such 
strategies currently being evaluated include antagonizing 
mitochondrial oxidants (69), regulating the metabolism 
of ROS, promoting ATP synthesis and mitochondrial 
biogenesis (70), inhibiting mitochondrial fragmentation, 
protecting mitochondria with cardiolipin (71), and 



 www.nephropathol.com                                                     Journal of  Nephropathology, Vol 8, No 2, April 2019

          Mitochondrial dysfunction and kidney diseases

5

inhibiting mPTP (30,71,72). 

8. Permeability transition pores inhibitors
When the localized mPTP in IMM is opened under 
certain pathological conditions, e.g., oxidative stress or 
Ca2+ overload, IMM permeability increases, allowing small 
molecules of <1500 Da to pass. The opening also leads to 
loss in proton motive force, swelling of the mitochondria, 
uncoupling of oxidative phosphorylation, and eventually 
cell death. Cyclosporine A (CsA) inhibits mPTP by 
interacting with cyclophilin D, a mediator of mPTP. Low 
CsA doses at submicromolar concentration prevent the 
mPTP from opening as well as prevent mitochondrial 
swelling. This drug is under clinical trial for its effects on 
acute myocardial infarction (73).

9. K (ATP) channel opener
Levosimendan is a smooth muscle vasodilator that is used 
in heart failure treatment. The drug has other beneficial 
effects such as mitochondrial protection during ischemic 
heart disease. The associated mechanisms of action may 
involve favorable conservation of mitochondrial energy 
in cardiomyocytes. A clinical trial of its efficacy in AKI 
treatment is ongoing (74). 

10. Antagonizing mitochondrial oxidants (mitochondria-
targeted antioxidants)
Mitochondria-targeted antioxidants are being examined 
for their efficacy in reducing oxidative stress. They 
include molecules such as MitoQ, MitoE, MitoTEMPO, 
Mito-CP, SkQR1, and SkQ1. The mechanism of action 
of these agents involves the delivery of identified redox 
agents to the mitochondrial matrix through conjugation 
with the triphenylalkylphosphonium cation (TPP+) 
moiety (69,75). These antioxidants are ROS scavenging 
compounds that may cross the membrane bilayer of the 
mitochondria, concentrating at the matrix in a manner 
that depends on the membrane potential (69). MitoQ 
has been shown to be safe in clinical trials with fatty acid 
disease and Parkinson’s disease and is currently under 
clinical trial for CKD (69). 

11. Cardiolipin protection
Evidence shows that the loss of cardiolipin is associated 
with several forms of AKI, CKD, and aging. This is 
because cardiolipin regulates the structural and functional 
plasticity of the IMM (76). Thus, the development of a 
cardiolipin-targeting compound—Szeto-Schiller peptide 
or Bendavia—that optimizes the efficiency of cellular 
bioenergetics represents an important discovery. The 
molecule stabilizes cardiolipin, regulates cytochrome c 
activity, scavenges for mitochondrial ROS, and reduces 
the mPTP in both AKI and CKD models (71,76). The 

molecule is undergoing clinical testing for the treatment of 
renal microvascular dysfunction in AKI and hypertension 
(71,76).

12. Modulation of ATP synthesis and ROS metabolism
A synthetic derivative of the plant hormone indole acetic 
acid, mitochonic acid 5 (MA-5), was identified as capable 
of enhancing ATP production. The compound was 
found to enhance the survival of fibroblasts in patients 
with mitochondrial diseases such as MELAS and Leigh 
syndrome (50). Evidence shows that the compound 
improves ATP production through the promotion of 
assembly and oligomerization of complex V at the crista 
junction. Through this effect, the compound prevents 
fragmentation of the mitochondria and preserves its 
dynamics (50). 

13. Activation of mitochondrial biogenesis
The activation of mitochondrial biogenesis is necessary 
to increase energy to meet metabolic demands during 
recovery from acute organ injury. This process relies on the 
involvement of the AMPK/SIRT/PGC-1α axis. PGC-1α 
plays several key roles: it reduces oxidative stress, regulates 
NAD biogenesis, and facilitates recovery from AKI (40). 
SIRT1, a NAD-dependent deacetylase, positively regulates 
the expression and activity of PGC-1α. Agents used in the 
activation of mitochondrial biogenesis include AICAR, 
formoterol, and resveratrol (40,70). Resveratrol regulates 
the renal immune response by reducing inflammation 
due to the presence of macrophages in a septic AKI 
model (77,78). Formoterol, which is an agonist of β2-
adrenoreceptor, causes mitochondrial biogenesis by 
increasing the oxygen consumption rate, mtDNA copy 
numbers, and PGC-1α synthesis. Through these effects, it 
rescues the renal tubules from injury and damage, restores 
renal function, and reduces necrosis in animal models 
(77,78). The clinical translation of these agents is still 
under investigation. 

14. Fission inhibitors
The homogenous distribution of mtDNA, lipids, 
and matrix proteins requires mitochondrial fusion. 
Mitochondrial fission, on the other hand, is necessary 
for the proliferation of mitochondria after mitosis. 
The fission process is also involved in the removal of 
damaged mitochondria during mitophagy. Mitochondrial 
fission inhibitor-1 (Mdivi-1) was identified as capable 
of selectively and temporarily inhibiting the GTPase 
assembly and activity of the fission protein DRP. This 
small molecule causes reversible fusion of mitochondria 
in many animal cells and rhabdomyolysis-induced AKI 
in animals. However, evidence regarding the effect of the 
molecule on humans is not yet available (79).
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15. Conclusions
Mitochondrial dysfunction is implicated in many renal 
diseases, both acute and chronic. This review examined 
the current knowledge of mitochondrial dysfunction and 
genetic kidney diseases. Mitochondria are responsible 
for 90% of the body’s energy production. Mutations 
in mtDNA affect mitochondrial function and result 
in kidney diseases, which in turn cause mitochondrial 
damage. Based on the premise that the protection of 
mitochondria may serve as a potential therapeutic 
strategy, many studies have explored antagonizing 
mitochondrial oxidants, regulating ROS metabolism, 
promoting ATP synthesis and mitochondrial biogenesis, 
inhibiting mitochondrial fragmentation, and protecting 
mitochondria via cardiolipin as treatment options.

Mitochondrial dysfunction should be further 
investigated in basic and clinical research to prevent, 
reverse, and treat kidney diseases. Although the findings to 
date are encouraging, our understanding of various aspects 
of mitochondrial biology is quite minimal. Moreover, 
the clinical manifestations of mitochondrial cytopathies 
vary dramatically in terms of symptoms, severity, and 
age of onset. Therefore, it is impossible to predict kidney 
involvement in mitochondrial diseases based on genetic 
defects. In addition, it remains unclear how mtDNA 
interacts with nDNA and how their abnormalities are 
related to kidney injury. Although numerous studies have 
shown that mitochondrial dysfunction contributes to 
different types of kidney diseases, only a relatively small 
number of translational studies have demonstrated the 
clinical relevance of these mechanisms in humans. 
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