ICML 2001

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty, Andrew McCallum, Fernando Pereira

Presentation by Rongkun Shen Nov. 20, 2003

Sequence Segmenting and Labeling

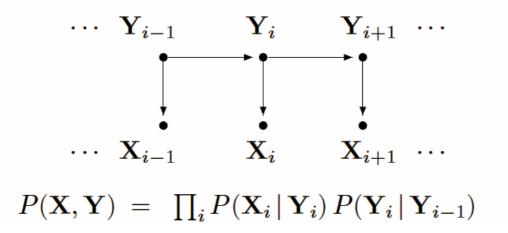
- Goal: mark up sequences with content tags
- Application in computational biology
 - DNA and protein sequence alignment
 - Sequence homolog searching in databases
 - Protein secondary structure prediction
 - RNA secondary structure analysis
- Application in computational linguistics & computer science
 - Text and speech processing, including topic segmentation, part-of-speech (POS) tagging
 - Information extraction
 - Syntactic disambiguation

Example: Protein secondary structure prediction

Generative Models

- Hidden Markov models (HMMs) and stochastic grammars
 - Assign a joint probability to paired observation and label sequences
 - The parameters typically trained to maximize the joint likelihood of train examples

Standard tool is the hidden Markov Model (HMM).



Generative Models (cont'd)

• Difficulties and disadvantages

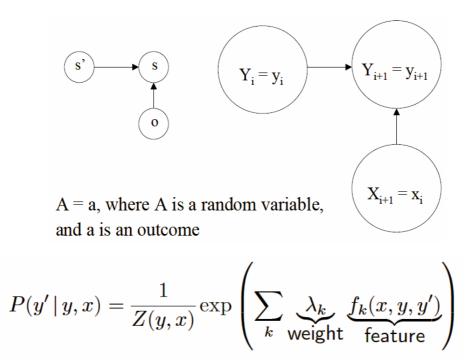
- Need to enumerate all possible observation sequences
- Not practical to represent multiple interacting features or long-range dependencies of the observations
- Very strict independence assumptions on the observations

Conditional Models

- Conditional probability *P*(*label sequence* y / *observation sequence* x) rather than joint probability *P*(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
 - Relax strong independence assumptions in generative models

Discriminative Models Maximum Entropy Markov Models (MEMMs)

- Exponential model
- Given training set X with label sequence Y:
 - Train a model θ that maximizes P(Y|X, θ)
 - For a new data sequence **x**, the predicted label **y** maximizes $P(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$
 - Notice the per-state normalization

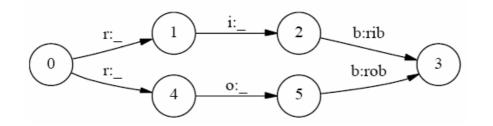


MEMMs (cont'd)

- MEMMs have all the advantages of Conditional Models
- Per-state normalization: all the mass that arrives at a state must be distributed among the possible successor states ("conservation of score mass")
- Subject to Label Bias Problem
 - Bias toward states with fewer outgoing transitions

Label Bias Problem

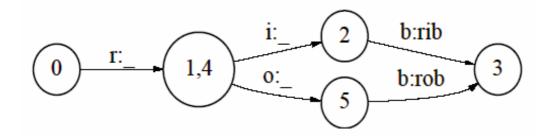
• Consider this MEMM:



- P(1 and 2 | ro) = P(2 | 1 and ro)P(1 | ro) = P(2 | 1 and o)P(1 | r)
 P(1 and 2 | ri) = P(2 | 1 and ri)P(1 | ri) = P(2 | 1 and i)P(1 | r)
- Since P(2 | 1 and x) = 1 for all x, P(1 and 2 | ro) = P(1 and 2 | ri)
 In the training data, label value 2 is the only label value observed after label value 1
 Therefore P(2 | 1) = 1, so P(2 | 1 and x) = 1 for all x
- However, we expect P(1 and 2 | ri) to be greater than P(1 and 2 | ro).
- Per-state normalization does not allow the required expectation

Solve the Label Bias Problem

• Change the state-transition structure of the model

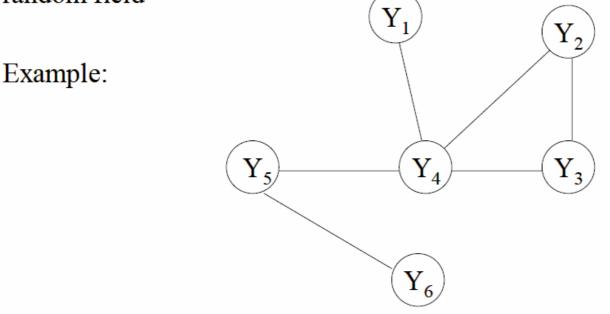


- Not always practical to change the set of states

- Start with a fully-connected model and let the training procedure figure out a good structure
 - Prelude the use of prior, which is very valuable (e.g. in information extraction)

Random Field

Let G = (Y, E) be a graph where each vertex Y_v is a random variable Suppose $P(Y_v | \text{ all other } Y) = P(Y_v | \text{ neighbors}(Y_v))$ then Y is a random field



• $P(Y_5 | \text{ all other } Y) = P(Y_5 | Y_4, Y_6)$

Conditional Random Fields (CRFs)

- CRFs have all the advantages of MEMMs without label bias problem
 - MEMM uses per-state exponential model for the conditional probabilities of next states given the current state
 - CRF has a single exponential model for the joint probability of the entire sequence of labels given the observation sequence
- Undirected acyclic graph
- Allow some transitions "vote" more strongly than others depending on the corresponding observations

Definition of CRFs

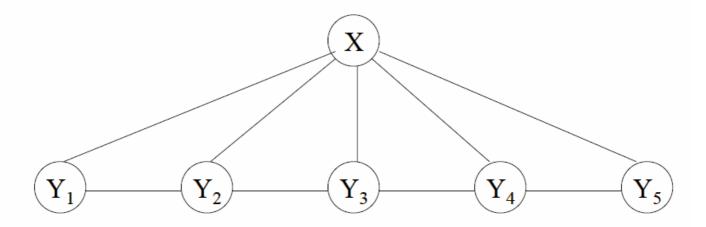
X is a random variable over data sequences to be labeled

Y is a random variable over corresponding label sequences

Definition. Let G = (V, E) be a graph such that $\mathbf{Y} = (\mathbf{Y}_v)_{v \in V}$, so that \mathbf{Y} is indexed by the vertices of G. Then (\mathbf{X}, \mathbf{Y}) is a conditional random field in case, when conditioned on \mathbf{X} , the random variables \mathbf{Y}_v obey the Markov property with respect to the graph: $p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \neq v) = p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \sim v)$, where $w \sim v$ means that w and v are neighbors in G.

Example of CRFs

Suppose $P(Y_v | X, all other Y) = P(Y_v | X, neighbors(Y_v))$ then X with Y is a **conditional** random field



- $P(Y_3 | X, all other Y) = P(Y_3 | X, Y_2, Y_4)$
- Think of X as observations and Y as labels

Graphical comparison among HMMs, MEMMs and CRFs

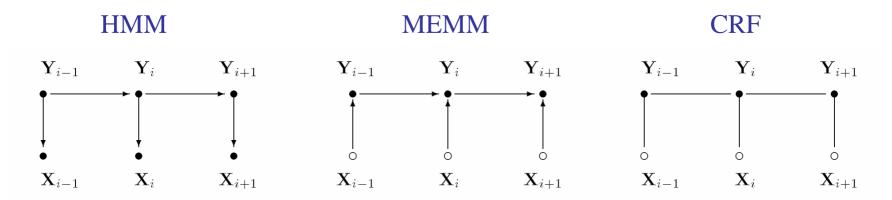


Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences. An open circle indicates that the variable is not generated by the model.

Conditional Distribution

If the graph G = (V, E) of Y is a tree, the conditional distribution over the label sequence Y = y, given X = x, by fundamental theorem of random fields is:

$$p_{\theta}(\mathbf{y} | \mathbf{x}) \propto \exp\left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} |_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} |_v, \mathbf{x})\right)$$

x is a data sequence

- y is a label sequence
- *v* is a vertex from vertex set V = set of label random variables
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a

Boolean edge feature

k is the number of features

 $\theta = (\lambda_1, \lambda_2, L, \lambda_n; \mu_1, \mu_2, L, \mu_n); \lambda_k \text{ and } \mu_k \text{ are parameters to be estimated}$

 $y|_e$ is the set of components of y defined by edge e

 $y|_v$ is the set of components of y defined by vertex v

Conditional Distribution (cont'd)

• CRFs use the observation-dependent normalization *Z*(x) for the conditional distributions:

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left(\sum_{e \in E,k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V,k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x})\right)$$

Z(x) is a normalization over the data sequence x

Parameter Estimation for CRFs

- The paper provided iterative scaling algorithms
- It turns out to be very inefficient
- Prof. Dietterich's group applied Gradient Descendent Algorithm, which is quite efficient

Training of CRFs (From Prof. Dietterich)

• First, we take the log of the equation

$$\log p_{\theta}(y \mid x) = \sum_{e \in E, k} \lambda_{k} f_{k}(e, y \mid_{e}, x) + \sum_{v \in V, k} \mu_{k} g_{k}(v, y \mid_{v}, x) - \log Z(x)$$

• Then, take the derivative of the above equation

$$\frac{\partial \log p_{\theta}(y \mid x)}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\sum_{e \in E, k} \lambda_k f_k(e, y \mid_e, x) + \sum_{v \in V, k} \mu_k g_k(v, y \mid_v, x) - \log Z(x) \right)$$

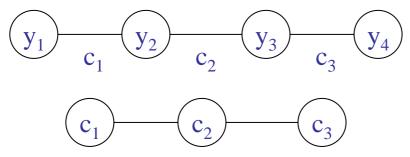
- For training, the first 2 items are easy to get.
- For example, for each λ_k , f_k is a sequence of Boolean numbers, such as 00101110100111.

 $\lambda_k f_k(e, y|_e, x)$ is just the total number of 1's in the sequence.

• The hardest thing is how to calculate Z(x)

Training of CRFs (From Prof. Dietterich) (cont'd)

• Maximal cliques



 $c_{1} : \exp(\varphi(y_{1},x) + \varphi(y_{2},x) + \psi(y_{1},y_{2},x)) = c_{1}(y_{1},y_{2},x)$ $c_{2} : \exp(\varphi(y_{3},x) + \psi(y_{2},y_{3},x)) = c_{2}(y_{2},y_{3},x)$ $c_{3} : \exp(\varphi(y_{4},x) + \psi(y_{3},y_{4},x)) = c_{3}(y_{3},y_{4},x)$

 y_4

$$Z(\mathbf{x}) = \sum_{y_1, y_2, y_3, y_4} c_1(y_1, y_2, \mathbf{x}) c_2(y_2, y_3, \mathbf{x}) c_3(y_3, y_4, \mathbf{x})$$
$$= \sum \sum c_1(y_1, y_2, \mathbf{x}) \sum c_2(y_2, y_3, \mathbf{x}) \sum c_3(y_3, y_4, \mathbf{x})$$

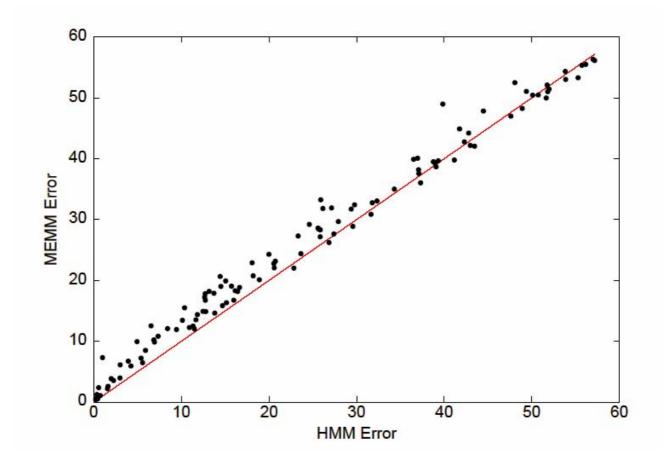
y₃

Modeling the label bias problem

- In a simple HMM, each state generates its designated symbol with probability 29/32 and the other symbols with probability 1/32
- Train MEMM and CRF with the same topologies
- A run consists of 2,000 training examples and 500 test examples, trained to convergence using Iterative Scaling algorithm
- CRF error is 4.6%, and MEMM error is 42%
- MEMM fails to discriminate between the two branches
- CRF solves label bias problem

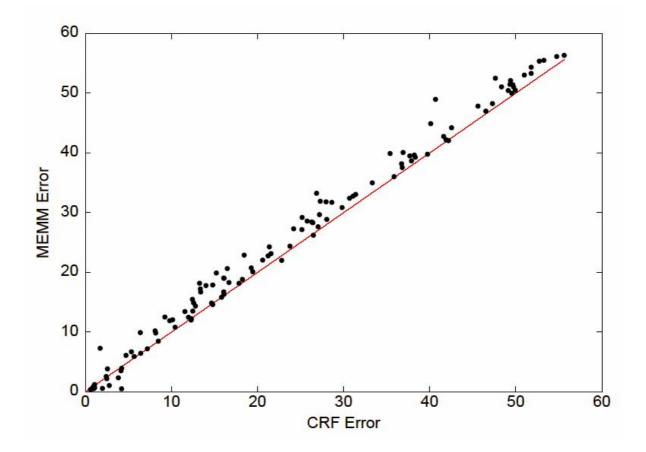
MEMM vs. HMM

• The HMM outperforms the MEMM



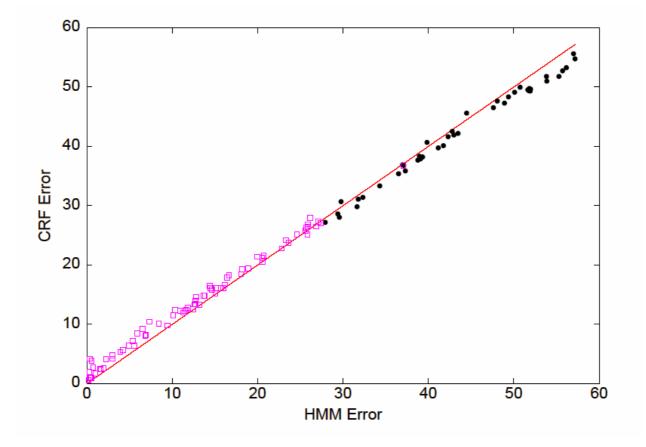
MEMM vs. CRF

• CRF usually outperforms the MEMM



CRF vs. HMM

Each open square represents a data set with $\alpha < 1/2$, and a solid circle indicates a data set with $\alpha \ge 1/2$; When the data is mostly second order ($\alpha \ge 1/2$), the discriminatively trained CRF usually outperforms the HMM



POS tagging Experiments

UPenn tagging task: 45 tags (syntactic), 1M words training

DT NN NN VBZ RB JJNN The asbestos fiber ; crocidolite ; is unusually resilient PRP VBZ DT NNS IN RB JJ NNS it enters the lungs ; with even brief exposures ΤN once TO PRP VBG NNS WDT VBP NNS JJ RP . to it causing symptoms that show up decades later ; NNS VBD researchers said

POS tagging Experiments (cont'd)

- Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging
- Each word in a given input sentence must be labeled with one of 45 syntactic tags
- Add a small set of orthographic features: whether a spelling begins with a number or upper case letter, whether it contains a hyphen, and if it contains one of the following suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies
- oov = out-of-vocabulary (not observed in the training set)

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF^+	4.27%	23.76%

⁺Using spelling features

Summary

- Discriminative models are prone to the label bias problem
- CRFs provide the benefits of discriminative models
- CRFs solve the label bias problem well, and demonstrate good performance

Thanks for your attention!

Special thanks to Prof. Dietterich & Tadepalli!