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Sequence Segmenting and Labeling

• Goal: mark up sequences with content tags

• Application in computational biology
– DNA and protein sequence alignment
– Sequence homolog searching in databases
– Protein secondary structure prediction
– RNA secondary structure analysis

• Application in computational linguistics & computer science
– Text and speech processing, including topic segmentation, part-of-speech 

(POS) tagging
– Information extraction
– Syntactic disambiguation



Example: Protein secondary structure prediction

Conf: 977621015677468999723631357600330223342057899861488356412238
Pred: CCCCCCCCCCCCCEEEEEEECCCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCEEEEHHCC

AA: EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKVLTEGGSCVLMSHLG
10        20        30        40        50        60

Conf: 855764222454123478985100010478999999874033445740023666631258
Pred: CCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHCCCCCCCCCCCCHHHHHHCCC

AA: RPKGIPMAQAGKIRSTGGVPGFQQKATLKPVAKRLSELLLRPVTFAPDCLNAADVVSKMS
70        80        90       100       110       120

Conf: 874688611002343044310017899999875053355212244334552001322452
Pred: CCCEEEECCCHHHHHHCCCCCHHHHHHHHHHHHHCCEEEECCCCCCCCCCCCCCCCHHHH

AA: PGDVVLLENVRFYKEEGSKKAKDREAMAKILASYGDVYISDAFGTAHRDSATMTGIPKIL
130       140       150       160       170       180



Generative Models
• Hidden Markov models (HMMs) and stochastic grammars

– Assign a joint probability to paired observation and label sequences
– The parameters typically trained to maximize the joint likelihood of train 

examples



Generative Models (cont’d)

• Difficulties and disadvantages
– Need to enumerate all possible observation sequences
– Not practical to represent multiple interacting features or long-range 

dependencies of the observations
– Very strict independence assumptions on the observations



Conditional Models

• Conditional probability P(label sequence y | observation sequence x) rather 
than joint probability P(y, x)

– Specify the probability of possible label sequences given an observation 
sequence

• Allow arbitrary, non-independent features on the observation sequence X

• The probability of a transition between labels may depend on past and 
future observations

– Relax strong independence assumptions in generative models



Discriminative Models
Maximum Entropy Markov Models (MEMMs)

• Exponential model
• Given training set X with label sequence Y:

– Train a model θ that maximizes P(Y|X, θ)
– For a new data sequence x, the predicted label y maximizes P(y|x, θ)
– Notice the per-state normalization



MEMMs (cont’d)

• MEMMs have all the advantages of Conditional Models

• Per-state normalization: all the mass that arrives at a state must be 
distributed among the possible successor states (“conservation of score 
mass”)

• Subject to Label Bias Problem

– Bias toward states with fewer outgoing transitions



Label Bias Problem

• P(1 and 2 | ro) = P(2 | 1 and ro)P(1 | ro) = P(2 | 1 and o)P(1 | r)
P(1 and 2 | ri) = P(2 | 1 and ri)P(1 | ri) = P(2 | 1 and i)P(1 | r)

• Since P(2 | 1 and x) = 1 for all x, P(1 and 2 | ro) = P(1 and 2 | ri)
In the training data, label value 2 is the only label value observed after label value 1
Therefore P(2 | 1) = 1, so P(2 | 1 and x) = 1 for all x

• However, we expect P(1 and 2 | ri) to be greater than P(1 and 2 | ro).

• Per-state normalization does not allow the required expectation

• Consider this MEMM:



Solve the Label Bias Problem

• Change the state-transition structure of the model

– Not always practical to change the set of states

• Start with a fully-connected model and let the training 
procedure figure out a good structure
– Prelude the use of prior, which is very valuable (e.g. in information 

extraction)



Random Field



Conditional Random Fields (CRFs)

• CRFs have all the advantages of MEMMs without 
label bias problem
– MEMM uses per-state exponential model for the conditional probabilities of 

next states given the current state
– CRF has a single exponential model for the joint probability of the entire 

sequence of labels given the observation sequence

• Undirected acyclic graph
• Allow some transitions “vote” more strongly than others 

depending on the corresponding observations



Definition of CRFs

X is a random variable over data sequences to be labeled

Y is a random variable over corresponding label sequences



Example of CRFs



Graphical comparison among 
HMMs, MEMMs and CRFs

HMM MEMM CRF



Conditional Distribution

1 2 1 2( , , , ; , , , ); andn n k kθ λ λ λ μ μ μ λ μ= L L

x is a data sequence
y is a label sequence 
v is a vertex from vertex set V = set of label random variables
e is an edge from edge set E over V
fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a 

Boolean edge feature
k is the number of features

are parameters to be estimated
y|e is the set of components of y defined by edge e
y|v is the set of components of y defined by vertex v

If the graph G = (V, E) of Y is a tree, the conditional distribution over the 
label sequence Y = y, given X = x, by fundamental theorem of random 
fields is:
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Conditional Distribution (cont’d)
• CRFs use the observation-dependent normalization Z(x) for the 
conditional distributions:

Z(x) is a normalization over the data sequence x

(y | x) exp ( , y | , x) ( , y |1
(x)

, x)θ λ μ
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Parameter Estimation for CRFs

• The paper provided iterative scaling algorithms

• It turns out to be very inefficient

• Prof. Dietterich’s group applied Gradient Descendent 
Algorithm, which is quite efficient



Training of CRFs (From Prof. Dietterich)
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• First, we take the log of the equation

• Then, take the derivative of the above equation

• For training, the first 2 items are easy to get. 
• For example, for each λk, fk is a sequence of Boolean numbers, such 

as 00101110100111. 
is just the total number of 1’s in the sequence.( , y | , x)k k ef eλ

• The hardest thing is how to calculate Z(x)



Training of CRFs (From Prof. Dietterich) (cont’d)

• Maximal cliques

y1 y2 y3 y4c1 c2 c3
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Modeling the label bias problem
• In a simple HMM, each state generates its designated symbol with probability 

29/32 and the other symbols with probability 1/32

• Train MEMM and CRF with the same topologies

• A run consists of 2,000 training examples and 500 test examples, trained to 
convergence using Iterative Scaling algorithm

• CRF error is 4.6%, and MEMM error is 42%

• MEMM fails to discriminate between the two branches

• CRF solves label bias problem



MEMM vs. HMM

• The HMM outperforms the MEMM



MEMM vs. CRF
• CRF usually outperforms the MEMM



CRF vs. HMM
Each open square represents a data set with α < 1/2, and a solid circle indicates
a data set with α≥ 1/2; When the data is mostly second order (α≥ 1/2), the
discriminatively trained CRF usually outperforms the HMM



POS tagging Experiments



POS tagging Experiments (cont’d)
• Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging
• Each word in a given input sentence must be labeled with one of 45 syntactic tags
• Add a small set of orthographic features: whether a spelling begins with a number 

or upper case letter, whether it contains a hyphen, and if it contains one of the 
following suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies

• oov = out-of-vocabulary (not observed in the training set)



Summary
• Discriminative models are prone to the label bias problem

• CRFs provide the benefits of discriminative models

• CRFs solve the label bias problem well, and demonstrate good 
performance



Thanks for your attention!

Special thanks to 
Prof. Dietterich & Tadepalli!
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