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Sequence Segmenting and Labeling

o Goal: mark up sequences with content tags

o Application in computational biology
— DNA and protein sequence alignment
— Sequence homolog searching in databases
— Protein secondary structure prediction
— RNA secondary structure analysis

« Application in computational linguistics & computer science
— Text and speech processing, including topic segmentation, part-of-speech
(POS) tagging
— Information extraction
— Syntactic disambiguation



Example: Protein secondary structure prediction

Conf:
Pred:
- EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKVLTEGGSCVLMSHLG

Conf:
Pred:
: RPKGIPMAQAGKIRSTGGVPGFQQKATLKPVAKRLSELLLRPVTFAPDCLNAADVVSKMS

Conf:
Pred:
- PGDVVLLENVRFYKEEGSKKAKDREAMAKILASYGDVY ISDAFGTAHRDSATMTGIPKIL
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Generative Models

e Hidden Markov models (HMMSs) and stochastic grammars

— Assign a joint probability to paired observation and label sequences
— The parameters typically trained to maximize the joint likelihood of train

examples
Standard tool is the hidden Markov Model (HMM).
£ Y, Yz’+1
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PX,Y) = JLP(X:|Y:) P(Yi[Yi1)



Generative Models (cont’d)

 Difficulties and disadvantages
— Need to enumerate all possible observation sequences

— Not practical to represent multiple interacting features or long-range
dependencies of the observations

— Very strict independence assumptions on the observations



Conditional Models

Conditional probability P(label sequence y | observation sequence x) rather
than joint probability P(y, x)
— Specify the probability of possible label sequences given an observation
sequence

Allow arbitrary, non-independent features on the observation sequence X

The probability of a transition between labels may depend on past and
future observations
— Relax strong independence assumptions in generative models



Discriminative Models
Maximum Entropy Markov Models (MEMMS)

» Exponential model

» Given training set X with label sequence Y:
— Train a model 8 that maximizes P(Y|X, 8)
— For a new data sequence X, the predicted label y maximizes P(y|x, 8)
— Notice the per-state normalization
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MEMMs (cont’d)

MEMMs have all the advantages of Conditional Models

Per-state normalization: all the mass that arrives at a state must be
distributed among the possible successor states (“‘conservation of score
mass”)

Subject to Label Bias Problem

— Bias toward states with fewer outgoing transitions



Label Bias Problem

e Consider this MEMM:

- P(1 and 2 | ro)
P(1 and 2 | ri1)

P(2 | 1 and ro)P(1 | ro)
P(2 | 1 and riDP(1 | ri1)

P(2 | 1 and o)P(1 | 1)
P(2 ] 1and DHP( | r)

e SinceP(2 ] 1and x) =1 for all x, P(1 and 2 | ro) = P(1 and 2 | ri)
In the training data, label value 2 is the only label value observed after label value 1
ThereforeP(2 | 1) =1, so P(2 | 1 and x) = 1 for all x

» However, we expect P(1 and 2 | ri) to be greater than P(1 and 2 | ro).

 Per-state normalization does not allow the required expectation



Solve the Label Bias Problem

« Change the state-transition structure of the model

— Not always practical to change the set of states

o Start with a fully-connected model and let the training
procedure figure out a good structure

— Prelude the use of prior, which is very valuable (e.g. in information
extraction)



Random Field

Let G = (Y, E) be a graph where each vertex Y, 1s a random variable
Suppose P(Y, | all other Y) = P(Y | neighbors(Y ))then Y 1s a
random field

Y
Example:
v f‘
Jy \Y y—\J
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 P(Y|allother Y)=P(Ys|Y,. Yy



Conditional Random Fields (CRFs)

CRFs have all the advantages of MEMMs without
label bias problem

— MEMM uses per-state exponential model for the conditional probabilities of
next states given the current state

— CREF has a single exponential model for the joint probability of the entire
sequence of labels given the observation sequence

Undirected acyclic graph

Allow some transitions “vote” more strongly than others
depending on the corresponding observations



Definition of CRFs

X 1s a random variable over data sequences to be labeled

Y i1s a random variable over corresponding label sequences

Definition. Let G = (V,E) be a graph such that
Y = (Y.)uev, so that Y is indexed by the vertices
of G. Then (X.,Y) is a conditional random field in
case, when conditioned on X, the random variables Y,
obey the Markov property with respect to the graph:
p(Yo | X, Yy, w#v) =p(Yy | X, Yy, w ~ v), where

w ~ v means that w and v are neighbors in G.



Example of CRFs

Suppose P(Y, | X, all other Y) =P(Y, | X, neighbors(Y,))
then X with Y 1s a conditional random field

(x)
/- - I/-_\ I/-_ \ I/-_
Y X2/ Y3 Y4/ Q’;

 P(Y,|X,allother Y)=P(Y,;|X,Y,, Y,
 Think of X as observations and Y as labels



Graphical comparison among
HMMs, MEMMs and CRFs
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Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.
An open circle indicates that the variable is not generated by the model.



Conditional Distribution

If the graph G = (V, E) of Y is a tree, the conditional distribution over the

label sequence Y =y, given X = X, by fundamental theorem of random
fields is:

P, (Y [ X) ocexp(Z Af@ Yl X)+ D ukgk(v,ylv,x))
ecEk veV k

X 1S a data sequence

y is a label sequence

v is a vertex from vertex set V = set of label random variables

e Is an edge from edge set E over V

f, and g, are given and fixed. g, is a Boolean vertex feature; f, Is a
Boolean edge feature

k Is the number of features

0=, 4L A, 1,1, 1) A4 and g4 are parameters to be estimated
Y| 1s the set of components of y defined by edge e
y|, 1s the set of components of y defined by vertex v



Conditional Distribution (cont’d)

» CRFs use the observation-dependent normalization Z(x) for the
conditional distributions:

Py (Y[ X) :ZieXp(Z AT (&Y, x)+ Z ﬂkgk(V,YL/’X)]

(X) ecEk veV k

Z(x) Is a normalization over the data sequence X



Parameter Estimation for CRFs

* The paper provided iterative scaling algorithms
e |t turns out to be very inefficient

o Prof. Dietterich’s group applied Gradient Descendent
Algorithm, which is quite efficient



Training of CRFs (From Prof. Dietterich)

First, we take the log of the equation

log p, (Y1 ¥) =D A (&Yl X)+ D 9,V yl],,X)—log Z(x)

ecEk veV Kk

* Then, take the derivative of the above equation

olog p,(y[x) _ @
06 06

Z At &y, xX)+ Z ﬂkgk(V,Y|v’X)_|OgZ(X)]

ecEk veV k

e For training, the first 2 items are easy to get.

 For example, for each 4,, f, is a sequence of Boolean numbers, such
as 00101110100111.

A f (8, Y], X) s just the total number of 1’s in the sequence.

* The hardest thing is how to calculate Z(x)



Training of CRFs (From Prof. Dietterich) (cont’d)

o Maximal cligues

C, - eXp(@(Y..X) + @(Y,.X) + 1 (Y1Y,.X)) = C(Y1.Y,:X)
C, : exXp(@(Y3:X) + ¥ (Y,,Y3.X)) = C,(Y,,Y5.X)
C, 1 eXP(@(Y,,X) +w (Y3,Y4X)) = C5(Y3,Y4rX)

Z(X) = Z C, (yl’yZ’X)CZ (y2’y3’x)03 (y3,y4,x)

yl’yZ 1y3 1y4

- Z Z Cl (yl ’y2 ’X)Z C2 (yz ’y3 ’X)Z C3 (y3 1y4 1X)

Yi Yo Y3



Modeling the label bias problem

In a simple HMM, each state generates its designated symbol with probability
29/32 and the other symbols with probability 1/32

Train MEMM and CRF with the same topologies

A run consists of 2,000 training examples and 500 test examples, trained to
convergence using lterative Scaling algorithm

CRF error is 4.6%, and MEMM error is 42%
MEMM fails to discriminate between the two branches

CRF solves label bias problem



MEMM vs. HMM

 The HMM outperforms the MEMM

60

50 +

MEMM Error
w B
o (=]

[y
o

0L oo

0 10 20 30 40 50
HMM Error

60



MEMM vs. CRF

e CRF usually outperforms the MEMM
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CRF vs. HMM

Each open square represents a data set with a < 1/2, and a solid circle indicates
a data set with a = 1/2; When the data is mostly second order (a = 1/2), the
discriminatively trained CRF usually outperforms the HMM
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POS tagging Experiments

UPenn tagging task: 45 tags (syntactic), 1M words training

DT NN NN NN VBZ RB JJ
The asbestos fiber ; crocidolite ; is unusually resilient
IN PRP VBZ DT NNS IN RB JJ NNS
once it enters the lungs ; with even brief exposures
TO PRP VBG NNS WDT VBP Rp NNS JJ

to it causing symptoms that show up decades later ;

NNS VBD
researchers said



POS tagging Experiments (cont’d)

Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging

Each word in a given input sentence must be labeled with one of 45 syntactic tags
Add a small set of orthographic features: whether a spelling begins with a number
or upper case letter, whether it contains a hyphen, and if it contains one of the
following suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies

oov = out-of-vocabulary (not observed in the training set)

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%

MEMMT™ | 481%  26.99%
CRFT | 427%  23.76%

T Using spelling features



Summary

« Discriminative models are prone to the label bias problem
* CRFs provide the benefits of discriminative models

e CREFs solve the label bias problem well, and demonstrate good
performance



Thanks for your attention!

Special thanks to
Prof. Dietterich & Tadepalli!
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