An Open-Loop Class-D Audio Amplifier with Increased Low-Distortion Output Power and PVT-Insensitive EMI Reduction

Shih-Hsiung Chien¹, Li-Te Wu², Ssu-Ying Chen², Ren-Dau Jan², Min-Yung Shih², Ching-Tzung Lin² and Tai-Haur Kuo¹

¹National Cheng Kung University, Tainan, Taiwan, ²NeoEnergy Microelectronics, Inc., Hsinchu, Taiwan
Outline

- Background and Motivation
- System Overview
- Proposed Techniques
 - Adaptive-Coefficient Delta-Sigma Modulator
 - PVT-Insensitive Low-EMI Control Method
- Measurement Results
- Conclusions
Digital-Input Audio Amplifier

- **Class-AB amplifier with DAC**

- **Class-D amplifier with DAC**

- **Class-D amplifier with digital PWM (DPWM) gen.**
Class-D Amplifier with DPWM

- **Pros**
 - High efficiency
 - No need of high-resolution DAC

- **Cons**
 - Distortion from class-D amp. \(\rightarrow\) Degraded THD+N
 - Need of L-C low-pass filter for EMI suppression
Closed-Loop vs. Open-Loop

- **Closed-loop architecture**

- **Open-loop architecture** \(\rightarrow \) adopted in this work

- Lower complexity

- Smaller chip area

- Easier design porting to advanced processes
THD+N vs. Output Power

- Distortion and noise sources
 - Constant noise
 - Power stage distortion
 - Clip distortion

- Low-distortion $P_{\text{OUT}} = \max. P_{\text{OUT}}$ with $\text{THD+N}<1\%$
 - Dominated by clip distortion due to DSM instability
DSM Instability in Open-Loop

- When DSM input is large
 → DSM’s quantizer overload
 → clipping at DSM_{OUT} → clip distortion at amp. output
 → decreased low-distortion output power

Digital Input → Interpolator (gain k=1) → DSM → PCM-to-PWM Converter (gain 1/k=1) → Power Stage → Power Output

- SNDR @ DSM_{OUT}
- SNDR @ PWM_{OUT}
- THD+N vs. output power

SNDR(dB) vs. Input mag. (dBFS) for k=1

SNDR(dB) vs. Input mag. (dBFS) for k=1

THD+N(%) vs. Output power (W) for k=1, limited by power stage 1%
DSM Instability in Open-Loop

- To reduce DSM input: interpolator’s gain
- To increase gain after DSM: PCM-to-PWM’s gain

→ Clipping at PWM_{OUT}
→ DSM instability can **NOT** be prevented by scaling k
Common-Mode EMI Reduction

- Conventional BD modulation

- Common-Mode Free BD (CMFBD) modulation [1]

Targets of This Work

- Increase low-distortion output power for open-loop class-D amplifiers **without**
 - increasing supply voltage
 - increasing off-chip components
 - sacrificing THD+N at small output power

- Reduce common-mode EMI **without**
 - using expensive L-C filters
 - PVT-sensitive issue
System Overview

- Block diagram of this work

- Two selectable modes
 - BD-Modulation Mode
 - Low-EMI Mode [1]
Trade-Off in DSM Design

- **Two DSM Designs**
 - DSM\textsubscript{A}: high in-band noise suppression
 - DSM\textsubscript{B}: full-scale stable input range

- **NTF plot**

- **Root-locus plot**
Proposed ACDSM

- Adaptive-Coefficient Delta-Sigma Modulator (ACDSM)
 - Small $x[n]$ \rightarrow coeff. with high in-band noise suppression
 - Large $x[n]$ \rightarrow coeff. with full-scale stable input range

![Diagram of Proposed ACDSM](attachment:image.png)
Direct Coefficient Switching

- Coefficient is switched between
 - Small $x[n] \rightarrow Set_A$ (high in-band noise suppression)
 - Large $x[n] \rightarrow Set_B$ (full-scale stable input range)

$Set_A = [g_1A, \ldots, g_5A, a_1A, \ldots, a_5A, b_1A, \ldots, b_4A]$

$Set_B = [g_1B, \ldots, g_5B, a_1B, \ldots, a_5B, b_1B, \ldots, b_4B]$

→ large internal transient spike → DSM unstable
ACDSM Algorithm

- **Linear-interpolated coefficient changing**
 - operating coefficient set is changed with small Δ
 - internal transient spike is reduced
Dynamic Range (DR) Plots

- The ACDSM simultaneously achieves
 - a wide stable input range
 - high in-band noise suppression
CMFBD Realization

- Previous low-EMI control method [1]

Previous Low-EMI Control (1/3)

- In state S_0

![Diagram showing MOSFETs and speaker load](image-url)
Previous Low-EMI Control (2/3)

- In transition from S_0 into S_1
Previous Low-EMI Control (3/3)

- In state S_1

![Diagram of electronic circuit with labels and timing graphs](image_url)
PVT Variation Effect (1/2)

- Significant shoot-through current

![Diagram of a circuit with M1 to M6 transistors and speaker load](image)

- **M1**, **M4** turn-on: V_{G1}, V_{G5}
- **M5**, **M6** turn-on: V_{G4}, V_{G6}

Shoot-through

- **OUTP**
- **OUTN**

© 2014 IEEE
PVT Variation Effect (2/2)

- Additional output voltage transition
CMFBD Realization

- Proposed low-EMI control method

![Circuit Diagram]

-\(M_1 \rightarrow M_4 \rightarrow M_5 \) (turn-on:)
-\(M_2 \rightarrow M_6 \) (turn-on:)
-\(M_5 \rightarrow M_6 \) (turn-on:)
-\(M_5 \rightarrow M_6 \) (turn-on:)
-\(M_2 \rightarrow M_3 \rightarrow M_6 \) (turn-on:)

\(V_D D \)

Speaker Load

\(V_{G1} \rightarrow V_{G5} \rightarrow V_{G6} \)
Proposed Low-EMI Control (1/4)

- In state S_A

In the diagram, the states and their corresponding switches are shown:

- **S_A**
 - Turn-on: M_1, M_4, M_5

- **S_B**
 - Turn-on: M_5

- **S_C**
 - Turn-on: M_5, M_6

- **S_D**
 - Turn-on: M_6

- **S_E**
 - Turn-on: M_2, M_3, M_6

The diagram illustrates the electrical connections and control states for minimizing electromagnetic interference (EMI) in the system.
Proposed Low-EMI Control (2/4)

- In transition from S_A into S_B

![Diagram showing the transition from S_A to S_B and corresponding signal levels and switch activations.

- V_{G1}
- V_{G4}
- V_{G5}
- V_{G6}
- VDD
- OUT_P
- OUT_N
- $M1$, $M2$, $M3$, $M4$, $M5$, $M6$
Proposed Low-EMI Control (3/4)

- In state S_B

![Diagram of Proposed Low-EMI Control with transistor symbols M1, M2, M3, M4, M5, and M6, and voltage labels V_{G1}, V_{G4}, V_{G5}, and V_{G6}, with speaker load.]
Proposed Low-EMI Control (4/4)

- In state S_C

![Diagram of circuit with labels and states]

- V_G1, V_G4
- V_G5
- V_G6
- OUTP, OUTN
- S_A, S_B, S_C, S_D, S_E

Turn-on:
- M_1, M_4, M_5
- M_5
- M_5, M_6
- M_5
- M_1, M_4, M_5

Scan of states:
- S_A
- S_B
- S_C
- S_D
- S_E
Chip Micrograph

Digital Audio Processor

Gate Driver

M₁ of L_{CH}
M₂,₄ of L_{CH}
M₃ of L_{CH}
M₃ of R_{CH}
M₂,₄ of R_{CH}
M₁ of R_{CH}
M₅,₆ of L_{CH}
M₅,₆ of R_{CH}

Dimensions:
- 2.45 mm length
- 1.5 mm width
- 0.3 mm height
- 0.2 mm height
THD+N vs. Output Power

- Measurement condition: 24-V_{DD}, 8-Ω, BD modulation
- 30-W low-distortion output power → 20% increase by ACDSM
EMI Measurement

- **Conducted EMI**
 - BD-modulation mode
 - low-EMI mode
 - Frequency (MHz)
 - Level (dBμV/m)
 - 60
 - 40
 - 20
 - 0.15 0.5 1 5 10 20 30
 - 8 dBμV/m

- **Radiated EMI**
 - BD-modulation mode
 - low-EMI mode
 - Frequency (MHz)
 - Level (dBμV/m)
 - 50
 - 30
 - 10
 - 30 64 98 132 166 200 360 520 680 840 1000
 - FCC class-B standard
 - 24 dBμV/m
 - 24 dBμV/m
 - 30
Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage V_{DD} (V)</td>
<td>24</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Nominal Load R_L (Ω)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Peak Efficiency η (%)</td>
<td>90</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Output Power P_{OUT} (W)</td>
<td>30</td>
<td>13</td>
<td>0.4</td>
</tr>
<tr>
<td>@ 1%THD+N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized Output Power$^{(1)}$</td>
<td>1.03</td>
<td>0.83</td>
<td>0.92</td>
</tr>
<tr>
<td>@ 1%THD+N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM Max. Stable Input (dBFS)</td>
<td>+0.2</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>EMI Reduction ($dB\mu V/m$)</td>
<td>8 (conducted)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24 (radiated)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chip Area (mm2)</td>
<td>3.74 (stereo)</td>
<td>23.9 (5.1-ch)</td>
<td>0.76 (stereo)</td>
</tr>
<tr>
<td>Process</td>
<td>0.18µm BCDMOS</td>
<td>0.35µm HVCMOS</td>
<td>65nm CMOS</td>
</tr>
</tbody>
</table>

$^{(1)}$ Normalized Output Power = \[
\frac{P_{OUT}}{(\eta \cdot V_{DD})^2 / (2 \cdot R_L)}
\]
Conclusion

- A 30-W open-loop class-D amplifier is implemented for a 24-V supply voltage and 8-Ω load

- The ACDSM simultaneously achieves
 - high in-band noise suppression
 - wide stable input range
 - 20% low-distortion P_{OUT} increase

- The proposed low-EMI control method
 - PVT-insensitive common-mode EMI reduction