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ABSTRACT

In the thesis we study the high frequency trading and its applications in limit

order books. We discuss the basic concepts and review the models in the limit order

books. The review section focuses on the queues in the limit order books, optimal

trading strategies, short-term volatilities and multi-agent problems in the scenario of

limit order markets. Discussions on the shortage of some prevalent models of limit

order books are addressed thereafter. For the main results of the thesis, market

data are calibrated to facilitate the comparison between a theoretical model and the

empirical behaviors in terms of order flows, price changes and diffusion limit of prices.

vi
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CHAPTER 1

INTRODUCTION

1.1 History of the High Frequency Trading

When trading in financial markets first came into existence, the trading pro-

cess was artificially made, with the market information poorly gathered and utilized.

As time goes, the utilize of advanced technological instruments and computer-based

algorithms to trade financial securities emerged rapidly. That is what the term High-

Frequency-Trading (HFT) means. To put it concisely, tiny fractions of money accu-

mulate fast to produce significantly positive results at the end of every day.

Historically, HFT began its mission in the middle-to-late-1990s when electronic

exchanges were accepted to do their jobs. The electronic behavior of execution venues

enabled market participants (e.g. banks, brokers and their institutional and retail

clients) to transmit orders electronically as opposed to via telephone or mail, which

is referred to as electronic trading. HFT is a subset of electronic trading (ET). ET

has a great deal of orders (usually with fairly small sizes) being sent into the financial

market fastly, with execution times measured in microseconds.

In its early years, HFT accounted for a mere single-digit-percentage proportion

in the major equity markets in the globe. However, this market grew with consider-

ably high speed ever since. According to data from the New York Stocks Exchange

(NYSE), the volume of high frequency trading grew at the rate of 164% between 2005

and 2009. As regards from January to March in 2009, high-frequency trading strate-

gies contributed to $141 billion among the whole instruments traded in hedge funds.

Set the United States as example, enterprises herein using HFT account for 2% out

of the whole within their types operating today, yet account for more than 70% of all

trading volumes. As of the emerging markets like China, India and Malaysia, HFT
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is also expected with great potential for rapid growth. With respect to the trading

value, this kind of trading was estimated by the consultant firm Tabb Group to con-

stitute more than 55% of equities traded in North American and 35% in European

countries. (See [7] for further reference.)

Parallel to the market impact HFT has exerted, research in high-frequency

market has been evolving. Back to the early 1980s, when exchanges were converted

into automated trading platforms, in [5] the authors made an assupmtion that liquid

markets display more continuity character of trading prices, which took place as

long as trading is exhibit via a large volume being traded yet small size per trading

individuals. Black also stated that despite how technology progressing with respect to

empirical construction, market prices is mainly and largely impacted by large orders

being executed.

At those days in stock markets, for instance, market makers are usually finan-

cial experts who provided liquidity. Just like in the trading arena of the derivative

markets, quite a few floor traders were well-identifiable market makers. Both these

experts from stock markets (or bond markets) and those floor traders from derivative

markets prevail a a privilege over floor traders mentioned above, see [2].

Such a facilitated pattern allowed both financial experts and floor traders

responding more rapidly into incoming limit/market order flows than traders without

this property. Trading surroundings through which market makers are distinct from

other traders are studied in the theoretical models of [16].

As markets became electronic, the difference between market makers and other

traders faded. Equity exchanges increasingly took a limit order market construction.

At the mean time, traders submit orders directly into the automated systems run

by these advanced exchanges, surplus designated market makers. Nowadays in the
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electronic markets, HFT has a time-lag advantage over non-HFT traders. It allows

them to get more quick response to the converts with respect to order flows. This

occurred owing to the progress in technology, as well as requirements regarding laws

and regulations. Theoretical models of limit order markets include, among others,

[7], [13], [12] and [23]. More state-of-art research would be mentioned and developed

in detail in the thesis.

A natural question comes into being: how to get more lucre by taking advan-

tage of this ‘high frequency’ scenario. Technically saying, the higher frequency is not

a strategy itself but rather a technically advanced method of practising certain strate-

gies, like, providing liquidity or pursuing arbitrage (between cross-border markets or

domestic ones) or to detect liquidity. One interesting issue is that though beaten

by the advanced electronic trading system, we human kinds have not changed the

pattern of trading itself that much, which is as a matter of fact built by us. Take for

example the Citadel trading system in the International Securities Exchange (in New

York City), the only exchange before the year 2000 that allowed electronic quotes to

be made. (Also see [7] for reference.)
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1.2 A Glimpse of Research on High Frequency Trading

For research interest, we are interested in how to deal with the bid-ask spread

and its relationship with market liquidity, the time duration between the consecutive

arrival of orders, the shape of the order book, market resilience of a big (one-sided)

order, time-scale analysis as of the resemblance of long/short time effect of the market

for dominant orders, the market volatility pertaining to HFT, the diffusion limit of the

price behavior, and so forth. It is with the development of HFT that these problems

came into the academic sight.

As a literature review on HFT, this thesis is organized as follows. In the next

chapter, some fundamental concepts and descriptions are introduced and discussed;

Chapter 3 studies several mathematical topics of the limit-order markets, covering a

large part of the contemporary research on HFT in limit order books and optimal

strategies for market participants. Most of the review is done mathematically, with

backgrounds, approaches, mathematical models, the main thoughts behind the curve

of what is reviewed; Chapter 4 studies the pros and cons of the topics in Limit Order

Books. Some of them contain the interdisciplinary within mathematical finance;

Chapter 5 discusses a typical model on the limit order markets. In this last chapter we

do the data calibration and give some comparison between theoretical and empirical

results, before conclusion.
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CHAPTER 2

CONCEPTS FROM HIGH FREQUENCY TRADING

2.1 Limit Order Books

In the literature of high frequency trading, the most significant conception here

is the Limit Order Book (LOB). In the highly competitive and fast-paced financial

world nowadays, LOB are employed in no less than a half of the major financial

markets worldwide.

The term ‘order book’ is generally meant to depict the pairs of two-sided prices,

namely bid prices and ask prices, and trading volumes corresponding the the prices.

Historically and broadly speaking, there had been mainly two types of financial equity

markets, order-driven markets and quote-driven markets. The order-driven markets

require that all buyers and sellers suggest their prices of their willing to trade in

a particular equity as well as the volumes to be bought or sold. The quote-driven

markets, on the other hand, only has the large-sized orders to be displayed and bid

for execution. To put it another way, the orders are centralized therein.

Transparency through liquidity is, as it were, one of the biggest strengths for

order-driven markets. In this type of markets the prices-volumes pairs constitute

the order book, which is displayed for investors willing and wishing to access this

information. To get such precious information, most exchanges do not provide free

meals though. By contrast, a quote-driven market provides smaller liquidity, in that

the market makers and financial experts have got to transact business at their disposal

with regards to prices and trading volumes.

• Limit-Order Markets

Compared to both market types from above, a limit-order market has much
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more flexibility since the orders are free to be either quoted or executed for each and

every market participants, regardless of market makers and investors or their trading

volumes or the price they quote.

Definition 2.1.1. An order Ox = (qx, sx) with the pair of qx price and sx > 0 trading

volume (respectively, wx < 0) is a commitment to sell (respectively, buy) ≤ |sx| units

of the equity traded, at a price ≥ (respectively ≤) qx.

Empirically an order will be existing for some time till its either being executed

(matched objectively) or canceled (quit subjectively).

Definition 2.1.2. The Limit Order Book (LOB) L(t) = {Ox}x for s ≤ t i.e. the

set of all orders that exist within the trading scenario that is neither matched nor

canceled.

Definition 2.1.3. The bid price b(t) in L(t) is the highest (i.e. the best) price among

which the buy orders are proposed. The ask price a(t) in L(t) is the lowest (i.e. the

best) price among which the sell orders are proposed.

Once submitted, the order in the LOB may either get traded immediately or

go into a queue of unfilled (still existing) ones, which is referred to as the limit order

book. Upon entry the L(t), either may eventually occur to an order: being executed

or being canceled.

There would be deep relationship/copula between a(t) and b(t). As seen, b(t) is

crucial in limit order placement, because it decides the marginal (boundary) condition

for which the whole order book shape will be accounted. at or below b(t) will at least

partially match immediately. A similar role is played by a(t) for buy orders. There

is a strong coupling between b(t) and a(t). A simple example even not necessarily

including LOB scenario is that when an order (e.g. a buy order) comes into a stock
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market, the sell price and the buy price would both move, and both interactive. With

LOB on stage, the case would be more complicated.

Definition 2.1.4. The bid-ask spread at time t is s(t) such that: s(t) = a(t)− b(t).

The spread is the absolute value of the bid and ask prices, yet the signal is

non-negative.

Yet it is worthy to notice that the bid-ask spread s(t) is not positive necessarily

or even with positive probability to be zero, like we will see in the market models in

Chapter 5. Such situations lead the orders to either be filled or be canceled.

Definition 2.1.5. The mid price at time t is the arithmetic mean (average) of the

ask price and the bid price at time t: m(t) = a(t)+b(t)
2

.

In the prevailing models of limit order markets, mid-prices often plays the

role of true price (instantaneously), yet as we will see in the following sections of the

thesis, that could lead to inaccuracy in comparison with other modeling of the price

dynamics. Also refer to existing works like [34].

• Market Orders and Cancelation Orders

As mentioned, the order book consists of a list of all buy and sell limit orders,

with corresponding prices and trading volumes. Essentially, other two types of orders

could be submitted as well:

△ market orders: to immediately buy or sell a certain number of shares at the

best available opposite quote;

△ cancelation orders: to cancel an existing limit order.



8

Practically, market orders can be executed at once, yet at the probably unde-

sirable prices; limit orders reflect the market intent to trade at the satisfactory price

but facing the delay or failure of being executed. There is a trade-off between the

two types of orders. That is, if the market participants place a bid order at a price

which prevails the ask price, then this bid order is immediately executed (/filled) by

the second-best limit order at the ask price. To summarize, bid and ask limit orders

are centralized in a LOB capable to the market participants while market orders are

executed against the best available orders in the limit order book. See for reference

[19].

• Order Flows and Arrival Rates

Both quantitative and financial research of the limit order markets yield the

significant concepts of order flows and arrival rates. Orders come from both sides

as time goes by, forming the chronical flow complied with the size and depth of the

consecutive orders (whether modeled continuously or discretely).

Meanwhile the order arrival is a stuff dependent on the instantaneous market

popularity or liquidity and as well the stochastic processes of limit/market/cancelation

orders (dynamics of prices and trading volumes) preceded from just now. Thus the

conception of the arrival rate is introduced which is in some cases modeled as a Pois-

son Process with the rate λ. However, as we will discuss in Chapter 5, no evidence

shows that the empirical (limit/market order) arrival rates actually happen to be so.

Mathematically speaking, LOB has much to be explored, e.g. the dynamic

and equilibrium of the order book, the order flow composition and the trading cost,

the instability of limit order dynamics creating chaos (butterfly effect), the market

resilience of the one-sided LOB or the optimal control problem in a limit order mar-
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ket. The above studies come more or less from the idealization of the market model

into mathematically solvable cases, e.g. via Hamilton-Jacobi-Bellman Equation, or

via the proposition of convex functions (their sub-derivatives, etc.) Yet to empha-

size is the mathematical modeling of the market impact of HFT on it, structurally

different from human (trading) behavior. For instance, the traditional interpreta-

tion of limit order traders as ‘patient providers of liquidity’ (in [12], for example) has

to be rediscovered if limit-order lasts for a mere millisecond due to the impact of HFT.
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2.2 Ultra-High Frequency Trading

As a subset of HFT, Ultra High-Frequency-Trading has a steady growth as

of its research. Mentioned before in the thesis, HFT by its market behavior would

endure the issue of being mis-priced where an security traded goes away from its true

meaningful market value which is especially magnified among the cases when time-

scale vanishes. Therefore one would like to try to predict this dislocated misleading

coming from the drifts for the mean trading prices. On the other hand, most of the

high frequency traders ‘operate on the range of the milliseconds and mainly try to

predict movements in prices on liquid stocks’ ( [18]) to merely do with the price issue

and be returned with rebates from the corresponding exchanges.

Based on these facts, researchers assume (ideally) that market participants in

high frequency markets would not be so keen on the meaningful price discovery yet

they would firmly grasp the lucre via liquidity affording (just as we took the example

of the ballpark scalpers). On such basis, a question rises that what if the indications

from markets urge them forward to trade-in at a time-horizon below 10−6 seconds,

all the way till the time they execute their trade? (See also for reference [18].)

The shortcoming of Ultra-HFT comes several ways. For example we would

have the flooding arbitrage opportunities when the failure to price an equity fairly

and properly due to the tiny time-scale issue. For deeper reasons, the allocations

to the strategy would shrink, even when the dislocations grow ( [18]). The arbi-

trage opportunities are further led by the neglects of high-frequency traders but not

low-frequency traders, with the latter eyes the lament chances to make a accumu-

latively high profits. In the setting, low/high-frequency market participants would

form counterparts with zero-sum gains. In summary, ultra-HFT is more of a choice

for frequency-scale rather than a particular concept of what the scale is.
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2.3 Argues about High Frequency Trading

As a mathematical finance thesis, we could not weigh too much on the morality

or regularity issues about the market trading business. Yet one has to care about the

trillion-dollar liquidity in financial markets. What if the luxurious lucre enters a

dirty pocket by exploiting tons of dollars from market participants? Or even if like

the saying goes, market is a zero-sum arena, could there be regulatory concerns about

HFT?

A well-known case in point is the flash-crash on May, 6th, 2010. Between

1:30pm and 2:00pm the Dow Jones Industrial Average (DJIA), S&P 500 Index, the

June 2010 E-mini S&P 500 futures contract, and other derivatives like options, ETFs,

etc. experienced a sudden nose-dive followed by a rapid rebound, with both more than

five percent. Admittedly this tragedy (for some market players good news) happened

as a consequence of global financial scenario with respect to the European debt crisis.

Yet high-frequent market played an indispensable big role. Research analysis [2]

concluded that high-frequency scenario brings about opportunity for financial equities

aggressively traded parallel to the direction of price changes, steering further toward

huge trading volume. To culminate, high-frequency traders were reluctant to the

minus gain the dollars by the cumulative positions conducted by themselves.

Other issues remain, say, there is no real economic value created by HFT.

Plus, certain trading strategies are a form of market manipulation to harm long-term

investors, putting sand in the wheels of potential price (or true value) discovery.
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CHAPTER 3

LIMIT ORDER BOOK RESEARCH—MATHEMATICAL METHODS AND
MODELS

As a state-of-the-art topic in Mathematical Finance, LOB receives a bunch of

mathematical attention herein, though they are more or less scattered as we will see.

On the other hand, it is these distinguished viewpoints that have made LOB a heated

research theme, blending well between market behavior and mathematical derivation.

Basically there are queueing problems and patience of investors, problems re-

garding optimal trading strategies in high frequency markets, models for characteriz-

ing risks and market volatility, models concerning equilibrium in multi-agent markets,

among others. The classification is certainly flexible. Yet this kind would be more

complete and reviewable in the study of limit order books.

As a thesis on this field, here we address various models about high frequency

markets from existing literature. The review is, though, not merely done with clas-

sifying, citing and narrating other authors’ work. Alternatively, here in this Chapter

we put forward distinctively very simple but featured (model) set-ups for the four

sections respectively. This will be done at the beginning of each sections so that a

brief overlook of each modeling scenario is shown, which constitutes the author’s own

understanding of each type of models.

In this chapter we have before each section an ‘overlook’ of each type of models

and methods. This contains common concern within them, for example, the concept

of tick-data for queueing problems in limit order books. The overlook also contains a

little appreciation of the author of his own.
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3.1 Queueing Problems and Patience of the Investors

Overlook of queueing problems

IIt is necessary to interpret first and foremost ‘what is a queue’. As is men-

tioned, market orders are executed immediately against the best quote but pay a

half spread while limit orders are stored in the order book and executed only when

a market order crosses the spread. This forms the price dynamics together with the

trading volumes at each price being executed. Assume that (qat , q
b
t ) is the pair of

trading volume for ask and bid side at a given limit order book at time t ≥ 0, with

the corresponding bid and ask price being sat and sbt . Thus the queues of (st)t≥0 and

(qt)t≥0 are formed with respect to both sides. This queue is tightly relevant with the

order flow, thus the arrival rate is modeled, often as Poisson process with parameter

λ, µ and θ respectively for limit, market and cancelation orders. The price could

move up order down, according to order-arrival frequency and the type of them, also

to the trading volumes.

Here what researchers concern is the tick-by-tick trading scenario. A/One

tick is the minimum amount by which the price changes. ‘Tick-to-tick’ means the

trading data has a time flow with respect to each pulse of price change, with the

minimum possible change being the amount of a tick. The tick-data for trading is

the empirical data to be calibrated and tested for the theoretical models regarding

queueing problems. As a matter of fact these models are built on the foundation of

the tick-data where the order flow boasts approximately the frequency of different

sort of orders and the price moves according to the tick-data trading volumes. One

important thing is the fundamental difference between tick-data and data with respect

to discrete time points. The feature distinction lies in the uniformity of time sampled.

By its construction one tick could occur at a time scale of between 10−3 to 102 seconds

(see [5]). There the plot of price-time graph has an non-uniform scale in x-axis, which
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could be a reason for functional central limit theorem to be used in some theoretical

results in the queue models.

Mathematics for these models include stochastic processes, especially random

walks for modeling the price behavior and Brownian Motioned for modeling the dif-

fusion process of price dynamics. Also involved are the partial differential equations

and central limit theorem, as used in the rationale for some main results’ proofs.J

Starting from a description of order arrivals and cancelations as point pro-

cesses, the dynamics of a LOB is naturally described in the literature of queueing

theory. In [22], the authors formulate a bivariate point process to jointly analyze

trade and quote arrivals. Since the process has good properties and easy to be dealt

with statistically, empirical literature like tick-by-tick data are easier to be plugged

into the model, facilitating calibration and numerical simulation. In their paper, a

new approach is introduced, to analyzing transaction price movements in financial

markets. It relies on an approach that has been extended to include negative count-

ing. The thrift form of the model constitutes two processes: the one for the price

movement and another for its size. This approach is particularly suited for financial

markets by simulations, with fairly low transaction intensities. It uses the method

with integer counts that partitions the overall process of delta transaction prices into

three separate but correlated parts.

We are given transaction prices P (ti), i = 1, ...n, and the corresponding price

change process Yi = P (ti)−P (ti−1). The information flow {Fi} is available at the time

when the transaction i takes place. Then the conditional probability could be got.

In particular, P (Yi|Fi) could be calculated. This leads to the form to be determined

πij = P (Dj = j|Fi−1),

with Dj the direction of the transaction price change. In order to get πij, a multi-
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nomial logistic model is used. Meanwhile, the size of price changes can therefore be

formulated. Let U be a distribution with the probability density function (called

Negbin distribution)

f(u) =
Γ(κ+ u)

Γ(κ)Γ(u+ 1)

(
κ

κ+ ω

)κ(
ω

κ+ ω

)u

,

where the overdispersion of the distribution depends on the parameter κ > 0 and

ω = E[U ]. Such a distribution has an advantage of converging to a Poisson as κ→ ∞.

Herein, the absolute price change Si = |Yi| would have its first and second moment

derived with respect to the above distribution.

In [10], the model is proposed in regards of the order-book dynamics as a

complicated formed but theoretically doable queueing system. The computational

instruments of Lapalace transform and its inverse is involved. There, the proper-

ties of hidden or ‘iceberg’ orders and their relationship with market order-book are

studied, concerning the market effect on the best quotes. As I see it, there are two

appreciations blending the mathematical modeling well with market scenario. First is

the threshold between falling behind and exceeding the execution target size (under-

fill or over-fill the order book), i.e. the marginal penalty parameters. These are

motivated by the correlation between (limit) order execution and price movements,

essentially the market behavior of queueing systems. Second is the optimal depen-

dent of two types of orders on the ratio that offsets marginal trading fees, and on

the price distribution and the queue length. This kind of split quantitatively depicts

the comparison between market and limit orders. The optimal strategy is analyzed,

yet the paper shoot the star in regard of its derivation of order placement concerning

queueing system.

In particular, the trader, in the background of K exchanges, is to acquire

queue priority via his order placement decision to buy S shares of stock in the time

horizon [0, T ], summarized by X := (M,L1, ...Lk) ∈ Rk+1 where Lk(k = 1, ..., K) is
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the limit order size submitted, and M is the market order size accordingly. Market

orders are supposed to be surely filled, while limit orders are lining in queues of

(Q1, ...QK) of pre-existing limit orders, which is reasonable for empirical congruence.

Ck ∈ [0, Qk] is the number of cancelation (pre-existing) orders and Dk counter-side

marketable orders reaching the queue. Denote rk to be the rebates of all exchanges.

Let ξ = (ξ1, ...ξK) be the overall bid queue outflow. So far, the total amount traded

by time T can be modeled as

A(X, ξ) =M +
K∑
k=1

(ξk −Qk)+ − (ξk −Qk − Lk)+.

Here λu and λo are modeled as the threshold between falling behind and exceeding the

execution target size (under-fill or over-fill the order book), i.e. the marginal penalty

parameters. The above λu and λo are mathematically expressed through comparison

between A(X, ξ) and S. For example, λu > s+f, where s is a half of the bid-ask spread

at time 0 and f is the lowest available liquidity fee. Queueing system is also modeled as

a background in which the (market/limit/cancelation) orders lie. Using the variables

and A(X, ξ) in the model, the paper builds up an optimal order placement problem

the maximize an E[v(X, ξ)], under the assumptions for parameters. The optimal

allocations of market and limit orders,for single exchange (i.e. K = 1), is established,

assuming the availability of the cumulative distribution function of ξ. When it comes

to multiple trading venues, the main result of this paper shows that optimization of

order allocation is equivalent to the attainment of threshold for pricing parameters.

Specifically, an optimal allocation X∗ satisfies M∗ > 0 if

λu ≥ 2s+ f +maxk{rk}
P (∩k(ξk ≤ Qk))

− (s+max
k

{rk});

satisfies L∗
j > 0 if

P

(∩
k ̸=j

{ξk ≤ Qk}|ξj > Qj

)
>
λo − (s+ rj)

λu + λo
.
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Under the above two conditions, X∗ solves a group of probability equations

P

(
M∗ +

K∑
k=1

[(ξk −Qk)+ − (ξk −Qk − L∗
k)+] < S

)
=
s+ f + λo
λu + λo

,

P

(
M∗ +

K∑
k=1

[(ξk −Qk)+ − (ξk −Qk − L∗
k)+] < S|ξj < Qj + L∗

j

)
=
λo − (s+ rj)

λu + λo
.

The two equations show that an order allocation is optimal as long as it sets the

probabilities of time-lagging the target quantity are identical to certain thresholds

calculated via pricing parameters.

In [33] the authors study the high-frequency dynamics of the price in the limit

order market, in which the arrivals of (market/limit/cancelation) orders are depicted

as a Markovian queueing system. The paper presents a system of two copula queues

standing at the buy and sell sides in the order book. Through strongly analytical

tractability, it derives the distribution of price changes and their time durations,

i.e. the dynamic of the Markovian queueing system. For example, the conditional

distribution of the duration between price moves is given; the probability of a price

up-moving is derived on the condition of the tick-state. Also studied is the relation

between price volatility and order-flow by focusing on the diffusion limit of the price

process. The Markoviantiy allows formula of transition probability for dynamics to be

derived, with limit and stationary states, as well as results via functional central limit

theory. Boasting news points of view from the mathematical finance, the paper treats

the queue sizes as stationary random variables drawn from a probability measure

on N2, which summarizes both sides (bid and ask) of the queue with the rest of

the limit order book. The advantage of doing so is for the pair of order queue to

be Markovian, good to be tractable, e.g. construction of central limit theory. The

technical usage of mathematics is delicate, e.g. theorems or propositions quote results

from Markov Chains and from standard proceeds in probability theory and partial

differential equations, e.g. Central Limit Theorem, bivariate (symmetric) random
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walk, Dirichlet Problem in partial differential equation, et al. Moreover, the market

model is intriguing, as mentioned. Because the paper deals mainly with the ideal

literature of order flow and the queueing system dynamics, for empirical concern

(likely) non-trivial case of, e.g. asymmetry condition on the joint distribution of queue

sizes is concerned. Consequently under this condition and theories in auto-regression

the up-moving price change is more probable to be followed by a down-moving one,

which could be somehow interpreted as a market resilience as will be put forward in the

next section of the literature review. Finally, the paper bears market data structure

well into the theoretical concerns within it, especially for the conception therein. For

instance, to fit in the relevant cases of many liquid stocks, it considers the case of

a balanced order book where the intensity of market and cancelation orders is equal

to that of limit orders. To estimate the price volatility, it could not be bothered

with observing the price itself. Also, an intuitive interpretation is conveyed via the

diffusion limit of the price volatility (tick-size→ ∞) that the higher queue size of the

second-best queue is, the lower price volatility is.

Especially for mathematical interest is the use of functional central limit theo-

ries, which can be summarized as a generalization of the classic central limit theorem.

Assuming the exponential arrival rate of market order µ, limit order λ, cancelation

order θ. The distribution under some special conditions could be given for V a
i , V

b
i

(the ask/bid queue size in change) and T a
i , T

b
i (the random time pertaining to these

changes). Considering price dynamics, let qt = (qat , q
b
t ) be the pair of order queue,

and st be the price process, which is in a sense vogue in mathematical and financial

interpretation. Now one gets a continuous-time process Xt = (sbt , q
b
t , q

a
t ) for analysis.

On these setup, one can define the first time when bid/ask queue is depleted:

σa = inf{T a
i , q

a
T

a−
i

+ V a
i = 0}
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and σb similarly. Then the inter-moving duration is

τ = σa ∧ σb.

Thus comes the distribution of τ

P[τ > t|qa0 = a.qb0 = b] =

√
(
µ+ θ

λ
)(a+ b)ψa,λ,θ+µ(t)ψa,λ,θ+µ(t)

where

ψn,λ,θ+µ(t) =

∫ ∞

t

n

u
In(2

√
λ(θ + µ)u)e−u(λ+θ+µ)du.

One of the highlights in this paper lies in the diffusion limit of price processes.

Let Zn = X1 + ...+Xn, and st = Znt . Here, when dealing with the diffusion behavior

of sn, the high frequency dynamics of the price is described by a piecewise constant

stochastic process, we applied the specialized Central Limit Theorem (CLT) with

respect to
sn lognt√

n
. The subscription is chosen with delicacy, driven by the choice of

tn = tζ(n), i.e. the adjustment of time-scale over which the average number of order

book events is of order n. It serves as a good application of generalized functional

CLT into mathematical finance fields.

The patience of the investors in the limit-order market reflects popularity of

market and the participants’ expectation of the price dynamics. In the article [23] the

author creates a model of price formulation in a LOB market, assuming finite time-

horizon, continuity of time flow and no dividend paid. Bidders among askers purchase

one asset before quitting the arena. Two types of traders are classified: patient and

impatient, who arrive randomly to the market, choosing alternatively with respect

to different order types. It models a random execution time and the corresponding

expected utility function, and the Poisson arrival for these types of traders.

In particular, Let k be the maximum number of units that a market order

can have with positive probability; let M be maximum number of limit orders in the
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order book. The explicit form of fm, with m being the number of sellers, f being the

utility function, is under the condition of the arrival rates and the impatience index

r. Given the configuration of limit orders, price impact function are defined by

imp(i) = ai+1 − a1,

where ai+1 is level of the i′th offer above the ask. The main result with respect to

shape of order book is for ai(m)the level of i’th limit order in a stationary Markovian

state m < M. ai(m) has the expression as a weighed average of {fm−j}, j = i, ..., k

i.e.

ai(m) =
λkfm−k + λk−1fm−k+1 + ...+ λifm−i

λk + λk−1 + ...+ λi

and the weights λi are the arrival rates of the i’th-unit impatient buyers. Further,

important relation holds as an inequality about the λ

λ >
k∑

i=1

iλi.
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3.2 Optimal Trading Strategies

Overlook of optimal trading problems

IIn the theory of mathematical finance an investor maximizes her utility func-

tion by applying the (optimal) trading strategy on her portfolio. Likewise in the liter-

ature of limit order books, market makers are faced with market risks, inventory risks

as well as execution risks while also having the objective to maximize the expected

utility of the terminal profits. It is as a matter of fact a complex problem how to act

with the limit order books, which is a dynamical-shaped business, and choose among

the time and size to trade— between the steering of bid and ask.

It is a common sense that a big buy (market) order would infect the market

by pushing upward or downward the market price. In the high frequency market

this holds true. In such context, there exists a class of strategies that consists in

simultaneously posting limit orders to buy and sell during the continuous trading

session, and culminating to the best result of the relevant individual parties. Let

pbt be the best bid price at time t ≥ 0. For instance, a market participant, say, an

investor would pose bid orders more expensive than the momentarily best bid, pbt+∆,

for ∆ ≥ 0, so that she would own goodness in executing the order but has the trade-

off for humble lucre. She now would love to maximize her expected utility function—

that is the setup of the optimal problems. In other (optimal) problems, investors

has the choice of whether market or limit orders to pose; or how a market resilience,

i.e. the opposite direction of a price change would happen when a big market order

arrives. An important factor in optimal problems is the constraint for the expected

utility function. The obvious one is the total amount of money at t0 = 0 or the finite

time-horizon T ∈ (0,+∞). J

As mentioned before, optimal strategy are analyzed against risks. Typically,
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risks in the high-frequency literatures include inventory risk as well as execution risk

and adverse-selection risk ( [11]). In [11] the authors modeled the trading strategies

in limit order markets, mathematically speaking to solve a control problem charac-

terized with quasi-variational system by dynamic programming methods. Posed in

detail, the paper deals with the simultaneously posting of limit bid and ask orders

both continuously. The paper deals with the microstructure of LOB, in particular,

price/time priority. The authors, in my opinion, treats market stuffs with highly

mathematical delicacy. For empirical concern, limit orders are modeled as continuous

control yet the market orders discrete.

In a benchmark market-making model, a probability space (ω,F ,P) is fixed.

The mid-price is a Markovian process P. δ is the tick size. A continuous, time-

inhomogeneous Markov chain St is built up corresponding to Pt, with intensity matrix

(rij(t))1≤i,j≤m where {1, 2, ...,m} is its state space. Qt = (Qa
t , Q

b
t) represent the

possible choices of bid/ask quotes valued in a proper space. Denote Ba to be the

best-ask quote; Ba− to be the ask quote at best price minus the tick. Similarly

are Bb and Ba+. π
b(Qb

t , Pt, St) and π
b(Qb

t , Pt, St) are bid and ask of market makers.

Consequently, we have

πb(qb, p, s) = (p− s

2
+ δ1qb=Bb+)(1− ρ), πb(qa, p, s) = (p+

s

2
− δ1qa=Ba−)(1 + ρ),

with some ρ ∈ (0, 1). Further let L = (La, Lb) be the pair of limit ask-bid strategies,

then for the market-maker strategies α = (Qb, Qa, Lb, La), the cash holdings X and

the number of shares Y held by the agent follow the dynamics

dYt = Lb
tdN

b
t − La

t dN
a
t ,

dXt = −πb(Qb
t , Pt− , St−)L

b
tdN

b
t + πa(Qa

t , Pt− , St−)L
a
t dN

a
t .

As a standard objective of the market maker, he wants to maximize the expectation
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of his profits at the terminal, i.e.

maxE[U(XT )− γ

∫ T

0

g(Yt)dt],

where U is an increasing utility function, g is a non-negative convex function on the

strategy and γ is a non-negative constant. Here, the minus sign in the equation

indicates the penalizing character of the term
∫ T

0
g(Yt)dt, since it is the variation of

the invention.

In [27] the authors studied a small investor’s optimal portfolio problem in the

LOB background, with the optimal strategy derived via justifying the existence of the

a post-derived price process (whose corresponding process concerns without transac-

tion costs) of the risky asset, sitting by a imaginary market that can be represented

in the original market with the same gain process of value process. The paper intro-

duces a new model to analyze the trade-off between time-delay of investments and

good prices for the corresponding investors. The elegance of the shadow one lies in

the mathematical precision of treatment with the distinctive order types. The main

result deals with the construction of the shadow price through the optimization of

logarithmic utility, which is better-understood. Deriving the boundary problem of

the risky asset price process, the paper has the main result of the relation between

shadow price and optimal strategy in the limit-order market. Questions remain for

example when the limit orders are huge enough to be let in the incoming orders from

other participants: whether the boundary problem come across here still makes sense.

In the Merton problem for a limit order book, let S be the best bid-price and

S̄ be the best ask-price, where S ≤ S̄. Limit buy and sell orders are executed at

jump times of N1 and N2 respectively. LetMB,MS, LB, LS be predictable processes,

withMB,MS non-decreasing the zero at starting time; LB, LS non-negative, and c an

optional process. The quintuple (MB,MS, LB, LS, c) is called a strategy. To this end,

we can define in a standardized way in math finance, the portfolio process (φ0, φ1)
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to stand for the number of risk-free and risky assets respectively. Also standard

definition is the admissible set for (φ0, φ1), A(φ0, φ1). Let δ be the time preference.

The value function in this problem is modeled as

V (φ0, φ1) = sup
(φ0,φ1)∈A(φ0,φ1)

E

(∫ ∞

0

e−δt log(ct)dt

)
.

As mentioned, one of the crucial concepts in the paper is a shadow price process,

defined as a real-valued semimartingale S̃t satisfying ∀t > 0

St ≤ S̃t ≤ S̄t,

and that

S̃t =


St, if∆N1

t = 1;

S̄t, if∆N2
t = 1.

(3.1)

In the paper [31], the optimization submission strategies are discussed, espe-

cially of the strategies that maximizes the expected utility when dealing with bid

and ask quotes in the LOB. The mid-price is set. A two-step strategy, called inven-

tory strategy is presented, and compared with the best bid/best ask strategy and

symmetric strategy (benchmark cases).

Stock mid-price modeled as a Brownian Motion, bringing about the measure

for the risk of inventory. To maximize the terminal-time expected (exponential)

utility of gain or loss profile, the specially-modeled bid (ask) price is introduced,

making the agent neutral to determine the present portfolio and its marginal one,

with the mean called the ‘indifference price’. Then the model extends it into infinite

horizon. Further, the author derives the relevant bid and ask prices and computes the

market impact with large-sized orders. The model of stochastic wealth and inventory

come via the standard-modeled Poisson process for both orders. Aggregating these

setups, the model attains the Poisson intensity for the order execution. When dealing

with optimal bid and ask quotes, the authors use Hamilton-Jacobi-Bellman (HJB)
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Equation to solve it, and further find the reservation bid and ask prices defined

previously.

Assume the mid-price St solves

dSt = σdWt, S0 = s,

where Wt is a standard Brownian Motion and σ is a constant related. The agents

objective is to maximize her expected utility at the terminal T. In an ideal setting,

an inactive trader not holding any limit orders holds q inventory stocks until T. The

value function is

v(x, s, q, t) = Et[− exp(−γ(x+ qST ))],

where x is her initial wealth and γ the risk-neutral rate. These lead to the reservation

price

r(s, q, t) = s− qγσ2(T − t).

This price serves as an adjustment to the mid-price. For example, if the agent is

short stock, i.e. q < 0, the price is above mid-price since he is to buy higher. For the

agents trading through limit orders, let Xt be the wealth in cash

dXt = pat dN
a
t − pbtdN

b
t ,

with pat , N
a
t , p

b
t , N

b
t defined exactly the same as in [11]. Let

δb = s− pb, δa = s− pa.

The objective function will be

u(s, x, q, t) = max
δa,δb

Et[− exp(−γ(x+ qST ))].

Further, let λa be the Poisson rate at which market orders hit the agent limit sell

order. Similarly defined is λb. The solution of u follows the Hamilton-Jacobi-Bellman
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function
ut +

1
2
σ2uss+maxδb λ

bδb[u(s, x− s+ δb, q + 1, t)− u(s, x, q, t)]

+maxδa λ
aδa[u(s, x− s+ δa, q + 1, t)− u(s, x, q, t)] = 0,

u(x, s, q, T ) = − exp[−γ(x+ qs)].

(3.2)

Also concerning a large asset purchase, but in the face of a one-sided LOB,

in [25] the authors put emphasis of the impact of market resilience where the order

book will be shaped back to its original pattern before the tick happens. The investor

aims to minimize his expected cost of purchasing (over a given horizon) a target

amount of asset. The delicacy of the article is to employ stuffs from measure theory

to derive the price after any lump purchase, and further, the total cost incurred by

the investor using the corresponding strategy. The constructive method toward the

solution of the optimization problem is to transform the unknown expression of the

total cost into a convex minimization problem and to solve it in a doable (in fact,

mathematically simple) way. The heuristics of the article lie in introducing a market

resiliency function (modeled beforehand) with very good analytical properties (i.e.

Lipschitz, monotone, etc.); moreover the ask price in the presence of big investment is

modeled by solving the volume effect process determined by an Stochastic Differential

Equation. Finally, the simplification is attained by turning the cost function into a

convex one.

Let T > 0 be this given time-horizon. At is the ask-price of an asset (‘one-

sided’ assumed to be ask-side, w.l.o.g.) without large investors, which is a continuous

L1 semimartingale. Let µ be a measure on [0,M) withM > 0. It takes finite value on

compact subset of [0,M). Define a left-continuous cumulative distribution function

F (x) = µ([0, x)).

For a measurable subset B ⊂ [0,M), µ(B) is denoted as the number of limit orders
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with price

B + At = {b+ At, b ∈ B}.

Let the positive constant X̄ be the mandatory amount of shares the large investor

purchases, and Xt be the cumulative amount purchased until time t. Naturally, XT =

X̄. Denote

∆Xt = Xt −Xt− .

Let the resilience function be a strictly increasing and local Lipschitz function on

[0,∞)

h(0) = 0, h(∞) = lim
x→∞

h(x) >
X̄

T
.

The ask price with large investors is defined to be At +Dt, where Dt satisfies

Dt = ψ(Et) := sup x ≥ 0 : F (x) < Et.

Financially speaking, Dt is the price after any lump purchase by the investor at

(or ‘right after’ because of right-continuity of Dt) time t. Decompose Xt into its

continuous and pure-jump parts Xt = Xc
t +

∑
0≤s≤t∆Xs, and let

ϕ(x) =

∫
[0,x)

ξdξ, x ≥ 0,

Φ(y) = ϕ(ψ(y)) + [y − F (ψ(y))]ψ(y), y ≥ 0.

The cost function of the investor using strategy X over the time interval [0, T ] is

formulated by

C(X) =

∫ T

0

(At +Dt)dX
c
t +

∑
0≤t≤T

[At∆Xt + Φ(Et)− Φ(Et−)].

Without loss of generality (w.l.o.g.) the cost function is technically simplified as

C(X) =

∫ T

0

DtdX
c
t +

∑
0≤t≤T

[Φ(Et)− Φ(Et−)].
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By real analysis, stochastic analysis and properties in convex functions, under the

assumptions w.l.o.g., C(X) has the form

C(X) = Φ(ET ) +

∫ T

0

Dth(Et)dt.

Furthermore, under two distinct conditions with respect to empirical strategies, the

paper gives the analytical form of the optimal solution by the delicate properties in

convex analysis.

In a analogous literature to the above paper with respect to market resilience

function, in [26] the authors studied the market microstructure on optimization with

stochastic algorithm. Its main purpose as well is modeling a cost function and min-

imize it. Yet the procedure in this model is simpler and plainer than in the above

paper. But the feature is to construct a execution process using non-homogeneous

Poisson process with the intensity proportional to the relative (bid) price. This pro-

cess form both the mean execution cost and penalization function with respect to the

lagging behind target quantity (number of assets). The paper gives the analytical

properties about the cost function, e.g. its (order-1 and order-2, the latter of which

implies convexity) differentiability, chain rules. Tools for these stuffs involve Poisson

calculus and so forth. The main result, i.e. solution of optimizing the cost function,

lies in the application of Central Limit Theorem and using Euler Scheme in stochastic

approximation. The argmin of the function is constructed as a limitation. One of

the remarkable feature of this work is the feasibility of the solution, which is in fact

implemented in some sense at the conclusion part of the paper. Since the construc-

tion of the model is mathematically less involving than the previous paper (though

with the same concern of minimizing cost function and with similar construction of

penalizing function), the derivation of argmin variable is less costly but more amiable

in computation.

The dynamics of the fair price of a security is a given (St)t≥0, non-negative
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continuous stochastic process. It could be for example the fair/intrinsic price. Talking

about the design of algorithm, the paper proposed an execution process of buy orders

to be a non-homogeneous Poisson process(
N

(δ)
t = Ñ∫ t

0 λ(Ss−(S0−δ))ds

)
0≤t≤T

with varying intensity

λ(Ss − (S0 − δ)).

Here 0 ≤ δ ≤ δmax (δmax ∈ (0, S0)) denotes the depth of the LOB; the function λ is

defined on R, finite and non-increasing. Over [t, t + ∆t] the probability of a single

buy order to be executed is

λ(Ss − (S0 − δ))∆t.

Let Qt ∈ N be the size of portfolio invested in asset S. A market penalization function

(i.e. the very similar market resilience function h(·) in the last paper) Φ is a non-

decreasing and convex function ranged on real positive, with Φ(0) = 0. The function

of execution cost, given the above setup, could be built up as

C(δ) = E
[
(S0 − δ)

(
QT ∧N (δ)

t

)
+ κSTΦ

((
QT −N

(δ)
t

)
+

)]
,

where κ is a (free) parameter representative of the non-execution aversion. κ = 1

implies the true cost function. The main goal is to solve

min
0≤δ≤δmax

C(δ).

The paper lays more emphasis than the last paper, on the stochastic algorithm of

its main problem. Particularly, it proposes the first framework of simulated date, i.e.

assuming (St)0≤t≤T to be diffusion process

dSt = b(St)dt+ σ(St)dWt, S0 = s0 > 0.

Then S is replaced by its Euler Scheme. In the second framework of true market

data, S is assumed as a stationary ergodic process and that a dataset is accessible
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at frequency T/m. After that, the paper puts forward stochastic approximation and

convex optimization procedures to facilitate the plug-in of items on the main mini-

mization problem. This follows the main result that depicts the attainment of the

optimal δ∗ in the two respective frameworks.

For the last parts of the paper, besides numerical experiments, the authors

discuss the monotonicity, differentiability and other propositions of the function C(·).

At the mean time, the monotonicity and convexity for C(·) are gotten, as long as

some estimations hold for QT and κ.
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3.3 Equilibrium in Multi-Agent Markets

Overlook of Equilibrium Problems in Limit Order Books

IIn financial markets, market participants are playing the game to maximize

their respective profit. Yet this is weird if the corresponding counterpart of a buyer

and a seller, in the identical market with the same share of stock at the same trad-

ing period, get both the maximization. Put it more precisely, their respective utility

functions are different so that an equilibrium would be attained. Questions emerge,

for instance how to define this equilibrium and whether it exists; what would be

the mathematical relation between both sides’ utility functions and the equilibrium

stroke; how to describe mathematically the ask side’s competition toward the execu-

tion of limit order; does liquidity have something to do with equilibrium in a highly

competitive limit-order market. Undoubtedly, order book dynamics in real market are

built up by different individuals (kinds of investor or market makers). Thus, it is very

important to catch up with the pace they make by modeling properly the evolution of

liquidity provision, quantified risk-aversion of multi-investors (including but not limit

to utility function thing) and equilibrium. Questions at hand for researchers to think

over include the definition of different equilibrium (e.g. Nash Equilibrium), their

existence and uniqueness, what different scenario for distinctive type of equilibrium,

what application for an equilibrium, et al.

Generally speaking, the research of equilibrium in order-driven markets con-

cerns two parts: the optimality for individual counterparts and the construction of

the (Nash) equilibria. As it were, it reflects but some research pattern for the previous

section, but more involved in game theory mathematically. J

The paper [6] deals with an n-player non-cooperative game in the sphere of

LOB with sellers competing to fulfill the incoming order. Consider there increases an
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extra investor in a given scenario of a given number of market participants. Random-

ness comes as the amount X of asset the extra investor (say, buyer) asks for, which

links with the best available price and the size of the offer. The rationale of herein

is clear that right from the beginning, a standard setup of a single (seller) competi-

tor’s optimal problem (maximizing expected payoff) is built up. This is followed up

by deriving the Nash Equilibrium of n-player, for a general class of X. The paper

discusses the existence for Nash equilibrium of cross-class agent players. Finally it

describes the asymptotic behavior where n→ ∞. The highlight of this paper is Nash

equilibrium or even the equilibria itself, whose application is barely seen in the LOB

literature. Another feature for the big picture is the involvement of order-book-shape

into the existence of equilibrium, very interesting bonding. Nevertheless the paper

lacks market data to justify their research, probably because the idealistic assumption

of competitiveness. Pragmatically, information provided to each competitor is asym-

metric, sometimes largely diversified in terms of transparency, with itself a difficult

field.

Consider a non-cooperative game with n players trading a given asset in a

one-sided LOB. The ith player owns an amount of κi shares. An external agent will

buy amount X with the upper bound P̄ . Denote Φ0(p) as the total amount of stock

for sale at price ≤ p. Let β be the variable standing for a particular share in possession

of the new agent, ϕ(β) the price it puts on sale. Assume the incoming order has size

X,

β(X) = sup{β ∈ [0, κ] : β + Φ0(ϕ(β)) ≤ X}.

Further let ϕi : [0, κi] 7→ [0, P̄ ] be the pricing strategy for the ith player. Define

ΦI(p) =
∑
j ̸=i

meas ({β ∈ [0, κj] : ϕj(β) ≤ p}) .
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Then the Nash Equilibrium is the optimal solution to the problem

max : Ji(ϕ) =

∫ κi

0

(ϕ(β)− p0)ψ (β + Φi(ϕ(β))) dβ.

The paper shows the sufficient conditions when this Equilibrium exists or not. The

former uses backward induction while the latter uses counterproof to deduce the

contradiction with optimization.

Another perspective to view the equilibrium is to pool it within the market of

specific financial instrument, also various types of order formation, e.g. limit order

market, hybrid market, etc. Yet this kind of model setup has special background.

For instance, in [9] the authors mainly study the competition-proof of various mar-

ket types and competition between different exchanges against liquidity and price

improvement; at the mean time, derives multiple equilibria supported by distinctive

preference rules with respect to these corresponding markets. The study is inter-

esting. On one hand, the framework is macro, pertaining to competition between a

pure limit-order market and a hybrid market with both a specialist and the LOB.

The authors give a detailed market analysis of liquidity providing and competition in

the hybrid market, described as time-line for sequence of events to submit and clear

certain type of orders, constructing as a cornerstone for main results thereafter. Then

for the counterpart of the exchanges, the active trader chooses the minimize her cost

function, constructed as an (preliminary) optimization problem. After explaining the

order execution mechanics and market-clearing process, the paper discusses the spe-

cialist’s profit maximization problem as another part of the n-player setting. One

important conception and illustrated in a figure here is the sequence of ‘execution

thresholds’ for which the cleanup price is big enough when market order size triggers

it ( [9]). Collecting all the counterparties yields a Nash Equilibrium built-up, mainly

with respect to value trader’s marginal expected profits, financial experts’s execution

thresholds and market order arrival distribution. Then the equilibrium impact of
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inter-market competition on both limit order placement and the market order flow is

investigated, discussing questions such as market centralization given heterogeneity

of trading costs and pre and post occurrence of liquidity. These are of big empirical

value. Yet little is seen in this article to extent these business.

Let Sh
1 , S

h
2 , ... denote the total limit sells posted at price, p1, p2, ... in the hybrid

market; similarly are Sp
1 , S

p
2 , .... Denote Q

h
j =

∑j
i=1 S

h
i , Q

p
j =

∑j
i=1 S

p
i . Let B

p be the

market buy size at price p. For the Nash Equilibrium, the paper proposes the threshold

for order size under which the execution is triggers, by

θhj = max{Bh|ph(Bh) < pj}.

Moreover, given that an active trader buys x shares, the total liquidity premium τ(x)

is minimized:

τ(x) = min
Bh,Bp:Bh+Bp=x

Th(Bh) + Tp(Bp),

where T denotes the according cost schedules. In this equilibrium, also defined is ej,

the expected marginal profit at price pj. It satisfies

Sp
j = 0 →p

j≤ 0

and

Sp
j > 0 →p

j= 0.

The last two conditions are for value traders who arrive randomly at the initial time,

submit limit orders if profitable, and then leave.

The main result is to compute the equilibria of various types relevant. To

obtain this goal, let Fh and Fp be the distribution from which the probabilities P (Bh >

θhj ) and P (B
p > θhp ) are computed. Let H be the inverse of the distribution F . Define

Hj =


H
(

cj/α

pj−v

)
,

cj/α

pj−v
≤ 1;

0, otherwise.

(3.3)
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where cj the cost when submitting limit order at price pj, v a constant connected to

the price aggregation (pj)j∈Z and α is a constant. Given some assumptions, in the

equilibrium the pure LOB satisfies

Hj ≥ Hj−1.

For the hybrid market it satisfies

βj ≤ θhj+1

and

ph(βj) = pj.

Based on similar literature according to competition among liquidity providers

and equilibrium of order books, there are plenty of stuffs worthy to be sought mathe-

matically and financially, e.g. equilibrium acting with different sizes of market orders;

equilibrium types in term of different types of orders.

Consider a limit-order market and a uniform price market. A random infor-

mation flow occurs at time τ, distributed exponentially with parameter r. Let ṽ = 1

or 0 be the value of a risky asset. Consider, n being fixed, orders of size i = 1, 2, ..., n.

The market order arrives randomly with Poisson process, with intensity β for both

buy and sell orders. Denote mt to be the expected asset value at time t, given in-

formation to market order arrivals. Let ai(m) denote the conditional expectation of

the asset given a buy order of size i at time t when mt− = m. Similarly for bi(m). In

a limit order market, for each i, a limit sell order has a price aLi+(mt−). In a uniform

price market, the cost of buy orders of size i will be iaUi (mt−). The counting processes

for liquidity trades are denoted by Z, for informed trades by X, for total trades by

Y = X + Z, all of which come with subscripts + and − denoting buy and sell, re-

spectively. Define Xi = X+
i − X−

i . In the game modeled, equilibrium occurs where
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the functions θ+i (m, v) and θ
−
i (m, v) satisfy

X+
it −

∫ t

0

θ+i (ms− , ṽ)ds

and

X−
it −

∫ t

0

θ−i (ms− , ṽ)ds

are martingales with respect to the informed trader’s information. Meanwhile, the

evolution (i.e. jump) of mt reads

dmt = f(mt−)dt+
n∑

i=1

[ai(mt−)−mt− ]dY
+
it +

n∑
i=1

[bi(mt−)−mt− ]dY
−
it

due to the proposition of dynamical elements, e.g. f, ai, bi...

In the limit order market, let J(m, v) be the value function for the informed

trader. In equilibrium it yields

J(m, 1) = i−
i∑

j=1

aj+(m) + J(ai(m), 1); J(m, 0) =
i∑

j=1

bj+(m) + J(bi(m), 0).

Likewise for θi(m, ·) being positive, J(m, ·) satisfies relevant inequalities. Also con-

cerning the informed trader’s optimization yields

rJ(m, v) =
∂J(m, v)

∂m
+

n∑
i=1

βi[J(ai(m), v)− J(m, v)],

and naturally the boundary conditions accordingly. Similarly proposed in the equi-

librium for the uniform price market are J(m, ·) and the price dynamics.

When it comes to working orders, in the equilibrium it yields

iai(m) > jaj(m) + (i− j)ai−j(aj(m)), ibi(m) > jbj(m) + (i− j)bi−j(bj(m)),

where m ∈ (0, 1) arbitrarily and 1 < j < i.

Finally, the interesting thing concerning work orders and block orders is that

the Nash equilibrium with work order in uniform price market is equivalent to that of
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block orders in limit order market. The proof employs the model itself plus arbitrage

theories.

As is seen from the review of above two papers, liquidity and its role in equilib-

rium is multivariate as regards market study. In particular, how to link the differently

accepted measures of liquidity? In a more general literature, the paper [21] deals with

a model to imply a market view from client trades: it builds a profitability function

and responding effects of the market maker’s decision is given. A tricky part of the

paper is that while trading volumes are hard to model, limit-orders are not. But both

are, at least constitute a majority of, the measure for liquidity. The paper links these

two stuffs. The choice of alpha as a main elements of research here is interesting. By

Pontryagin’s Principal for stochastic maximization, i.e. expectation function, using

properties of backward stochastic differential equation, the alpha for the optimizor is

solved. Worthy to mention is that the paper uses numerous results from and even

sets its background in stochastic analysis, stochastic processes and stochastic partial

differential equations.

Consider the market with n clients of heterogeneous beliefs on price, and

one market maker. A filtered probability space given (Ω,F , {Ft}t≥0,P). W k
t is a

k−dimensional P−Wiener process. Given the drift at and diffusion σt, the price

process pt reads

dpt = atdt+ σtdWt.

Consider the cost process ct that is sufficiently smooth in t, financially acting as the

liquidity fee for the market maker. Let the ith client has the position Li. Denote lit

for the trading volume. α is the standard notation for market α. From the client’s

perspective, her optimization problem reads

S = sup
l

EP̃

[∫ ∞

0

e−βt(Ltdpt − ct(lt)dt)

]
.
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Moreover, let

γt(α) = sup
l∈supp(ct)

(αl − ct(l))

be the Legendre transform of ct. The paper shows that the implied α for the opti-

mization to hold satisfies

αt = EP̃

[∫ ∞

t

e−β(s−t)dps|Ft

]
where β is an enough large constant. More explicitly could αt be written as the Ito

process

dαt = βαtdt− dpt + θtdW̃t.

Here P̃ and W̃t are the clients’ probability measure and filtration. θt is a measure of

intelligence of a client over the price process pt.

In solving the market maker’s control problem∫ ∞

0

e−βtE[Lt⟨id, βt⟩] + ⟨−Ltβid+ (id− ᾱt)γ
′

t − γt − ϵf · gt, µt⟩

let gt be the admissible control and µt be the measure derived from the approximation

of the above optimization problem, ϵ = βσ−2, the main result yields

gt(α) =
emt(α)/ϵ∫

emt(α)ϵdµt(α)
.

When talking about liquidity and equilibrium, one important factor is no doubt

the determinants of equilibrium, its dynamics and the critical ‘point’ for its existence

or uniqueness. In [30], there is a model of price formation in a limit order market,

deriving the equilibrium order placement strategies. The highlight of trader’s pa-

tience and market resilience is precious for the paper. Patience are described as a

waiting cost for per unit time, which has the empirical implication such as portfolio

managers (patient) or market speculators (impatient). An equilibrium of trading is

defined as pairs of strategies for order placement with respect to patient and impatient
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traders, so as to maximize the expected profit determined by a trader’s valuation and

the best quotes. When working with the equilibrium order placement strategies it

is natural to turn to spreads evolution in between transactions, by the definition of

equilibrium. Thus comes market resiliency, whose determinants and relations with

market heterogeneity (traders’ behavioral differences) are discussed mathematically

and pragmatically. Numerical examples are carried out in terms of heterogeneity,

patience, resilience mentioned earlier. In equilibrium, a concise formula is derived

concerning relation between market resiliency and duration between trades. Further-

more, simple numerical examples are displayed regarding different market resiliency,

different heterogeneity and different patience of traders. Yet question remains as

what themselves interact, for example, what brings heterogeneity bigger, a more or

less resilient market? If questions are harder, then is there a correlation? What to

do with real markets?

For this single-security market, the determinant range of admissible price is

[B,A]. The best bid and ask quotes are a, b, with the spread s = a − b. The market

orders arrive through a Poisson process with parameter λ and with inter-arrival time

τ. Let Vb and Vs be the buyer and seller valuation. ∆ is the tick size. Meanwhile,

patient traders afford the per time waiting cost of δP ; same for δI with impatient

traders, with their respective proportion being θP and θI . pb and ps are respective

execution prices. Denote T (j) as the expected waiting time for j−tick limit orders

execution. We have

πi(j) = j∆− δiT (j)

being the payoff of a trader submitting j-tick limit order. Let j∗i = CF
(

δi
λ∆

)
where

CF (x) is the ceiling function, i.e. the smallest integer ≥ x. In equilibrium, various

properties concerning are obtained, e.g. the expected inter-trade time is (given the
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heterogeneity for traders)

T (n1) =
1

λ
;T (nh) =

1

λ

[
1 + 2

h−1∑
k=1

ρk

]
∀h = 2, 3, ..., q − 1

and

T (j) = T (nh) ∀j ∈ ⟨nh−1 + 1, nh⟩ ∀h = 1, 2, ..., q − 1.

Here ρ = θP
θI
; n1, ...nq are q (pieces of) randomly formulated spreads; and ⟨j1, j2⟩

stands for the set {j1, j1 + 1, ..., j2} with j1 < j2.

Furthermore, let R be the measure of market resiliency, i.e. the probability

that the spread reverts to its competitive level before the next transaction occurs.

It satisfies R = 1 for homogeneous markets and R = (θp)
q−1 < 1 for heterogeneous

markets.

Next the paper considers two types of markets, the fast market and the slow

one, with their λ being λF and λS respectively. In the Markovian literature for

{nh}qh=1, in the equilibrium yields

nh(λF ) ≤ nh(λS), for h ≤ qS;

nh(λF ) ≤ nqS(λS), for qS ≤ h ≤ qF .
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CHAPTER 4

DIFFICULTIES OF MODELING FOR HIGH FREQUENCY MARKETS

4.1 Price Dynamics of Coupling Between Bid and Ask Price

As described in the first chapter, the time-t bid price b(t) determines the

boundary condition for sell limit order placement because any sell order placed at or

below b(t) will at least partially match immediately. A similar role is played by the

ask price a(t) for buy orders (c.f. [35]). As a matter of fact, almost all the models

reviewed in this thesis allow limit orders at only two fixed prices, i.e. the best bid and

the best ask. This assumption restricts those models to use standard results from

queuing theory and to compute the mathematical properties such as the expected

number of stored limit orders or the expected time to execute the orders.

One approach is to apply economics literature. In the paper [5] it is observed

how this nonlinear coupling makes modeling the LOB such a difficulty. The paper [14]

extended this into stages allowing any given order types and price patterns, assuming

that these processes focused t > 0, with non-rebounded price behavior.

Another approach is to assume that limit orders are placed at a fixed distance

from the mid-price, and that the limit prices of these orders are then randomly shifted

and shuffled until they culminate to transactions. It is this random shuffling that

causes price diffusion. This assumption takes advantage of the analogy to a standard

diffusion model in the physics literature. See for reference e.g. the papers [13],

[22], [33] and [26].
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4.2 Price Dynamics in Determination of the ‘True’ Market Price

The price dynamics is the result of the interaction between the incoming order

flow and the order book. As we have seen the most popular model of the price is that

of mid-price. As the arithmetic average the best bid b(t) and best ask a(t) , mid-price

m(t) =
1

2
a(t) + b(t)

is easy to be applied to deriving the optimal execution and optimal market making

problems to facilitate an bird-over of mathematical perspective of market microstruc-

ture. It is also clearly to be calibrated easily.

On the other hand, one should not trust mid-price as a ‘skeleton key’ while

dealing with so various kinds of market microstructure. Take, as a very simple but

typical example, in a short time-scale (let’s say 0.1 seconds or less) a volatile market

where oscillation is big. If at one moment there is a huge market sell order into the

order book, then the change of the one-sided price, say b(t) would go tremendously

larger than the other side a(t), culminating to the deviation of the mid-price m(t).

On other words, it is possible that there is price jump as a sell (buy) market order

arrival which is executed at a price smaller (larger) than the best bid (best ask) price

at the moment consecutively after the market order arrival. Moreover, no evidence

that mid-price returns had a significant impact on order arrival or cancelation rates

(Poisson) was found. The problem here is universal for the limit order market models.

From both mathematics and financial aspects, it is necessary to handle this bid-ask

liquidity imbalance issue. One way to do this, is to draw from regression method.

To put the question more mathematically feasible, it turns out that how could

we researches deal with the discontinuous price paths in the high-frequency trading

circumstances? This is reasonable for resolving the original question since mid-price

loses rationality only when the price dynamics goes through a discontinuous formality.
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Here a few more delicate concepts with respect to limit order market is intro-

duced, concerning trade-through 1 and trade-sign 2. For the imbalance between two

sides, a (bid-ask) volume ratio is introduced, corresponding to the i-th depth right

before the k-th trade inside the order book by Wtk−1(i). Then the conditional prob-

ability of the negative trade-sign given Wtk−1(i) ≥ x is calculated, for some x ∈ R+.

Theoretically speaking, this < 0 trade-sign implies that a foreseeing ask market order

reaches making the next trade entering a threshold by a ask market order. A side

effect is achieved that this conditional probability is observed computationally cop-

ulated to this ratio in regards of the unit depth. This is crucial to measure whether

the shape of an existing order-book is balanced or not.

Using Logistic regression (in statistics) for the relationship between liquidity

and trade-sign is derived and an analysis on the prediction of the tick price jump

occurrence by logistic regression is attained. Thus the original question is partially

resolved.

(See for reference e.g. the papers [7], [32].)

1Trade-through can be regarded as the momentum convert of market price
revoked by a market order.

2An indicator function of order, usually market ones indicating that pattern of
LOB and empirical trading volumes are constructive for the trade foresight.
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4.3 Iceberg Orders, Trade-through and Arrival Rates

As I see it, one of the thrilling characters of LOB lies in its highly strategic

manner. There are tricky parts in market making. As long as these tricks are legal,

nothing is to blame. From a ‘maximization of utility function’ viewpoint, it is worth

digging into these plays.

One such tricks is an iceberg order. An iceberg order is a trading strategy.

It refers to a large kind of transaction in the equity markets involving separating

a relatively large order into smaller pieces of orders. A hidden signal with amount

in iceberg orders, they are treated by market makers as a feasible way of kind of

promoting the follow-up participants to trade identical to their direction(s). The

latter may well ignore the possible manipulation (by the former) they are faced with.

Specifically, one is interested in for example the impact of iceberg orders on the

price and order flow dynamics in limit order books. Commensurate is reached that

such orders bring about hidden liquidity (‘latent liquidity’ as put in some articles), a

result from the market dust-followers.

But now financial questions arise, such as the indirect effect that they are

likely to have on the strategic behavior of other market participants. Naturally one

would ask the question on the detection: to what degree would market makers figure

out the existence of such tricky parts and predict the trading volume that lies behind

the curves? If they can be detected by and large, what is the rationale of dealing with

them, i.e. for one of the counterpart to submit and for the other to avoid? What is

the motivation therein? Meanwhile, the concerning of the impact of iceberg orders

on liquidity suppliers using limit orders is also of common concern.

Mathematically speaking, for one thing the model of iceberg order itself is a

hard and miscellaneous problem. Actually the exact time point of these orders (or
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rather, the ‘average’ time duration of successive partition of iceberg orders) is totally

unknown and have little hint for their behavioral regularity. Even the most common

stochastic process, Poisson Process for modeling the incoming orders (whether it be

market, limit or cancelation) has little room for them. In reality, researchers often find

it a bit easier— sometimes by predicting price movement with respect to these behind-

the-curve liquidity via tick-data. This affords great work of both computational and

financial efforts and wisdom.

In contrast, trade-through is much more mathematically feasible. it usually

happens when the sitting best quotes are hardly viewed in their volumes and hence

insufficient for the incoming order to fill into. Then comes the 2nd-best quote in the

order book to continuing matching the incoming order. This is just a vivid example

of the queueing system previously described in detail in this thesis. As it were, the

essential mechanism within trade-through is largely distinguished with iceberg orders,

though sharing the apparent appearance as partitioning order sizes. For the former,

Poisson Process could be frequently plugged into.

As tick-by-tick data shows, the string of trade-through is often modeled as

Poisson Process, as far as mean waiting time until the next trade-through is con-

cerned. And this in turn facilitates the calibration as well as the mathematical anal-

ysis of trade-through ([25],[32]). One such Process, a point process with time-varying

intensity parameter

λ(t) = λ0(t) +
∑
ti<t

∑
j

Cj exp[−Dj(t− ti)]

where λ and λ0 denote the arrival rate in the relevant literature; where the ti de-

note the times of previous arrivals and the Cj and Dj are parameters controlling the

intensity of arrivals. This process is very useful in characterizing the reaching pace

of orders as a functional of arrival rates momentum and of the amount of arrivals

momentum. In studying empirical data from several different asset classes, this pro-
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cesses displays its strengths (see for reference [19]). For exogenously non-stochastic

rate concerned, it is a good instrument for modeling. But arrival rate itself has some

complexity, which will be studied in a further way later.

Difficulty appears when market is volatile. In reality, Markovian is literarily

interpreted as the independence between future and past positions, given the current

position; or mathematically

P(Xn+1 = y|Xn = x,Xn−1 = xn−1, ..., X1 = x1, X0 = x0) = P(Xn+1 = y|Xn = x).

If the price of the next moment (or more precisely, the next given time-scale) is

chaotic or does not follow the probabilistic properties with respect to the past or

even the current, there is a big problem. In some literature, this is concerned with

the zero-intelligence or econ-physics3.

For the price processes, another issue discussed beforehand in this thesis is the

true price versus mid-price (for bid and ask sides) which interrupts the model pro-

cedure. Still another interesting question is a gap between theoretical and empirical

literature that a wide variety of time series related to LOB have been reported to ex-

hibit long memory. That is sometimes regarded as the long time-scale auto-correlation

problem.

In the existing literature, order arrival are modeled as Poisson Processes. For

simplicity, the authors denote λ, µ, and θ to be the Poisson parameter for the limit,

market and cancelation orders respectively. Unfortunately, the interesting and im-

portant question of the corpula relation for these parameters have not been treated

3This is a controversial conception. To put it concisely, statistical mechanics
theory is plugged into financial study, e.g. symmetry, equilibrium etc. For example,
the Hurst Index depicting the long-term memory of stock prices as discussed later
for auto-correlation. Generally, it takes into account the ideality that every market-
participant is of zero-intellectual with barely any information accessability. But it
neglects the manned factors within the market.
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in the majority of the literature. In fact, λ, µ, and θ are thought of as different

and independent things. To be discussed, too, in the next Chapter. (See for further

reference Papers [5], [30], [11], [24] and [17].)
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4.4 High Frequency Trading for Different Types of Equities

In this subsection, we put forward in a pastiche an interesting type of problem

in high frequency trading. Up till now limit order market is studied mainly for stock

market. Occasionally foreign exchange market is concerned, for it is one of the most

liquidate market in the financial field, not to mention its importance in cross-national

economy.

This is understandable. But when it comes to derivative market, high fre-

quency trading could probably play a more subtle role. Here is the deal: high fre-

quency trading in limit order book impacts on both the derivative markets and the

underlying equity (say, stock) markets. For a given equity, say, Citigroup stock and

its call option, both the underlying stock and the derivative is traded with high fre-

quency. Here we put forward one mathematical question and one financial question

to highlight the academic and empirical importance of high frequency trading in the

derivative limit order book.

Mathematically, the option price is correlated with underlying equity. Say, for

a American call option, assume K to be the strike of stock, S(t) the time-t (t ≤ T

where T is the maturity) stock price, then the corresponding time-t call option price

is

C(t) = max(0, S(t)−K).

For the stock, orders come with, say, arrival rate parameter. This impacts stock price

(market price) but also the option price derived by the above equation. There is

copula relationship between the volatility σ of stock and option. Is the correlation

positive or negative? Hard to say. Option has its own limit order book, with its

trading liquidity changes according to its underlying. Needless to say it is affected by

the price of its underlying. These are two separate but interconnected issue: ‘LOB
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on its own+stock affecting option’. In the Geometric Brownian Motion setup,

S(t) = S(0)e[µ(t)−
1
2
σ(t)2]t+σ(t)B(t)

where B(t) is a standard Brownian Motion. Here µ and σ are functions of t standing

for drift and volatility respectively. Thus the order book dynamics affect µ as the

market price expectation and also the σ which is the stock oscillation. These factors

both impacts on option price, which is already hard to model and study. At the

meantime, stock price has its effects in return to its underlying— affecting the stock

order book. This tangling question is complicated and affords further study. For the

author of this thesis, the question is of big interest for him.

Financially speaking, market participant would be keen on maximizing the

expected utility. This is certainly true for options investors. For like European

options, the closer to execution has effect on underlying stock. Now comes a plausible

hypothesis: an investor wants his stock to go further up yet unfortunately both the

economic surrounding and the technical analysis (e.g. bar-line or MACD) of the stock

may not support the price tendency on his will. As a bright investor he would turn

to options market for assistance. Trading on the corresponding options accordingly

the exertion would be on the underlying stock. Yet how exactly would he trade? It

is meaningful, arguably, in that the derivative market has comparatively usual for

manipulation, and hence the visibility for other participants (like, the counterpart)

to penetrate into.
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CHAPTER 5

A BRIEF STUDY OF A TYPICAL MODEL

In this closing chapter, a special model [33] of LOB is studied. The reason for

choosing this model is straightforward. First, as a Markovian model (with respect to

bid and ask market depth) it uses ‘good’ mathematics involved in. Second, it reflects

some categories of big interest in HFT research, e.g. how to model incoming queues

of order flow, market resilience, dynamics of price change and the impact of queues

on it, diffusion limit of price change, and so forth. Third, this model is standard

in the sense of its convenience in tick-data calibration. Finally, the model is proper

for discussion of generalization since it involves stock market only— note that the

dynamics for different equity market are subtle and afford fecundity in mathematical

research and financial interpretation.

Here five questions are put forward, allowing for data simulation to testify the

model itself and would in turn help to better the model.

For convenience of simulation and calibration, we have a data set based on

one-day Foreign Exchange market tick data.

5.1 Market Interpretation of Incoming Order Flow Parameters

Question: Market interpretation of λ, µ and θ. Why

λ ≤ µ+ θ.

Discussion: In the stochastic process, that a Poisson process has a parameter

λ infers the average number of events per unit of time is 1
λ
. To put it another way,

λ is the average frequency of the occurring events where in our case is the incoming

(limit) orders. The same interpretation for µ and θ.

By definition, a Poisson arrival with intensity λ implies that the number of
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arrivals in any interval of length T has a Poisson distribution with parameter λT . In

the order book, the limit order with arrival rate λ makes the queue increase by one

unit on the according side. The same holds true for either market order or cancelation.

For λ, it is a decreasing function of the distance to the bid/ask side since most orders

are placed very close the current (market) price.

The assumption, as discussed previously in the last Chapter, makes things

much ideal and easily computed that the arrival events are mutually independent

for both the across-type orders and within one type of order. By the properties of

Poisson Processes, limit orders arrive at a distance from the opposite best quote at

independently exponential point t > 0 with rate λ, similarly for market and cancela-

tion.

There are significant connection among λ, µ and θ. Take the bid side and the

ask order for example. If a ask limit order pops put, the bid side would increase; for a

market or cancelation order, it is depleted. Thus the effect of market and cancelation

orders are the same, different with limit orders. Hence the inequality

λ < µ+ θ

means the shape of order book is changing more frequently and the market price

experiences more oscillation. The equality

λ = µ+ θ

implies a ‘balanced’ order book in the sense that the flow of limit orders is offset by

that of market and cancelation orders. On the other hand if

λ > µ+ θ

with the probability

µ+ θ

λ+ µ+ θ
> 1/2
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of price up-moving per unit and with the probability

λ

λ+ µ+ θ
< 1/2,

of price down-moving per unit, then the pair (qa, qb) of order sizes would blow up to

∞ with positively probability. Note that for discussion simplicity the above formulas

are under the condition that only unit of change occurs in queue size convert. In

effect even if this assumption is weakened there still exists the probability> 1
2
of the

queue size getting ever bigger.

Due to the limitation of the dataset we get, it is hard to tell which order type

a given order is based on the price change information in the order book. Yet it is

worth to notice that for foreign exchange markets which is far more liquid than stock

markets, it is reasonable to assume that all the orders we analyze and simulate are

limit orders. In fact from what it calibrated, this assumption does make sense.
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5.2 Measure of Market Liquidity

Question: How to measure the market liquidity in the model by these pa-

rameters?

Discussion: Liquidity is an inevitable issue when one talks about limit or-

der market. To measure the liquidity in the limit order book is comprehensive. In

the paper although liquidity is not frequently risen up, it is actually analyzed and

formulated mathematically.

Liquidity is first and foremost involved with trading volume. Clearly, when

the queue pair size for ask and bit at time t : qt = (qat , q
b
t ) has bigger oscillation,

the market is locally (on a small interval with the center point of t) more involving,

meaning more liquidate. But this is cerntainly not merely a piece of cake. As proposed

earlier, market makers could pose dark pool orders or trade-through orders on their

own interest in order to make profit with delicate and revealed manner. If this happens

then the it is unwise to measure liquidity just considering trading volumes.

In the model,

|λ− (µ+ θ)| = (µ+ θ)− λ

is a good way to measure liquidity for the reason that this expression takes into

account the dynamics of market price, for µ is the market arrival rate that leads

the true price to change. Combined qt with (µ + θ) − λ is to model the short-term

(high-frequency-scaled) liquidity of the market. Yet another question emerges: what

if the market makers manipulate the price so that it goes up shortly and goes down

thereafter? This involves with the long-term market behavior and is less reckoned by

the model.
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5.3 Durations Between Consecutive Price Changes

Question: How to simulate the duration between consecutive price changes?

Discussion: The Poisson arrival rates λ, θ, µ are the measures of frequency

of the coming orders. One question of both the research and empirical interest is

the duration between consecutive price changes. The term ‘tick-by-tick data’ refers

to this very conception. To make it specific, this tick data boasts the time-duration

of not the uniform period, say one second, but random times. The essence here is

the consecutive price dynamics and the probability of the increase (decrease) of the

converting of price.

In the model the authors derived continuously a formula with respect to the

dynamics and afford easily the simulation by the market tick data. With tick data

we can compute the distribution function of the bid and ask queue trading volume

and test the model with empirical results. Worthy of being mentioned is the non-

symmetric behavior between n and p for the bid and ask volume respectively. (The-

oretical analysis and sketch of proof c.f. the paper.)

To simulate an indefinite integral like Equation (4) in the paper, i.e. ‘the

probability of the values of duration giving bid and ask volumes’ ( [33]), we could use

several methods like Taylor expansion of the integrand, by using the relation between

series and indefinite integral, and so forth. But the better way to evaluate the Bessel

function of the first kind, a 2-order ODE, is via the indefinite integral-series theory.
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5.4 Auto-correlation of Price Changes

Question: What determines the negative auto-correlation of price changes?

Likely, merely

Cov(Xk, Xk+1)

doesn’t make sense. So, do Cov(Xk, Xk+1), Cov(Xk+1, Xk+2), ... i.e. AR-process of

order-n. Take n = 3, 5, etc.

Discussion: In stochastic process theory ( [36]), a discrete-time processXt, t =

0, 1, 2, ... is said to be an Autoregressive Process of Order p (AR(p)) if ∃a1, ..., ap ∈ R

and a zero-mean white noise Z(t) such that for s > 0 and

E(Z(t)Z(t+ s)) = 0

we have

X(t) =

p∑
s=1

asX(t− s) + Z(t).

For this model the discretization of Xt is an autoregressive process. It has

something to do with the price auto-correlation, but not so simple as the model

originally points out especially when approaching the change of time-scale of price

dynamics. On the other hand, long-term and short-term concerns of price changes

are different as to the order-n.

One apparent question, however, would be about the probability of two suc-

cessive price moves in the same direction. In the model, this probability pcont is taken

for granted to be constant, which makes easy the n-order covariance between moves

in price. Yet the model fails to justify the assumption of the ’constant’ proposition.

Might it be that the successive price changes does NOT even has a probability dis-

tribution? In reality we observe from empirical data that different trading volume

and price direction renders different auto-correlation of price changes, or put it more
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specifically, they interacts with each other. Plus the condition of pcont =
1
2
is worth

study in the model, where it lacks discussion. In that case it is implied from the

model that the price changes (X1, X2, ..., Xk) is uncorrelated. Then the case the

degenerated.
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5.5 Estimation of Price Volatility

Question: Estimation of volatility with respect to order flow. Test whether

the result of the model makes sense. Plus, how far could this model go if the under-

lying equity convert from stock into other types, like foreign exchange or options?

Discussion:

From the dataset at hand, it fits more into the balanced order book, since

market and cancelation orders approximately coincides with limit orders, which is

indicated by the good balance between two sides of the order book.

1. By the cumulative two-sided trading volumes gotten from HFT tick-data,

compute the geometric average of the size of the bid queue and the size of the ask

queue after a price change,
√
D(f).

2. Choose the comparatively larger time scale τ to τ0 = (λ)−1. Solve the

equation of n :

n ln(n) =
τ

τ0
.

3. Compute the price volatility (diffusion) σ from

σ = δ

√
nπλ

D(f)
.

4. Plot from the tick database the price dynamics, and evaluate the true

market volatility with the corresponding time scale chosen above.

5. Do comparison.
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5.6 Main Results from Data Simulations

5.6.1 On the distribution of order arrivals. It is sufficient to test that the

time duration, i.e. the difference between the time(s) when a price jump happens,

conforms an exponential distribution. Here We use the clock-time of the price moves

and calculate the time-duration via excel, before plotting the graph of the dynamics

of these durations and testing the exponential proposition.

Far from ideality, Kolmogorov-Smirnov Test (KS-Test) shows that neither the

full tick-data nor its partial data has the exponential distribution, which is attained by

randomly generating an exponential distribution and do the two-sample test with the

empirical, where the significance value is a defaulted α = 0.05. This is understandable

because the Poisson distribution assumption (for the time spots of price change) is a

nice mathematical tool for analysis of financial propositions of HFT yet lacks empirical

justification for market data to be so.

Nonetheless, there are two things to be treated with care. One is that although

the arrival rate does not conform to a Poisson process, the model has a good fitness

with market data, with respect to price volatility and up-moving probability, as will

be seen in the next few sections.

The other and more valuable character from tick-data, is about the similarity

of time-duration distribution within the data itself. Specifically, the whole size of tick-

data, i.e. the number of price changes is 53217. We separate the whole sample into six

sub-intervals: (0,10000], (10000,20000], (20000,30000], (30000,40000], (40000,50000]

and (50000,53217]. First we do the 2-sample KS-test for two pairs within the six

sub-intervals and find only one pair has the H = 0 in α = 0.05 and p-value=0.0670,

in fact the two pairs are successive. Now we sub-divide the pairs respectively to test

what happens. Follow the above step, we find whichever the smaller groups of tick-
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data that causes the similarity of distribution, or H = 0, and find to corresponding

α’s and p-values.

The most important result is that

H = 0, α < p− value

happens with the two samples both corresponding to the local peak trading volume

of bid or ask. More clearly put, two groups of time-duration data has the same

distribution (via KS-Test) if both of them belong to the time period of locally biggest

trading volumes. See Figure 5.1 and compare it with what is stated in the following

paragraph.

For example, let xk (k = 0, 1, ...4) be the [10000 ∗ k, 10000 ∗ (k + 1)]-th time-

duration in the tick-data; xab be the [10000 ∗ a+ 1000 ∗ b, 10000 ∗ a+ 1000 ∗ (b+ 1))-

th time-duration in the tick-data, and we have some pairs with the acceptance of

hypothesis testing: H = 0,

KS-Test(x33, x35) =⇒ H = 0, p-value = 0.3638

etc. These sub-intervals of time-duration show clearly in the graph that the corre-

sponding bid and ask volumes both attain their local ‘peak’. These p-values implies

that one can accept the hypothesis of the same distribution in Kolmogorov-Smirnov

Test for the sub-intervals of time-duration. See Table 5.1 for reference.

On the other hand, the majority of the time-duration groups shows no common

distribution with one another, as long as they do not have both the peak trading

volumes.

The above discovery indicates an important and interesting phenomenon in

high-frequency trading: market participants would have the ‘following the crowd’

effect where the trading volume could go higher and higher at a relatively very short
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Table 5.1. KS-Test Results with H = 1, for samples of 10000-sized ticks

Pairs of Sampled Data p-value

(x0, x1) 5.9216e-023

(x0, x2) 4.5982e-093

(x0, x3) 2.5145e-167

(x0, x4) 1.8509e-144

(x1, x2) 2.4731e-035

(x1, x3) 1.9239e-078

(x1, x4) 1.3314e-071

(x2, x3) 3.6524e-012

(x2, x4) 2.2664e-008

Table 5.2. KS-Test Results with H = 0, for samples of 10000-sized ticks

Pairs of Sampled Data p-value

(x3, x4) 0.0669

time slot. Such general behavior, as (mini time-scale) time goes by, leads to the short

term market oscillation. Suppose that we had an quote-driven market rather than an

order-driven one, and the trading frequency was far less than we are now, the picture

would not be the same. Would it become that the size of the order determined the

market trend. This could bring about another interesting question that we will not

touch right now.
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Table 5.3. KS-Test Results with H = 0, for samples of 1000-sized ticks

Pairs of Sampled Data p-value

(x11, x12) 0.2145

(x12, x13) 0.0609

(x15, x16) 0.4592

(x31, x32) 0.1171

(x32, x33) 0.6034

(x33, x35) 0.3638

(x33, x37) 0.1445
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Figure 5.1. Bid volume of the whole tick-data
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5.6.2 On the up-move probability in the price dynamics. From price paths

(bid and ask, e.g. in Figure 5.1) in the tick data, the price movements is acquired by

the logic sentences by numbers ‘1’,‘-1’ and ‘0’ for up, down and remaining respectively.

Pick up the (bid and ask, with both prices and volumes) price pairs with respect to

‘1’, i.e. the up-moving ones. Calculate the (joint) conditional probabilities of these

up-moving pairs according to bid and ask queues, via MATLAB codes. Plot the

probabilities as functions of pairs of queues. Compare with the theoretical joint

distribution ϕ(n, p) in the model.

The conditional probability of up-moving price changes in the empirical sce-

nario is calculated by the definition of conditional probability:

P (n, p|δ = 1) =
P (n, p; δ = 1)

P (n, p)
=

#(n, p; δ = 1)

#(n, p)

where n, p stand for bid and ask depth respectively; δ here is the price moving di-

rection, with logical numbers stated above; #(·) is the frequency a random result ‘·’

happens. Owing to MATLAB, a nice computing software with strong user-packages

to process the computation, the probability with respect to every pairs of (n, p) turns

out.

The procedures of computation are described as follows:

a. Let B0 be the 900 × 3 matrix characterizing a basic sample of 900 price

changes in tick-data, with only the bid and ask volumes and the indicators ‘1’, ‘0’ and

‘-1’; let P0 be the up-moving subset of matrix B0, but only with two columns since

the third one should be all ‘1’ and thus omitted for the reasons of saving storage.

b. Use the ‘unique’ command in MATLAB to get the B and P : the same

values as in B0 and P0 but with no repetitions.

c. Use the ‘hist’ command in MATLAB to calculate the numbers of each

repeating rows, for both B and P in B0 and P0, respectively.
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Figure 5.2. x:bid size y:ask size z:conditional probabilities of price up-moving

d. Use ‘for’ command with dual loops in programming, as regards the lengths

(i.e. number of rows in a matrix) of both B and P while using ‘if’ sentences in order

to determine whether any given row in P occurs in B, and if so how many times this

occur. Notice that we use the ‘break’ command in the ‘for-loop’ so that the order

of each unique rows in P could exactly correspond to those in B, hence making the

conditional probability computation correct (with neither repetition nor neglect while

being counted).

e. Plot the 3-Dimensional graph with the ‘x’, ‘y’, ‘z’ labels being the bid, ask

volumes and the (according) conditional probabilities with ‘1’ occurring. Plot the

dots for each point so as to be clearer looking, as in Figure 5.2.

Experiments with several samples of B0 show that the theoretical model yields

good empirical fitness. The reason might be the good assumption for the price changes
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to be bivariate random walk, as the authors of the model did. Therefore it is math-

ematically doable for the ϕ(n, p) to have the analytical form, while from our FX-

tick-data it fits well. Moreover, since foreign exchange market is very liquid and the

price changes quite frequently (indeed ’high-frequency’ trading), it is reasonable to

embed the model into the data-set we choose because random walk has the better

asymptotic propositions when the sample size is big enough and the time-duration is

tiny enough.
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5.6.3 On the diffusion behavior of price dynamics and price volatility.

Test the price dynamics (approximately when tick size δ → 0 or time-scale n → ∞)

and whether it is approximately a Brownian Motion.

We choose two data-sets with both having ten minutes in duration, thus τ =

10(min) in the discussion of the diffusion theorem of the model. One is from 2:00am

to 2:10am when the trading volumes are scarce with regards to the whole trading day.

The other is from 8:00pm to 8:10pm (Figure 5.3) with higher frequency of tick-data

and price changes. We have the following steps for computation and testing:

a. Unify the units of each variable and constants.

b. Solve the equation for n, the average number of orders during the 10-min

interval.

c. By the ‘unique’ and ‘hist’ commands in MATLAB (as in the previous section

of figuring out conditional probability) to
√
D(f), the geometric average of the size

of the bid queue and the size of the ask queue after a price change. Here f(i, j) is the

distribution of the cases when bid and ask price pairs become (i, j), and

D(f) =
∑
i,j

ijf(i, j).

d. Compute the scaling factor of the diffusion price-change process, using the

theoretical formula.

e. Test whether the price-process divided by the scaling factor is indeed a stan-

dard Brownian Motion. Here we use ‘normplot’ (Figure 5.4) command and ’qqplot’

(Figure 5.5) in MATLAB to have a graph of a normal probability plot for the re-scaled

price process. The more linearized the figure is, the closer to normal distribution for

the difference of the re-scaled price process, and hence the closer to Brownian Motion

for the process itself (by Levy’s Characterization of Brownian Motion. Note that we
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Figure 5.3. Tick-data from 8:00-8:10pm; horizontal: ×10 seconds, vertical: price

might well assume the process to be continuous, both by graph and by definition of

continuity.)
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Figure 5.4. Normal probability plot of the scaled price change, 8:00-8:10pm tick-data
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Figure 5.5. Normal probability plot of the scaled price change, 8:00-8:10pm tick-data
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5.7 Conclusions

This model is described as a Markovian queueing system of limit order book.

Here several core features of the model is tested and evaluated by computer simula-

tion.

Tests of time-duration distribution show that there is generally no common

distribution for the whole tick-data, nor for the data of ten thousand ticks. It is thus

reasonable to suspect, at least for foreign exchange markets, whether the arrival rate

could be modeled as a Poisson Process. Many existing models, as have been reviewed

and studied in the previous chapters, assume the Poisson arrival of limit orders. A

guess might be put forward that under ‘some’ condition the Poisson arrival holds true

for these orders. That could be a further research topic.

Study of the diffusion behavior of empirical data show that they simulates

(scaled) Brownian Motion in the model pretty well for a big probability, or with

exception at the tail probabilities. That is, the simulation shows a heavy-tail behavior

for normal distribution for the empirical data as regards their theoretical behavior in

the model. Further work would be to make the model modified and more delicate in

order to fit more data into it. Or if that is improper under the model’s mechanism,

the model set-up would be either generalized or specified as of the diffusion price

behavior.

When it comes to the up-moving probability of price changes, our simulation

shows good fitness with the theoretical formulae. This further justifies the funda-

mental assumption for the price to be the stochastic process of a random walk. As a

matter of fact, when we test the data, the rationale of the price moving also follows

the ‘1’ or ‘-1’ (up or down) direction. This would be a relatively simple but important

part in the research of price dynamics.
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The model is user-friendly at processing the empirical data, since it has good

analytical tractability. Suppose it becomes more delicate to fit the market reality,

this process may get harder. Such a trade-off seems inevitable, which researchers has

their own balance of concern.



71

BIBLIOGRAPHY

[1] Erik Hjalmarsson, Clara Vega, Alain Chaboud, Benjamin Chiquoine. Rise of the
machines: Algorithmic trading in the foreign exchange market. Preprint, 2009.

[2] Albert S. Kyle, Tugkan Tuzun, Andrei Kirilenko, Mehrdad Samad. The flash
crash: The impact of high frequency trading on an electronic market. Preprint,
2006.

[3] Kerry Back, Shmuel Baruch. Working orders in limit order markets and floor
exchanges. The Journal of Finance, 62:1589–1621, 2007.

[4] Bruno Biais. High frequency trading, 2011.

[5] Fischer Black. Towards a fully automated exchange, part i. Financial Analysts
Journal, 27:29–34, 1971.

[6] Alberto Bressan, Giancarlo Facchi. Optimal pricing strategies in a continuum
limit order book. Working paper, 2012.

[7] Jean-Charles, Rochet, Bruno Baias, David Martimort. Competing mechanisms
in a common value environment. Econometrica, 68:799–837, 2000.

[8] Alvaro Cartea, Sebastian Jaimungal. Modeling asset prices for algorithmic and
high frequency trading. Preprint, 2011.

[9] Duane J. Seppi, Christine A. Parlour. Liquidity-based competition for order
flow. The Review of Financial Studies Summer, 16:301–343, 2003.

[10] Rama Cont, Adrien de Larrard. Price dynamics in limit order markets. Preprint,
2012.

[11] Huyen Pham, Fabien Guilbaud. Optimal high frequency trading with limit and
market orders. Preprint, 2011.

[12] Christine A. Parlour, Goettler Ronald, Uday Rajan. Informed traders and limit
order markets. Journal of Financial Economics, 93:67–87, 2009.

[13] Christine A. Parlour, Goettler Ronald, Uday Rajan. Equilibrium in a dynamic
limit order market. Journal of Finance, 60:21492192, 2005.

[14] Anthony Aguirre, Gregory Laughlin, Joseph Grundfest. Information transmis-
sion between financial markets in chicago and new york. Preprint, 2013.

[15] Muhle Karbe. On using shadow prices in portfolio optimization with transaction
costs. The Annals of Applied Probability, 20:1341–1358, 2012.

[16] P. Milgrom, L. Glosten. Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders. Journal of Fiancial Economics, 14:71–
100, 1985.

[17] Lan Zhang, Yacine Ait-Sahalia. A tale of two time scales: Determining integrated
volatility with noisy high-frequency data. Journal of the American Statistical
Association, 100:1394–1411, 2005.



72

[18] Savion Itzhaki, Leandro Rafael. Developing High-Frequency Equities Trading
Models. PhD thesis, Massachusetts Institute of Technology, 2010.

[19] Sasha Stoikov, Rama Cont. A stochastic model for order book dynamics. Oper-
ations Research, 58:549–563, 2010.

[20] Angelo Ranaldo. Order aggressiveness in limit order book markets. Journal of
Financial Markets, 2004.

[21] Kevin Webster, Rene Carmona. High frequency market making. Preprint, 2012.

[22] Winfried Pohlmeier, Roman Liesenfeld. A dynamic integer count data model for
financial transaction prices. Preprint, 2003.

[23] Ioanid Rosu. A dynamic model of the limit order book. The Review of Fiancial
Studies, 2009.

[24] Alexander Schied. Robust strategies for optimal order execution in the alm-
grenchriss framework. Prerprint, 2012.

[25] Steven Shreve, Silviu Predoiu, Gennady Shaikhet. Optimal execution in a general
one-sided limit-order book. SIAM Journal on Financial Mathematics, 2:183–212,
2010.

[26] Charles-Albert Lehalle, Gilles Pages, Sophie Laruelle. Stochastic algorithms for
optimal trading: Optimal limit prices. Preprint, 2012.

[27] Christoph Khn, Maximilian Stroh. Optimal portfolios of a small investor in a
limit order, a shadow price approach. Mathematics and Financial Economy,
3:45–72, 2010.

[28] Paul Preis, Golke Schneider. Multi-agent-based order book model of financial
markets. Europhysics Letters, 75:510–516, 2006.

[29] Chales Jones, Terrence Hendershott, Albert Menkveld. Does algorithmic trading
improve liquidity? The Journal of Finance, LXVI, 2011.

[30] Eugene Kandel, Thierry Foucault, Ohad Kadan. Limit order book as a market
for liquidity. The Review of Financial Studies, 18:1171–1217, 2005.

[31] Sasha Stoikov. High-frequency trading in a limit order book. Prepint, 2009.

[32] Frank Zhang. The effect of high-frequency trading on stock volatility and price
discovery. Preprint, 2010.

[33] Rama Cont, Adrien de Larrard. Price dynamics in a Markovian limit order
market. arXiv:1104.4596v1, 2011.

[34] Keiki Takadama, Claudio Cioffi-Revilla, Guillaume Deffuant (Eds.). Simulating
Interacting Agents and Social Phenomena. Springer-Verlag, XII, 280p, 2011.

[35] J. Doyne Farmer, Giulia Ior, Supriya Krishnamurthy, D. Eric Smith, Marcus
G. Daniels etc. A Random Order Placement Model of Price Formation in the
Continuous Double Auction. Santa Fe Institute, 2005.

[36] Fima C Klebaner. Introduction to Stochastic Calculus with Applications (Second
Edition). Impirical College Press, 2005.


