
1. INTRODUCTION

In recent years there has been an increase

of development and application of difficult-

to-machine materials such as titanium,

stainless steel, high-strength temperature-

resistant alloys, ceramics, composites, super

alloys, etc (Samanta & Chakraborty, 2011).

These materials have wide use in modern

industry due to their improved technological

and mechanical properties. Although

machining of these materials is still viable

using conventional machining processes,

such as turning, drilling, milling, etc., there

SELECTION OF NON-CONVENTIONAL MACHINING PROCESSES

USING THE OCRA METHOD

Miloš Madić*, Dušan Petković and Miroslav Radovanović

Faculty of Mechanical Engineering, University of Niš, A. Medvedeva 14, Niš, Serbia

(Received 29 September 2014; accepted 14 January 2015)

Abstract

Selection of the most suitable nonconventional machining process (NCMP) for a given machining

application can be viewed as multi-criteria decision making (MCDM) problem with many conflicting

and diverse criteria. To aid these selection processes, different MCDM methods have been proposed.

This paper introduces the use of an almost unexplored MCDM method, i.e. operational

competitiveness ratings analysis (OCRA) method for solving the NCMP selection problems.

Applicability, suitability and computational procedure of OCRA method have been demonstrated

while solving three case studies dealing with selection of the most suitable NCMP. In each case study

the obtained rankings were compared with those derived by the past researchers using different

MCDM methods. The results obtained using the OCRA method have good correlation with those

derived by the past researchers which validate the usefulness of this method while solving complex

NCMP selection problems.

Keywords: non-conventional machining processes, multi-criteria decision making, OCRA

* Corresponding author: madic@masfak.ni.ac.rs

S e r b i a n  

J o u r n a l

o f  

M a n a g e m e n t

Serbian Journal of Management 10 (1) (2015) 61 - 73 

www.sjm06.com

DOI:10.5937/sjm10-6802 



are situations where these processes are not

satisfactory, economical, or even possible

(Kalpakjian & Schmid, 2000). Machining of

these materials by conventional machining

processes gives rise to problems such as high

cutting forces and temperatures, rapid tool

wear and residual stresses generated in the

workpiece. More rigorous customer

demands regarding quality of the end

product, as well as manufacturers’ strive for

cost reduction, have made non-conventional

machining processes (NCMPs) even more

important in industry.

In today's industry, a large number of

NCMPs is applied such as laser beam

machining (LBM), abrasive jet machining

(AJM), electrical discharge machining

(EDM), wire electrical discharge machining

(WEDM), plasma arc machining (PAM),

electrochemical machining (ECM),

ultrasonic machining (USM), electron beam

machining (EBM), chemical machining

(CHM), etc. From the technological point of

view NCMPs are very complex, multi-input

multi-output machining processes governed

by a large number of machining parameters,

and each NCMP posses its own advantages

and limitations. A unique characteristic of

these processes is that there is no direct

contact between the tool and workpiece, as

well as the ability to concentrate large

amounts of energy per unit area (Kovačević

et al., 2014).

Effective utilization of the capabilities of

different NCMPs and also maximization of

machining performance requires careful

selection of the most suitable NCMP for a

given work material and shape feature

combination (Chakladar & Chakraborty,

2008; Chakladar et al. 2009; Chatterjee &

Chakraborty, 2013). A particular NCMP

found suitable under the given conditions

may not be equally efficient under other

conditions (Karande & Chakraborty, 2012).

For a given machining application, the

selection of the most suitable NCMP requires

comprehensive analysis of machining

capabilities and characteristics of

competitive NCMPs which involves

consideration of several conflicting criteria

such as maximization of quality,

maximization of material removal rate,

minimization of cost, etc. Power

requirement, tooling and fixtures, tool

consumption, safety, work material, shape

feature are also recognized as one of the

main criteria that influence the NCMP

selection of a given machining application.

Therefore, selection of the most suitable

NCMP is a challenging task (Chakladar et al.

2009), and moreover often a time consuming

process (Chatterjee & Chakraborty, 2013).

In order to facilitate decision making

process and provide decision makers with a

structured, step-by-step procedure for

NCMPs selection, various multi-criteria

decision making (MCDM) methods have

been proposed in literature. These MCDM

methods transform multiple criteria decision

making process, i.e., multiple criteria

optimization, in a single criterion decision

making optimization, which is much easier

to solve (Stanujkić et al. 2013).

MCDM is an evaluation framework

aimed at evaluation and ranking of a set of

alternatives with respect to a set of

conflicting criteria considering performance

measures of each alternative with respect to

each criterion as well as relative

significances of the criteria which are

represented by criteria weights. Typically

criteria weights are determined by decision

makers so that the evaluation and ranking of

alternatives is performed considering

performance measures of alternatives, from

one side, and on the other hand, taking into
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account the decision makers preferences of

about the relative significance of criteria.

Given the evaluation (decision) matrix,

decision maker applies certain MCDM

method in order to define the evaluation

function and obtain a rank order of the

alternatives and/or define the utility function

and obtain a utility score of the alternatives

(Hajkowicz & Higgins, 2008).

2. LITERATURE REVIEW

Most of the past work is related to the

development of expert systems, decision

support systems and particularly to the

application of different MCDM methods for

solving NCMPs selection problems. It has to

be noted that the majority of the previous

studies considered decision matrices from

the literature, and only few studies, such as

one presented by Temuçin et al. (2013), were

focused on the development of decision

models for NCMP selection.

Yurdakul and Cogun (2003) proposed a

selection procedure for NCMPs based on a

combination of analytic hierarchy process

(AHP) and technique for order preference by

similarity to ideal solution (TOPSIS)

methods. AHP method is used to determine

the criteria weights, i.e. relative importance

of the criteria, whereas TOPSIS method is

used to rank each of the feasible NCMPs.

Chakraborty and Dey (2006) presented a

systematic methodology for selecting the

best NCMP under constrained material and

machining conditions. The authors also

presented the design of an AHP based expert

system with a graphical user interface to ease

the decision-making process. Chakladar and

Chakraborty (2008) proposed the use of a

combined approach using the TOPSIS and

AHP methods to select the most appropriate

NCMP for a specific work material and

shape feature combination. The authors also

developed a TOPSIS-AHP based expert

system that automates the decision making

process with the help of a graphical user

interface and visual aids. Chakladar et al.

(2009) presented a digraph based approach

to ease out the appropriate NCMP selection

problem. It includes also the design and

development of an expert system that can

automate decision making process.

Chakraborty (2011) explored the application

of a recent MCDM method, i.e. the multi-

objective optimization on the basis of ratio

analysis (MOORA) method to solve

different MCDM problems in manufacturing

environment including NCMPs selection

problem. Das and Chakraborty (2011)

proposed the use of analytic network process

(ANP) method to select the most appropriate

NCMP for a given machining application

taking into account the interdependency and

feedback relationships among various

criteria affecting the NCMP selection

decision. To avoid the difficult and time

consuming mathematical calculations of the

ANP the authors developed a computer

program. Sadhu and Chakraborty (2011)

proposed the use of data envelopment

analysis (DEA) method for solving NCMP

selection problems. The authors considered

solving of two case studies and the obtained

results proved the applicability, versatility

and adaptability of this approach. Karande

and Chakraborty (2012) solved four NCMP

selection problems using an integrated

preference ranking organization method for

enrichment evaluation (PROMETHEE) and

geometrical analysis for interactive aid

(GAIA) method. As noted by the authors this

combined methodology is quite simple, easy

to understand and releases the process

engineers from performing detailed
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mathematical computations. Temuçin et al.

(2013) developed a fuzzy based decision

support model for NCMP selection by

applying TOPSIS and fuzzy TOPSIS

methods. Comprehensive set of criteria for

the proposed model and weights representing

the importance of each criterion were

identified via questionnaires to specialists,

deep discussions with experts, and making

use of past studies. Chatterjee and

Chakraborty (2013) explored in details the

applicability, suitability, and potentiality of

evaluation of mixed data (EVAMIX) method

for solving the NCMP selection problems.

Three illustrative examples were presented,

which validated the usefulness of this

method. In order to take into account the

customers’ requirements (product

characteristics) as well as technical

requirements (process characteristics) for a

given NCMP selection problem, Prasad &

Chakraborty (2014) developed decision-

making model while integrating quality

function deployment (QFD). Recently, Roy

et al. (2014) integrated fuzzy AHP and QFD

for selecting best suited NCMP based on a

set of product characteristics and process

characteristics.

Although a good amount of research work

has already been carried out by the past

researchers on NCMPs selection, this paper

attempts to investigate the applicability of an

almost unexplored MCDM method, i.e.

operational competitiveness ratings analysis

(OCRA) method for solving the NCMPs

selection problems. Till date, this method has

very limited applications in the machining

domain. The OCRA method helps select the

most suitable NCMP for a given machining

application based on different qualitative

(ordinal) and quantitative (cardinal) criteria,

such as tolerance and surface finish, power

requirement, material removal rate, cost,

efficiency, tooling and fixtures, tool

consumption, safety, work material, shape

feature, etc. In this paper, three case studies

were solved to demonstrate its applicability

and compare its ranking performance with

other MCDM methods used by previous

researchers.

3. OCRA METHOD

The OCRA method is a MCDM method

which can be used to calculate relative

performance of a set of competitive

alternatives. The method uses an intuitive

approach for incorporating the decision

maker’s preferences about the relative

importance of the criteria (Parkan & Wu,

1997). The OCRA method was developed by

Parkan (1991) and later advocated by Parkan

and Wu (1997, 2000). It has been previously

successfully applied to construct

performance profiles for branch banks,

software development teams, hotel and

subway operations, and MCDM analysis of

industrials robots, manufacturing industries

and transport sector.

The main advantage of the OCRA method

is that it can deal with those MCDM

situations when the relative weights of the

criteria are dependent on the alternatives and

different weight distributions are assigned to

the criteria for different alternatives, as well

as some of the criteria are not applicable to

all the alternatives (Chatterjee &

Chakraborty, 2012). This method has the

advantage of treating beneficial

(maximization) and non-beneficial

(minimization) criteria separately, which

helps the decision makers not to lose

information during the decision-making

process. Another major advantage of the
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OCRA method is that it is a nonparametric

approach i.e. calculation procedure is not

affected by the introduction of any additional

parameters (e.g., v in VIKOR method and λ

in WASPAS method) as it happens in case of

other MCDM methods. Also, regarding

required application steps for solving

decision making problems, the OCRA

method has advantage over some other

MCDM methods. While only six steps are

needed to solve a particular decision making

problem using the OCRA method, TOPSIS

method for example requires nine steps

(Venkata Rao, 2007).

The main idea of the OCRA method is to

perform independent evaluation of

alternatives with respect to beneficial and

non-beneficial criteria, and finally to

combine these two sets of ratings to obtain

the operational competitiveness ratings. The

main procedure of the OCRA method

implementation consists of several steps

(Parkan & Wu, 2000; Chatterjee &

Chakraborty, 2012):

Step 1. Set the initial decision matrix, X:

(1)

where xij is the performance score of i-th
alternative with respect to j-th criterion, m is

the number of alternatives and n is the

number of criteria.

Step 2. In this step preference ratings with

respect to the non-beneficial criteria are

determined. The aggregate performance of i-

th alternative with respect to all non-

beneficial criteria is calculated using the

following equation:

(2)

where q is the number of non-beneficial

criteria,  is the measure of the relative

performance of i-th alternative,  is the

performance score of i-th alternative with

respect to k-th criterion and wk is weight of

the k-th non-beneficial criterion. If i-th
alternative is preferred over m-th alternative

with respect to k-th criterion, then            .

Step 3. Determination of the linear

preference rating for non-beneficial criteria

by using the following equation:

(3)

Linear scaling is done to assign a zero

rating  to  the  least  preferable alternative.  

represents the aggregate preference rating for

i-th alternative with respect to the criteria.

Step 4. In this step preference ratings with

respect to the beneficial criteria are

determined. The aggregate performance of i-
th alternative with respect to all beneficial

criteria is calculated using the following

equation:

(4)

where b is the number of beneficial criteria

and wh is weight of the h-th beneficial

criterion. The higher an alternatives score for

a beneficial criterion, the higher is the

preference for that alternative.
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Step 5. Determination of the linear

preference rating for beneficial criteria by

using the following equation:

(5)

Step 6. In this step the overall preference

ratings of competitive alternatives are

calculated using the following equation:

(6)

Based on the overall preference ratings

the complete ranking of alternatives is

obtained. The alternative with the highest

overall performance rating receives the first

rank.

4. ILLUSTRATIVE EXAMPLES

In order to demonstrate computation

procedure and applicability of the OCRA

method for solving NCMPs selection

problems, the following three case studies

are illustrated. In each case study the results

obtained by previous researchers using

different MCDM methods and the results

obtained using the OCRA method were

compared and discussed.

4.1. Case study 1

Chakladar and Chakraborty (2008)

proposed combined approach using the

TOPSIS and AHP methods for solving

NCMP selection problem. This case study

deals with the selection of the best NCMP

that can efficiently machine precision holes

on duralumin. The NCMP selection problem

considers nine NCMPs (USM, WJM, AJM,

ECM, CHM, EDM, WEDM, EBM and

LBM) and ten criteria, i.e. tolerance and

surface finish (TSF), power requirement

(PR), material removal rate (MRR), cost (C),

efficiency (E), tooling and fixtures (TF), tool

consumption (TC), safety (S), work material

(M) and shape feature (F). Among these

criteria, TSF, PR and MRR are quantitative

in nature, having absolute numerical values

whereas C, E, TF, TC, S, M, and F have

qualitative measures for which a ranked

value judgment on a scale of 1–5 (1 is

lowest, 3 is moderate, and 5 is the highest) is

suggested (Chakladar & Chakraborty, 2008).

MRR, E, S, M and F are beneficial criteria

where higher values are preferred, and on the

other hand, TSF, PR, C, TF, and TC are non-

beneficial criteria where lower values are

preferred. Based on the data from literature,

Chakladar and Chakraborty (2008)

developed the following decision matrix

(Table 1).
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Using the AHP method, Chakladar and

Chakraborty (2008) determined the criteria

weights as: wTSF = 0.0783, wPR = 0.0611,

wMRR = 0.1535, wC = 0.1073, wE = 0.0383,

wTF = 0.0271, wTC = 0.0195. wS = 0.0146,

wM = 0.2766 and wF = 0.2237. The same

criteria weights were used for the OCRA

method-based analysis.

By using Equation (2), the aggregate

performances of the alternatives with respect

to all non-beneficial criteria are calculated.

Based on obtained values and by applying

Equation (3) the linear preference ratings for

all non-beneficial criteria are determined.

Similarly, by applying Equations (4) and (5),

aggregate performances and the linear

preference ratings for the alternatives on all

beneficial criteria are calculated. Finally, by

using Equation (6) the overall preference

ratings for competitive alternatives are

obtained. The computational details of the

OCRA method are shown in Table 2.As

could be seen from Table 2 by applying the

OCRA method, the complete ranking of

competitive NCMPs is obtained as 3-7-8-4-

5-1-2-6-9. EDM is observed to be the most

appropriate NCMP for this machining

application. WEDM process has the second

preference and LBM is the least favored

NCMP. The ranking performances of the

OCRA method with respect to those derived

by past researchers are given in Table 3.

As could be seen from Table 3 application

of different MCDM methods proposes EDM

as the most appropriate NCMP for this given

machining application. When compared with

the results derived by Chakladar and

Chakraborty (2008), Karande and

Chakraborty (2012) and Chaterjee and

Chakraborty (2012), the values of

Spearman’s rank correlation coefficient (rs)
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for the OCRA method were computed as

0.87, 0.85 and 0.73, respectively. This shows

similar ranking performance of these

MCDM methods for this particular

machining application.

4.2. Case study 2

In this example, surface of revolution

feature is to be generated on stainless steel

work material. To select the most appropriate

NCMP for generating surface of revolution

the same criteria as in previous case study

were considered. The original decision

matrix of this NCMP selection problem is

given in Table 4.

Chakladar and Chakraborty (2008) used

the same criteria weights as in case study 1.

Hence, these are also used here for the

OCRA method-based analysis.

Now, the same NCMP selection problem

is solved using the OCRA method. Again, by

using Equation (2), the aggregate

performances of the alternatives with respect

to all non-beneficial criteria are calculated.

Based on obtained values and by applying

Equation (3) the linear preference ratings for

all non-beneficial criteria are determined.

Similarly, by applying Equations (4) and (5),

aggregate performances and the linear

preference ratings for the alternatives on all

beneficial criteria are calculated. Finally, by

using Equation (6) the overall preference

ratings for competitive alternatives are

obtained. The computational details of the

OCRA method are shown in Table 5.

As could be seen from Table 5 by

applying the OCRA method, the complete

ranking of competitive NCMP is obtained as

3-7-8-4-5-1-2-6-9. EDM is observed to be

the most appropriate NCMP for this

machining application. WEDM process has
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the second preference and LBM is the least

favored NCMP.

For solving NCMP selection problem

Chakladar and Chakraborty (2008) and

Chaterjee and Chakraborty (2012) applied

combined approach using the TOPSIS and

AHP method and EVAMIX method,

respectively. The comparison of obtained

performance rankings is given in Table 6.

On the basis of the results given in Table

6 it is observed that a very high rank

correlation between the OCRA and

combined TOPSIS and AHP methods exists

(Spearman’s rank correlation coefficient of rs

= 0.83). It can be also observed that, the best

and the worst choices of NCMPs remain the

same in the case of combined TOPSIS and

AHP and EVAMIX methods. However, the

ranking of certain alternative NCMPs

obtained by the OCRA method is different

from that reported by Chaterjee and

Chakraborty (2012).

EDM is the first choice based on the

OCRA method, whereas it was ECM in

Chaterjee and Chakraborty (2012) and

Chakladar and Chakraborty (2008) and EDM

was proposed as the fifth and second choice,

respectively. A closer look at the quantitative

data for EDM and ECM (Table 4) reveals

that EDM is better than ECM in the case of

four criteria (PR, MRR, C and E) which have

total sum of criteria weights of 0.36. EDM is

equal to ECM in the case of two criteria (S

and M). Finally, ECM is better than EDM

also in the case of four criteria (TSF, TF, TC

and F) which have total sum of criteria

weights of 0.35. Therefore, considering

relative importance of criteria proposing

EDM as the first choice may be justified.

4.3. Case study 3

Chakladar et al. (2009) presented a

digraph-based approach for NCMPs

selection. This case study considers deep

through cutting operation performed on

titanium. Six most important criteria, like

tolerance and surface finish (TSF), material

removal rate (MRR), power requirement

(PR), cost (C), shape feature (F) and work

material type (M) were considered in the

analysis. Among these criteria, MRR, F and

M are beneficial criteria. The quantitative

assessments of alternative NCMP with

respect to considered criteria are given in

Table 7.

The criteria weights were calculated as

(Karande & Chakraborty, 2012): wTSF =

0.03, wMRR = 0.36, wPR = 0.03, wC = 0.04, wF

= 0.13 and wM = 0.40 and are considered

here for the subsequent analyzes.

Now, the same NCMP selection problem

is solved using the OCRA method. All

calculations were done using Equations (2-6)
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and the computational details are given in

Table 8.

As could be seen from Table 8 by

applying the OCRA method, the complete

ranking of competitive NCMPs is obtained

as 7-4-5-6-8-2-3-1. PAM is observed to be

the most appropriate NCMP for this

machining application followed by ECM.

LBM is the least favored NCMP in this case.

The ranking performances of the OCRA

method with respect to those derived by past

researchers are given in Table 9.

As could be seen from Table 9 there exists

a very high rank correlation between the

rankings of OCRA and PROMETHEE

methods with Spearman’s rank correlation

coefficient of rs = 0.98. However, the ranking

of certain alternative NCMPs obtained by

OCRA and PROMETHEE methods is

different from that reported by Chakladar et

al. (2009). For example, ECM is the second

choice based on the OCRA method, whereas

it was EBM in Chakladar et al. (2009) and

ECM was proposed as the sixths choice by

authors. A closer look at the quantitative data

for ECM and EBM (Table 7) reveals that

70 M.Madić / SJM 10 (1) (2015) 61 - 73

Table 7. Decision matrix for case study 3 (Chakladar et al. 2009)

Table 8. Computational details for case study 3

Table 9. Rankings of the competitive NCMP obtained using different MCDM methods



ECM is better than EBM in the case of MRR

and F criteria, and equal to EBM in the case

M criterion. EBM is better than ECM in the

case of TSF, PR and C criteria. However,

considering relative importance of criteria

i.e. criteria weights, proposing ECM as the

second choice seems to be justified. It may

be added here, however, that the criteria

weights used by Chakladar et al. (2008) were

different from those used in the present

work. Thereby, the differences in the ranking

of competitive NCMPs between the OCRA

method and that suggested by Chakladar et

al. (2008) can be explained.

5. CONCLUSIONS

Selection of suitable NCMP for a given

machining application is a difficult task for

the process engineers due to limited

theoretical and practical knowledge, as well

as complexity of NCMPs. A large number of

mathematical methods and procedures have

been proposed to facilitate decision making

process and assist in systematical selection

and ranking of competitive NCMPs. This

paper introduces the OCRA method

approach, which helps the process engineers

in selecting the most suitable NCMP from a

large number of competitive alternatives.

Three case studies demonstrated the

potentiality, applicability and usefulness of

the OCRA method through solving complex

NCMP selection problems. OCRA method

can simultaneously take into account large

number of criteria as well as alternatives,

offering very simple and computationally

efficient approach by using fewer

formulations. As the NCMP selection

problems consist of both the qualitative and

quantitative criteria, the OCRA method is

quite suitable to deal with these types of

decision making problems. A major

advantage of the OCRA method its

calculation procedure is not affected by the

introduction of any additional parameters as

it happens in case of other MCDM methods.

A comparative analysis with the other

already developed MCDM methods showed

a good correlation with those obtained by the

past researchers, proving its acceptability

and strength for application in solving

NCMPs selection problems. Slight

discrepancies between the rankings of the

alternatives may be attributed due to the

subjective judgments taken by the decision

makers.

Main scope of future work will be

application and comparative analysis of the

OCRA method for solving selection

problems in manufacturing environment and

design of an OCRA based expert system with

a graphical user interface to ease the decision

making process.
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ИЗБОР НЕКОНВЕНЦИОНАЛНЕ ТЕХНОЛОГИЈЕ ОБРАДЕ

ПРИМЕНОМ МЕТОДЕ “OCRA”

Милош Мадић, Душан Петковић, Мирослав Радовановић

Извод

Избор најпогодније неконвенционалне технологије обраде за дату примену може се

посматрати као проблем вишекритеријумског одлучивања који укључује различите, а често и

конфликтне критеријуме. За решавање проблема избора развијене су различите методе

вишекритеријумског одлучивања. У овом раду приказана је примена релативно неистражене

методе вишекритеријумског одлучивања, методе „OCRA“, за решавање проблема избора

неконвенционалне технологије обраде. Примењивост, подобност и рачунска процедура методе

„OCRA“ је илустрована решавањем три студије случаја које се баве избором најпогодније

неконвенционалне технологије обраде. У оквиру сваке студије случаја добијене ранг листе су

упоређене са ранг листама које су одређене од стране других истраживача применом

различитих метода вишекритеријумског одлучивања. Добијени резултати рангирања имају

добру корелацију са претходним резултатима што потврђује корисност ове методе за

решавање сложених проблема избора неконвенционалне технологије обраде.

Кључне речи: неконвенционалне технологије обраде, вишекритеријумско одлучивање, метода

“OCRA”
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