

Creating forest sector solutions

First Industrial Flotation Column in a Paperboard Recycling Plant

Y. Ben, G. Dorris, N. Pagé, S. Gendron, N. Gurnagul, C. Desrosiers, and P. Maltais

> 8Th Research Forum on Recycling September 25, 2007

Outline

- Introduction
- Objectives
- Experimental
- Results
 - Laboratory flotation column at mill site
 - Mill flotation column
- Conclusions
- Acknowledgements

Introduction

© Confidential to FPInnovations Member Companies and their employees

3

Kruger, Place Turcot — Paperboard Recycling Plant Flow Chart

Paperboard Recycling Process

- Flotation is not used in board mills
- But there is a definitive trend to include it in the separation steps:
 - Doshi, M. R. et al, Proceeding of TAPPI Fall Technical Conference, October 26–30 (2003).
 - Galland, G. et al, Rev. ATIP, 51(4/5):185–192 (1997).
 - Lee, H.L. et al, Appita Journal, 59(1):31–36 (2006).
 - Delagoutte, T. et al, Rev. ATIP, 60(4):14–24 (2006).

Limitations of Installation of Flotation – Cells in OCC Recycling Process

- High flotation loss
- Large floor space requirement

Column Flotation

- Use column flotation technology in the pulp and paper industry to recover fibres from reject streams
- Explore its applicability to clean pulps

Experimental

- 10 cm x 4.65 m (lab) / 0.6 m x 6 m (mill)
- Operations
- Characterizations
 - Macrostickies and waxes
 - Extractives
 - Flotation loss
 - Fibre length distribution
 - Strength properties
- Control of flotation column

Results

© Confidential to FPInnovations Member Companies and their employees

10

Laboratory Flotation Column at Mill Site

© Confidential to FPInnovations Member Companies and their employees

OCC Recycled Pulp

OCC Recycled Pulp

Before flotation

Flotation accepts

Flotation rejects

13

White spots represent macrostickies and wax in 1 g handsheet

© Confidential to FPInnovations Member Companies and their employees

Column Performance on OCC pulp

Characterization	Removal, %	
Macrostickies and wax	70-85	
Filler	15	
Chloroform extractives	30-35	
Flotation loss	< 2	

Column Performance on OCC Pulp

Physical Properties	Changes, %
CSF	+4
Burst	+3
Tensile	+2.3
Scott Bond	+5

© Confidential to FPInnovations Member Companies and their employees

15

Process Rejects

Control of Laboratory Flotation Column

Model Predictive Control (MPC)

Performance of MPC Controller

19

Summary of Laboratory Column

- Column flotation was very effective for removal of macrostickies, wax, fillers, and organic extractives
- Fibre loss was low
- Improved pulp physical strength
- Developed control system to reduce variations in froth heights and air content in the column.

Mill Flotation Column (0.6 m x 6 m)

© Confidential to FPInnovations Member Companies and their employees

Construction & Start-up of Mill Column

- Collaborative work between Paprican and the mill
- Paprican supplied column designs, P & I diagrams, mill training and automatic control
- Mills supervised the construction and ran the tests

- Successful start-up in March 2006
- Automation in May 2006
- Evaluation of macrostickies removal efficiency and flotation loss in OCC pulp and reject stream

Mill Flotation Column Performance

Mill Column Flotation OF OCC Pulp

Macrostickies

Summary of Mill Flotation Column

	OCC Pulp	DAF Rejects	Process Rejects
Experimental	20 tests + 5 trials	15 tests + 5 trials	14 tests
Efficiency, %	60 - 90	55 - 85	45 - 75
Ash removal, %	25	27	19
Fibre loss (%)	2-4	5-10	5-10

Control of Mill Flotation Column

Status of Mill Flotation Column

- Used as R&D unit
 - To establish long-term performance of the column
 - To better determine the impact of returning treated rejects in the main OCC pulp line
- Currently, full time operation for the recovery of 2.5–3.0 t/d of fibres from Krofta rejects.

Conclusions

- Mill built a flotation column (0.6 m x 6.0 m)
- Mill already achieved design target on stickies removal and material loss
- The recovered materials from Krofta rejects had no negative impact on paperboard machine operation
- The column is operating full-time to recover 2.5-3.0 t/d of fibres from Krofta rejects
- Automatic control of froth level and air content greatly improved operation

30

Acknowledgments

- Paprican Recycling Group, Electronic Group, Machine Shop and Service Depts.
- Kruger-Place Turcot personnel
- Bertrand Pigeon, University of Montreal
- Véronic Dionne, University of Sherbrooke

