Neuropathological Asymmetry in Argyrophilic Grain Disease

Tadashi Adachi, MD, Yuko Saito, MD, PhD, Hiroyuki Hatsuta, MD, Sayaka Funabe, MD, Aya M. Tokumaru, MD, PhD, Kenji Ishii, MD, Tomio Arai, MD, PhD, Motoji Sawabe, MD, PhD, Kazutomi Kanemaru, MD, PhD, Akinori Miyashita, PhD, Ryozo Kuwano, MD, PhD, Kenji Nakashima, MD, PhD, and Shigeo Murayama, MD, PhD

Abstract

The presence of argyrophilic grains in the neopil is associated with a form of dementia. We investigated morphological asymmetry in 653 consecutive autopsy patients from a general geriatric hospital (age [mean ± SD] = 81.1 ± 8.9 years), focusing on those from patients with advanced argyrophilic grain disease. Paraffin sections of the bilateral posterior hippocampi were immunostained with anti-phosphorylated tau and anti-4-repeat tau antibodies and by the Gallyas-Braak method. In a side-to-side comparison, asymmetry was defined when either the extent or the density of argyrophilic grains was different. Of the 653 subjects, 65 (10%) had Stage 3 argyrophilic grain disease, and 59 (90.8%) showed histopathological asymmetry. Antemortem computed tomographic images (n = 24), magnetic resonance imaging scans (n = 8), and combined computed tomographic and magnetic resonance images (n = 15) were available; images from 6 patients and 18F-labeled fluorodeoxyglucose positron emission computed tomographic images from 20 of the 47 subjects showed asymmetry that correlated with the histopathological asymmetry. Cerebral cortical asymmetry consistent with the histopathology was also visible in N-isopropyl[123I]-p-iodoamphetamine single photon emission computed tomographic images from 6 patients and 18F-labeled fluorodeoxyglucose positron emission tomographic images from 2 patients. Thus, asymmetric involvement of the medial temporal lobe in patients with advanced argyrophilic grain disease may represent a diagnostic feature and contribute to distinguishing dementia with grains from Alzheimer disease.

Key Words: Alzheimer disease, Argyrophilic grain, Asymmetry, Dementia, MRI, Neuroimaging, tau Protein.

INTRODUCTION

Argyrophilic grains (AGs), first reported by Braak and Braak in 1987, consist of punctate or filiform structures in the neopil that can be visualized by Gallyas-Braak silver staining (1). Dementia with grains (DG), as defined by Braak and Braak (1, 2) and Jellinger (3), is a form of senile dementia in which AGs are the sole morphological substrate that can explain the dementia. Argyrophilic grains accompanied neuronal cytoplasmic tau immunoreactivity (IR; pretangle), tau-positive astrocytes (bush-like astrocytes), oligodendroglial coiled bodies, and ballooned neurons (4). Ultrastructurally, AGs consist of a straight filament 9 to 18 nm in diameter and bundles of smooth tubules 25 nm in diameter and are thought to be localized in dendritic spines (5).

Argyrophilic grains consist of a 4-repeat isoform of tau protein (6–8), and antibodies directed against the 4-repeat tau are the most sensitive markers for the grains (9). We have reported that the severe involvement of the ambient gyrus is a unique pathological feature of DG (10, 11) and proposed a staging paradigm for AGs that starts with the involvement of the ambient gyrus and amygdala (Stage 1: ambient stage), then expands to include the posterior parahippocampal gyrus and medial anterior temporal pole (Stage 2: medial temporal stage), and finally spreads to the basal forebrain and anterior cingulate gyrus (Stage 3: frontal lobe stage) (12). Our staging scheme was recently supported by Ferrer et al (13) and Santpere and Ferrer (14).

In the process of screening unselected brains obtained from consecutive autopsy patients at our institute, we have frequently encountered asymmetry in the density or in the extent of AGs in cases that carry the abnormal structures. Because dementia in DG is usually associated with Stage 3 AG (12), we focused our investigation on this advanced stage of grain disease and characterized AG asymmetry in a systematic manner and correlated the findings with available neuroimaging. Our data on the asymmetry in the density and extent of grains, combined with the preferential atrophy of the ambient gyrus, may contribute to enhanced neuroimaging diagnosis of DG.

MATERIALS AND METHODS

Tissue Source

Brains and spinal cords were obtained from 653 consecutive autopsies at Tokyo Metropolitan Geriatric Hospital.

From the Department of Neuropathology (TA, YS, HH, SF, SM) and Positron Medical Center (KI), Tokyo Metropolitan Institute of Gerontology; Departments of Pathology (HH, TA, MS), Radiology (AMT), and Neurology (KK), Tokyo Metropolitan General Hospital, Tokyo; Department of Molecular Genetics (AM, RK), Center for Bioresources, Brain Research Institute, Niigata University, Niigata; and Division of Neurology (TA, KN), Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan.

Send correspondence and reprint requests to: Shigeo Murayama, MD, PhD, Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Ibashi-ku, Tokyo 173-0015, Japan; E-mail: smurayam@tmig.or.jp

This study was supported by an Aid for Scientific Research on Priority Areas—Advanced Brain Science Project—from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (S.M.). A part of this study was presented at the 85th Annual Meeting of the American Association of Neuropathologists, June 2009, San Antonio, TX.
and Institute of Gerontology between June 2001 and December 2007. The ages of the subjects at death ranged from 52 to 104 years (mean ± SD = 81.1 ± 8.9 years), and the male-to-female ratio was 361:292.

Neuropathology

The brains and spinal cords were examined as previously reported (15). Briefly, one hemisphere was preserved for biochemical and molecular studies, and the other was prepared for morphological studies. At autopsy, 1 cerebral hemisphere was sliced in the coronal plane at 7-mm intervals. The brainstem was sectioned in the axial planes in 5-mm-thick slices, and the cerebellum was sectioned in sagittal planes in 5-mm-thick slices. The following anatomical areas were sampled: frontal, temporal, and occipital poles, parietal lobe including intraparietal sulcus, anterior amygdala, posterior hippocampus, dentate nucleus, and midbrain. The samples were fixed in 4% paraformaldehyde for 48 hours and embedded in paraffin. The other half of the brain was fixed in 20% buffered formalin for 7 to 13 days and sliced in the same manner as that performed in the contralateral hemisphere, and the representative areas were embedded in paraffin. We adjusted these fixation times for the frozen half and fixed half sides to compensate both for optimal fixation and for comparative morphological observations in AT8 immunohistochemistry (IHC) at the start of our brain bank in 1999. Six-micrometer-thick serial sections were stained with hematoxylin and eosin and by the Klüver-Barrera method. Selected sections were further examined with modified methenamine (16) and Gallyas-Braak (17) staining for senile changes, Congo red for amyloid deposition, and elastica Masson trichrome stain for vascular changes.

Immunohistochemistry

Selected sections were immunostained using an auto-stainer (Ventana 20NX; Ventana, Tucson, AZ), as previously reported (12). The antibodies included anti–phosphorylated tau (ptau; AT8, monoclonal; Innogenetics, Temse, Belgium), anti–4-repeat tau (RD4, monoclonal; Upstate, Lake Placid, NY), anti–phosphorylated α-synuclein (psyn; monoclonal, psyn no. 64 [18]), anti–β-amyloid 11–28 (12B2, monoclonal; IBL, Maebashi, Japan), anti–ubiquitin (polyclonal; DAKO, Glostrup, Denmark), and anti–phosphorylated TAR DNA-binding protein of 43 kd (TDP43; PSer409/410; monoclonal; IBL, Maebashi, Japan), anti-ubiquitin (polyclonal; psyn no. 64 [18]), anti–ubiquitin (polyclonal; psyn no. 64 [18]), and a BigDye Terminator v3.1 kit (Applied Biosystems, Foster City, CA) using the following primers: C19APOE001-F (sense 5’-GCCTACAAATCGGAACCTGGA-3’) and C19APOE001-R (antisense 5’-ACCTGCTCCTTCACCTCGT-3’) (21).

Clinical Data

Clinical information was retrospectively obtained from the medical charts as well as from interviews with patients’ attending physicians and caregivers. The Mini-Mental State Examination (22) or Hasegawa Dementia Screening scale (or its revised version) (23) and the Instrumental Activities of Daily Living scale (24) were used to evaluate cognitive function. The Clinical Dementia Rating (CDR) scale (25) was retrospectively determined by 2 independent board-certified neurologists.

Neuropathological Diagnosis

Neurofibrillary tangles (NFTs) were classified into 7 stages (from 0 to 6), and senile plaques were classified into 4 stages (0 and from A to C) according to the criteria of Braak and Braak (26). Argyrophilic grains were classified into our 4 stages (from 0 to 3) as previously reported (12). The neuropathological diagnosis of Alzheimer disease (AD) was based on our definition (27), which proposes a modification of the National Institute on Aging–Reagan criteria. The diagnosis of DG and “neurofibrillary tangle–predominant form of senile dementia (NFTD)” was based on the definition of Jellinger (3) and Jellinger and Bancher (28). The diagnosis of dementia with Lewy bodies (DLB) was based on the revised consensus guidelines (29). The diagnosis of progressive supranuclear palsy (PSP) was based on the National Institute of Neurological Disorders and Stroke criteria (30). The diagnosis of corticobasal degeneration (CBD) was based on the National Institutes of Health criteria (31). The diagnosis of vascular dementia was based on the criteria of the National Institute of Neurological Disorders and Stroke Association Internationale pour la Recherche et l’Enseignement en Neurosciences (32).

Case Selection and Subclassification of Cases With AG Stage 3

All of the patients who were categorized into AG Stage 3 were subclassified into the following 4 forms: the “pure form” represented AGs without any vascular or neurodegenerative changes that could explain cognitive decline, fulfilling Braak NFT Stage 2 or lower and the brain bank for Aging Research Lewy Stage 1 or lower (33); the “NFT form” contained NFTs with the Braak NFT Stage 3 or higher and senile plaque Stage A or lower (26); the “mixed form” is complicated by vascular pathology or metabolic disorders that could explain the cognitive decline; and the “combined form” containing neurodegenerative pathology other than AG itself fulfilled the diagnostic criteria of certain demential disorders.

Evaluation of AGs and Related Structures

Argyrophilic grains were defined as round- or comma-shaped structures with a diameter greater than 1 μm in the neuritoplasm. Bilateral sections of the anterior amygdala and posterior hippocampus at the level of the lateral geniculate body were stained with the Gallyas-Braak silver method and by IHC with AT8 and RD4. Gallyas-Braak silver staining was more sensitive for identifying AGs in 20% buffered
formalin-fixed sections than in 4% paraformaldehyde-fixed sections. In contrast, RD4 IHC was more sensitive for AGs in paraformaldehyde-fixed sections. AT8 IHC detected AGs to the same extent in both sections, as determined when we started our brain bank. Therefore, we compared the density of AG with AT8 IHC as follows: AGs were counted at a magnification of 400x in the basolateral nucleus of the bilateral amygdala and the entorhinal cortex of the posterior hippocampus and were classified to the following grades: Grade 1, 0 to 20; Grade 2, 20 to 50; Grade 3, 50 to 100; Grade 4, 100 to 200; and Grade 5, more than 200 (Fig. 1A).

FIGURE 1. Extent and density grading of argyrophilic grains (AGs). (A) Density grades were obtained by counting AGs visualized with AT8 immunostain in high-power fields (HPFs; original magnification: 400x), in the entorhinal cortex at the level of the posterior hippocampus. Argyrophilic grains with a diameter greater than 1 μm were counted. Grade 1, 0 to 20/HPF; Grade 2, 20 to 50/HPF; Grade 3, 50 to 100/HPF; Grade 4, 100 to 200/HPF; Grade 5, greater than 200/HPF. Bar = 20 μm. (B) Argyrophilic grain extent grades were as follows: Grade 1, localized to the entorhinal cortex (parahippocampal gyrus); Grade 2, spreading to the crown of the fusiform gyrus (T4); Grade 3, to the valley of T4; Grade 4, to the inferior temporal gyrus; and Grade 5, to the middle temporal gyrus.

Evaluation of Alzheimer-Type NFTs
In addition to Braak NFT stage, the AT8 staging of NFTs by the European Brain Net Consortium (34) was modified and used for this study. AT8 IHC was applied to the bilateral anterior amygdala, posterior hippocampi, and occipital cortex, and AT8 staging of the both sides was compared.

Evaluation of Clinical Images
Clinical images (computed tomography [CT], magnetic resonance imaging [MRI], N-isopropyl-123I-p-iodoamphetamine single photon emission computed tomography [123I-IMP-SPECT], 18F-labeled fluorodeoxyglucose positron emission tomography [18F-FDG-PET]) from our series were selected retrospectively and evaluated independently and blindly by 2 neurologists and a neuroradiologist (A.M.T.).

Statistical Analysis
Statistical analyses were performed with the χ2 test or the Fisher exact test for comparisons of categorical data. Correlations between the extent and density grades of AGs in posterior hippocampus were assessed with the Spearman rank correlation coefficient. The Mann-Whitney U test was used for comparison of age at death, CDR score, and Braak NFT stage. All statistical analyses were performed using SPSS 15.0J for Windows (SPSS, Inc, Chicago, IL). The threshold for statistical significance was set at p < 0.05.

RESULTS
Clinical Data on Cognitive Decline
The CDR could be retrospectively assessed in 590 patients: CDR 0 (n = 214), CDR 0.5 (n = 85), CDR 1 (n = 123), CDR 2 (n = 40), and CDR 3 (n = 128). Thus, 63.7% had CDR 0.5 or higher (mild cognitive impairment or dementia).

<table>
<thead>
<tr>
<th>TABLE 1. Correlation Between Extent and Density Grades of AGs in the Posterior Hippocampus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Grade</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Extent grade</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

The numbers correspond to right side/left side.

r = 0.674, p < 0.001.
Neuropathological Diagnosis

The neuropathological diagnoses, excluding AG Stage 3 patients, consisted of AD (n = 71), Parkinson disease/Parkinson disease with dementia/DLB (n = 35), PSP (n = 14), vascular dementia (n = 12), NFTD (n = 12), amyotrophic lateral sclerosis (ALS)/ALS with dementia (n = 12), Creutzfeldt-Jakob disease (n = 6), hippocampal sclerosis (n = 6), CBD (n = 2), multiple-system atrophy (n = 3), Machado-Joseph disease (n = 3), Huntington disease (n = 2), and frontotemporal lobar degeneration with TDP43-IR inclusions (n = 1). Comorbid demential pathologies included AD plus DLB (n = 11), Parkinson disease with dementia plus PSP (n = 4), and AD plus vascular dementia (n = 1). The remaining patients did not fulfill clinical and/or pathological criteria for any single neurodegenerative disease.

Among the 653 subjects, 65 (10%) were classified into Brain Bank for Aging Research AG Stage 3. These 65 patients were further subclassified as pure form (n = 15, 23.1%), NFT form (n = 14, 21.5%), mixed form (n = 22, 33.8%), and combined form (n = 14, 21.5%). The degenerative pathological diagnoses of the combined form included PSP (n = 5), CBD (n = 3), AD (n = 2), DLB (n = 1), AD+DLB (n = 1), PSP + DLB (n = 1), ALS with dementia (n = 1), and ALS (n = 1).

Clinical Features of AG Stage 3 Patients

The ages at death of the 65 patients with AG Stage 3 ranged from 68 to 97 years (84.2 ± 7.6 years). The male-to-female ratio was 37:28. The CDR score could be retrospectively determined for 64 of these patients: CDR 0 (n = 8), CDR 0.5 (n = 14), CDR 1 (n = 17), CDR 2 (n = 5), and CDR 3 (n = 20). Thus, the CDR of 56 (87.5%) of the 64 patients was 0.5 or higher, corresponding to amnestic mild cognitive impairment or dementia. The clinical diagnoses of these patients were either AD or vascular dementia.

Histopathological Asymmetry of AGs and Related Structures

The histopathological asymmetry in the density grades of AG in the anterior amygdala was present in 32 (49.2%) of the 65 patients with AG Stage 3. The asymmetry was commensurate with the asymmetry in the density grades in the posterior hippocampus.

The extent and density grades of AG in the bilateral posterior hippocampus were strongly correlated (r = 0.674, p < 0.001; Table 1). Histopathological asymmetry was present in 59 (90.8%) of the 65 patients (Table 2). When compared in extent grade or in density grade alone, histopathological

| TABLE 2. Demographic Data and Asymmetry in AGs in 65 Patients With AGs Stage 3 |
|---------------------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
| | Total | No | Yes | p | Extent | Severity | p | Right | Left |
| No. cases | 65 | 6 | 59 | 0.39 | 37 | 48 | 0.39 | 23 | 36 |
| Male/female | 37:28 | 2:4 | 35:24 | 0.15 | 24:13 | 27:21 | 0.56 | 13:10 | 22:14 |
| Age (years), mean ± SD | 84.2 ± 7.6 | 88.5 ± 7.8 | 83.8 ± 7.4 | 0.15 | 83.1 ± 6.9 | 83.9 ± 7.4 | 0.57 | 84.1 ± 6.5 | 83.6 ± 7.9 | 0.81 |
| CDR ≥ 0.5, n | 56 | 5 | 51 | 0.13 | 30 | 46 | 0.83 | 19 | 32 |
| CDR ≥ 1, n | 42 | 4 | 38 | 0.07 | 22 | 35 | 0.66 | 15 | 23 |
| APOE ε4 carriers | 9 | 0 | 9 | 0.58 | 5 | 8 | 0.92 | 4 | 5 |
| Braak NFT stage, mean | 2.34 | 3.5 | 2.2 | 0.01 | 1.86 | 2.31 | 0.06 | 2.3 | 2.17 |
| Braak SP stage, n | 0–A | 44 | 4 | 40 | 0.58 | 27 | 32 | 0.69 | 17 | 23 |
| | B–C | 21 | 2 | 19 | 0.57 | 10 | 16 | 0.70 | 6 | 13 |

*Side with greater either extent or density of AGs.

SP, senile plaque.

FIGURE 2. Clinical Dementia Rating scales. (A) Clinical Dementia Rating scores are not statistically significant among all subjects with argyrophilic grain Stage 3 (p = 0.735). (B) Of cases with the “pure form” of argyrophilic grain, only those with more extensive argyrophilic grain on the left side had Clinical Dementia Rating score of 2 or higher. The y axes indicate numbers of cases.

FIGURE 2.
Histologic and Neuroimaging Correlations

Asymmetry was present in 37 (56.9%) or in 48 (73.8%) of the 65 patients, respectively. The mean age, male-to-female ratio, and mean Braak NFT stage of the 59 patients with asymmetry were 83.8 ± 7.4, 35:24, and 2.2, respectively; for the 6 patients without asymmetry, they were 88.5 ± 7.8, 2:4, and 3.5, respectively. Braak NFT stage was lower in patients with asymmetry than in patients with symmetry. Statistical difference was not shown between 2 sides when only the extent grade or the density grade was compared. There were 36 patients with left-sided predominance of AG and 23 with right-sided predominance. There was no difference in Braak NFT or senile plaque stage between the right-dominant and the left-dominant patients (Table 2). Although the difference of CDRs of all subjects with AG Stage 3 was not statistically significant, all patients classified as having the pure form and whose CDR was 2 or higher had left-sided predominance of AGs (Fig. 2). All 5 patients with AG Stage 3 combined with PSP and the 3 with CBD had histopathological asymmetry in AG that was commensurate with the histopathological asymmetry of PSP and CBD, i.e. histopathological asymmetry was evaluated in PSP patients semiquantitatively with respect to density of AT8-IR tangles and astrocytes in the bilateral sections of the dentate nucleus, red nucleus and frontal cortex, where the grain-related pretangles and bush-like astrocytes were rarely present. Asymmetry of pretangles in the granular cell layer of the dentate gyrus was present in 32 (49.2%) of 65 cases, which was commensurate with the asymmetry of AG.

Histologic and Neuroimaging Correlations

Computed tomographic and/or MRI scans were available in 47 patients for the evaluation of the asymmetry: CT alone (n = 24), MRI alone (n = 8), and both (n = 15). The mean interval between the last CT or MRI and death was 7 ± 15.6 months. There were 20 patients with asymmetry on CT and/or MRI, 9 with left side–dominant atrophy and 11 with right side–dominant atrophy. In each patient where asymmetry was detected, the direction of the asymmetry assessed by neuroimaging matched that of the histopathological asymmetry (Table 3). In the pure form, 6 (75%) of the 8 patients showed asymmetry in morphological imaging. On the other hand, 3 (37.5%) of the 8 patients in the NFT form, 8 (42.1%) of the 19 patients in the mixed form, and 3 (25%) of the 12 patients in the combined form showed asymmetry in morphological imaging, respectively. Among the 47 patients whose morphological imaging was available, 9 were examined more than twice; 8 of those patients (88.9%) had asymmetry in the first images (mean interval from imaging to death = 3 years 5 months ± 22 months) that was commensurate with the asymmetry in the last images. The remaining patient did not show asymmetry either in the first or in the last image. The sensitivity and specificity for detecting underlying histopathological asymmetry were 50% and 100% for CT and 59% and 100% for MRI. The histopathological differences in the density and extent scores were compared with the presence or absence of asymmetry in structural neuroimages; the more severe the histopathological asymmetry, the more often the asymmetry was present in the images (Table 4).

Functional neuroimages were available for the study of asymmetry in 7 patients, 6 of whom underwent 123I-IMP-SPECT and 2 of whom underwent 18F-FDG-PET. All the functional neuroimages showed asymmetry that correlated with histopathological asymmetry (Fig. 3).

Comparison of Asymmetry Between AG Stage 3 and AD

Among 56 of 71 patients with AD and AG lower than Stage 2 and without significant vascular pathology, histopathological asymmetry in NFT was present in 14 patients. Morphological imaging (CT in 39 patients and/or MRI in 21 patients) was available in 41 of the 56 patients (mean interval between the last CT or MRI and death = 3 years 5 months ± 22 months). Statistically significant correlations were observed for extent score and morphological asymmetry on imaging in patients with histopathological asymmetry (Table 4).

<table>
<thead>
<tr>
<th>TABLE 3. Correlation of Pathological and Radiological Findings in Patients With AG Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>No. cases</td>
</tr>
<tr>
<td>Morphological imaging</td>
</tr>
<tr>
<td>No asymmetry</td>
</tr>
<tr>
<td>Right-dominant</td>
</tr>
<tr>
<td>Left-dominant</td>
</tr>
<tr>
<td>Functional imaging</td>
</tr>
<tr>
<td>No asymmetry</td>
</tr>
<tr>
<td>Right-dominant</td>
</tr>
<tr>
<td>Left-dominant</td>
</tr>
<tr>
<td>p = 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 4. Correlation Between the Difference of Density or Extent Score and Morphological Asymmetry on Imaging in Patients With Histopathological Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological Asymmetry</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>Score difference between hemispheres</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>≥2</td>
</tr>
<tr>
<td>p = 0.01.</td>
</tr>
</tbody>
</table>

+, asymmetry present; –, no asymmetry.
8 (19.5%) of the 41 patients showed radiological asymmetry. Functional imaging (SPECT and/or PET) was available in 7 of 56 patients and in 4 of the 7 patients who had radiological asymmetry. The number of patients with AG Stage 3 and AD, with or without histopathological asymmetry, was 59 versus 6 in AG and 14 versus 42 in AD-type NFT (p < 0.001). Asymmetry in morphological imaging was more often present in AG Stage 3 (20/47, 42.6%) than in AD (12/44, 27.3%; p < 0.05).

Influence of APOE ε4 on AGs

The APOE genotypes of patients with AG Stage 3 were as follows: 1 patient with ε2/ε2, 3 patients with ε2/ε3, 52 patients with ε3/ε3, 9 patients with ε3/ε4, and none with

FIGURE 3. Images from an 86-year-old man diagnosed with pure form dementia with grains (Braak neurofibrillary tangle Stage 2, senile plaque Stage C [mainly diffuse plaques], or Clinical Dementia Rating 3). (A) In a cranial magnetic resonance image 4 years before death, there is dilatation of the temporal groove and inferior horn of the lateral ventricle and atrophy of the temporal pole and anterior medial temporal lobe, all with left side dominance. (B) A 18F-labeled fluorodeoxyglucose positron emission tomographic image showing hypometabolism of the bilateral anterior medial temporal lobe with left side dominance. (C) Fresh coronal section of the right hemisphere showing marked atrophy of the amygdala and ambient gyrus (arrow). Scale = 1 cm. (D, E) At the level of the amygdala, there are many argyrophilic grains, with more on the left side (E) than on the right side (D). AT8 immunostaining. Bar = 20 μm.
e4/e4. All 9 carriers of APOE e4 showed histopathological asymmetry (statistically not significant vs noncarriers); of these, 1 patient had the pure form, 2 patients had the NFT form, 3 patients had the combined forms (1 patient each with PSP, DLB plus PSP, and CBD), and 3 patients had mixed forms.

DISCUSSION

We demonstrate histopathological asymmetry in the majority (59/65, 90.8%) of the brains examined from patients with AG Stage 3. Because this asymmetry can also be detected by neuroimaging in vivo, its identification may contribute to the clinical diagnosis of DG, particularly in combination with identification of preferential atrophy of the ambient gyrus, a hallmark of DG (10, 11).

The asymmetry in the posterior hippocampus was commensurate with the grain density of the anterior amygdala or the pretangles in the dentate gyrus. Asymmetry in grain density of the anterior amygdala was slightly less frequent than that of the posterior hippocampus, partly because the former seems to be involved in the initial stage of AG disease, and the density may be saturated at a later stage.

We also compared the bilateral maximum density of oligodendroglial coiled bodies in the white matter of parasubicular and the ambient gyrus, a hallmark of DG (10, 11).

The rate of detection of cases with histopathological asymmetry was 46.5% in structural neuroimages (CT or MRI) and 100% in functional neuroimages (123I-IMP-SPECT/18F-FDG-PET). The asymmetry in the structural neuroimages of the pure form alone reached 75%. Detection rates might increase if software were developed for voxel-based morphometry based on 3-dimensional MRI, focusing on asymmetry and selective atrophy of the ambient gyrus.

The frequent asymmetry in AG is shared with other tauopathies, including CBD, PSP, and Pick disease with Pick bodies. Patients with AG Stage 3 but without histopathological asymmetry were older and of higher Braak NFT stage than patients with asymmetry. This result may be partly influenced by the difficulty in discriminating AGs and Alzheimer-type neuritophil threads in patients with higher Braak NFT stage, even with IHC using a specific antibody raised against the 4-repeat tau isoform (9). Alternatively, it may suggest a pathogenetic relationship between AGs and NFTs.

Argyrophilic grain Stage 3 cases showed asymmetry more often than AD cases by both histopathological and radiological assessments. Asymmetry may also be a feature of hippocampal sclerosis dementia (35), but these cases usually show asymmetry in signal intensity in the hippocampus in FLAIR images or do not show atrophy of the anterior medial temporal lobe, including amygdala (unpublished data).

Apolipoprotein E genotyping of subjects with AG Stage 3 did not demonstrate a correlation between asymmetry and e2 (36–38). In contrast, although statistically not significant, all 9 e4 carriers in the patients studied showed histopathological asymmetry. Apolipoprotein E e4 consists of a risk factor of AD, and this may also be associated with the asymmetry of DG.

This analysis also indicates that patients with left-dominant AG tended to show more severe cognitive decline than patients with right-dominant AG. Among the 65 patients, 41 were right-handed, 1 was left-handed, and the rest did not have handedness recorded. Thus, the language center was most likely located in the left hemisphere in most cases, and it is reasonable to speculate that more extensive damage to the hemisphere dominant for language may result in more severe cognitive decline than involvement of the nondominant hemisphere. Retrospective studies of autopsy-confirmed DG reported that its clinical features are either AD-like amnesia (39–41) or Pick-like frontotemporal dementia (42–45). If clinical diagnosis of DG becomes possible and preferential involvement of either the right or the left hemisphere is determined radiologically, more detailed clinical and pathological correlations could be performed.

Few studies have examined the correlation between radiological and pathological findings of DG. In a postmortem MRI study of the oldest patients (>85 years) with special attention to atrophy of the medial temporal lobe, Barkhof et al (46) reported that 13 (10%) of 132 patients had pure AG disease; 4 of the 13 patients showed significant atrophy involving the temporal lobe. Josephs et al (47) used voxel-based morphometry to analyze MRI of AG patients with or without dementia and concluded that the damage visible in the MR image contributed to the clinical manifestation of dementia; however, they did not mention either radiological or pathological asymmetry.

Argyrophilic grains are often associated with other neurodegenerative processes. Because NFT-dominant senile changes are frequently associated with AGs and could modify clinical manifestations, we separated the NFT form from other cases for future analysis. It is notable that all PSP patients with AG Stage 3 showed the commensurate histopathological asymmetry, suggesting that histopathological asymmetry of PSP may be influenced by the histopathological asymmetry of AGs.

In conclusion, left-right asymmetry in density and/or extent of AG is present in most patients with AG Stage 3 and is detectable by antemortem morphological and functional neuroimaging. In combination with the finding of preferential atrophy of the ambient gyrus, detection of this asymmetry could contribute to the clinical diagnosis of DG.

ACKNOWLEDGMENTS

The authors thank Mr Naoo Aikyo, Mr Fumio Hasegawa, Ms Mieko Harada, Ms Yuki Kimura, and Ms Nobuko Naoi for the preparation of sections and Dr Kinuko Suzuki for helpful discussions. The authors also thank 2 anonymous neurologists for preparing the CDR ratings used in this study.

REFERENCES

