Visualising Data Modelling Constructs in an
Object-Oriented Database

Ghassan al-Qaimari

Department of Computer Science
Royal Melbourne Institute of Technology
Melbourne 3001, Australia

e-mail: <ghassan>@cs.rmit.edu.au

Alistair C. Kilgour and Norman W. Paton

Department of Computing and Electrical Engineering
Heriot-Watt University
Riccarton, Edinburgh EH14 4AS, Scotland, UK

e-mail: <ack,norm>@cee.hw.ac.uk

Abstract

Object-oriented databases are seen as potential successors to rela-
tional databases, at least in part because they provide a richer set of
data modelling constructs. This paper addresses the challenge to in-
terface designers posed by such constructs to support data browsing
and modelling through powerful and perspicuous visualisations, with
the additional requirement that the visualisations should be readily
updatable when the semantic model 1s modified, as is possible in some
extensible object-oriented databases.

The paper describes a range of visualisations for the semantic mod-
elling constructs of the extensible object-oriented database ADAM, and
reports the results of a series of empirical evaluations to assess the effec-
tiveness of these visualisations. These results support the belief that
it is possible to make the advanced data modelling constructs of an
extensible object-oriented database system accessible to non-specialist
users, allowing the advantages of these systems to accrue across a much
wider range of application domains than with conventional systems.

Keywords: Visualisation, lucidity, object-oriented databases, user interfaces, data

modelling constructs, evaluation.

1 Introduction

A characteristic feature of the relational model of data which has significantly contributed
to its widespread acceptance is its support for declarative query interfaces and form-based
retrieval /manipulation systems. The design of such systems has been eased by the straight-
forward data structuring mechanisms supported by the relational model which can be read-
ily and directly depicted in interfaces as tables or forms. The simplicity of the relational
model, while a strength for certain tasks, is also one of its principal weaknesses — represent-
ing the structural semantics of complex applications is cumbersome using first normal form
relations, and the relational model has come to be regarded as inappropriate for a range of
data management tasks.

Semantic data models and object-oriented databases (OODBs) have been proposed, in
part, to overcome the limited modelling facilities of the relational model. However, such
models are necessarily more complex than their relational predecessors, and thus are less
readily associated with visual representations which are suitable for the wide range of tasks
(data entry, querying, browsing, schema design, etc) associated with a database system.
This problem is further exacerbated in some recent database systems which support such
modelling constructs as relationship objects, versions and composite objects, and in systems
which can be extended to support additional data modelling constructs.

This paper describes experience designing and evaluating visualisations for a range of
modelling constructs supported by the OODB ADAM [GKP92]. The modelling facilities
provided by ADAM are described in [DG91, PDB93]. The paper is organised as follows:
section 2 describes some related work on interfaces to OODBs; section 3 considers some
general issues relating to visualisation, and how they are relevant to interfaces to OODBs;
section 4 outlines our experience of designing and evaluating modelling constructs, and
compares the evaluation techniques used; and section 5 presents some conclusions.

2 Interfaces to object-oriented databases

As with other database systems, much of the work to date on interface design for OODBs
has concentrated on support for the information retrieval task, through browsers and query
interfaces. Browsers for object-oriented databases have often been based on those com-
monly found in object-oriented programming environments, the classic original of which is
the Smalltalk browser. However, the needs of the data modeller using an object-oriented
database are not necessarily the same as those of a programmer using an object-oriented
language, and recent studies have shown that conventional object browsers are not very
effective in supporting the reuse of objects, which is an important part of the programmers
task in an object-oriented development environment [Gea92].

The following are among the main commercial and prototype OODB interfaces: ISIS
[Gea85], FaceKit [KN89], SKI [Kin86], SIG [MNG90], GLAD [Wu90], SNAP [BH90], Easy-
Objects [AA91], O LOO K S [Dea90], Iris [Vea88], and GOOD [GPT92]. Among these there
is little agreement as to what constitutes a visually effective interface to an OODB. Even
classes, attributes and relationships, the facilities supported by all of the systems, are rep-
resented in different ways on the screen, including networks, icons, and frames. Perhaps
the disagreement within the database community regarding the central characteristics of an
OODB has reflected on the design of their interfaces.

The graphical interfaces found in these systems can be divided into two categories: form-
based interfaces, such as OOPS and SIG, and graph-based interfaces, such as ISIS and SKI.
Graph-based systems use linked visualisations to target information for retrieval. Other
data manipulation operations, for the creation, modification or deletion of data, have been
ignored in many graph-based interfaces. Graphs are normally used to model data types,
while data manipulation operations range over instances of data types.

Form-based interfaces can be used both for data retrieval and for data manipulation.
Problems for form-based interfaces include the representation of hierarchical data structures,
and the description of distinct but related concepts. Forms can be used to support the
processing of data at the attribute level rather than at the entity type or class level, and
nested structures are necessary for displaying hierarchical data relationships.

The most effective graphical interfaces are those which allow the user to interact directly
with visual objects in ways that are suggestive of the underlying functionality being pro-
vided. Finding representations which effectively achieve this for a broad range of database

Load Database Class Operations

Class Selection:

Update Operations

Slots:

Instance Operations

EVE Online Assistance:

Formulate Query Help Quit

Methods:

toggle_menu object_rules =7 [wpdate_picture 5
tree pece update_point
tree class picture update_position
tty point wpdate_proto
¥ : position update_refer
update_operation_class proto wpdate_root
van refer vpdate_x_gap
vehicle root 2] | vpdate_y_gap a
version_behaviour_mixin x_gap *_gap
view Y93 v| | Y-93p v|
= =
Layout Window:
=1
node ﬁ
ﬁ}h - Instances of the Class: tree B0 1 4

Instance Operations

Total number of instances stored in the Database is: ...

Attrihutes:

Number of instances available to browse isi ...

proto: empty_slot
figure: empty_slot
point: point(30, 30}
Clas: ®_gap: 45
figure y_gap: 20
AR

pce: @ tree_0

{|(«]_T»}

[==]

Figure 1: Layout of EVE base window plus a form used for browsing instances.

tasks is a major challenge to the interface designer, one to which the work reported in this
paper is principally addressed.

Some systems lack uniformity in the way that common database tasks are expressed.
While some tasks can be expressed using direct manipulation techniques, other tasks, say
queries, require form filling or even the use of a programming language. GOOD is one of the
few systems that offers a uniform methodology throughout the different tasks it supports.

In general, database interfaces differ in three fundamental ways [Eps91]: with respect
to the visual metaphors which they employ; with respect to their expressive power; and
with respect to their underlying computational mechanisms. It is important for designers
to take into account users’ preferences and assumptions from the early stages of building
an interface. Nevertheless, however skilled the interface designer, and however extensive
the preliminary task and user analysis, it is now widely recognised that it is never possible
to get the interface right first time. Iterative evaluation and redesign are therefore vital in
arriving at a successful and supportive interface, although there are few references in the
literature describing current interfaces to OODBs to the importance of evaluation in the
design process.

In addition, few current systems support recent ideas in semantic data modelling, such
as composite objects and versions. As these new modelling constructs become more widely
available, it will become increasingly important to find appropriate visualisations as a basis
for effective direct-manipulation interfaces to the full range of modelling constructs. Later
sections of the paper describe initial steps towards the development of effective visualisations
for recent semantic modelling constructs.

The visualisations presented in this paper are supported by the EVE (Extensible Vi-
sual Environment) direct-manipulation interface [PaK92] which is part of a project that

aims at addressing the two major weaknesses of existing database interfaces by: developing
effective tools for the implementation of tailorable database interfaces, and developing effec-
tive visualisations of sophisticated data modelling constructs. To overcome the first of the
two weaknesses our approach has been to implement a system which integrates an object-
oriented graphical component set with the OODB ADAM. The aim of the integration was
to store the interface objects in the database, where they can have the same structure as
normal database objects, and therefore, to eliminate the impedance mismatch between the
interface and the database [PCET94].

The ADAM graphical toolkit, known as EDEN [PaD94], can be viewed as an object-
oriented widget set that consists of normal database objects, which can be subjected to
standard ADAM operations (such as create, replace, delete, etc), but which also have be-
haviour which has visible consequences, (such as draw, open, display, etc).

A principal feature of the underlying ADAM data model is that it can be extended with
new constructs such as relationships, versions and composite objects [DG91, PDB93]. Such
an extensible data model requires an extensible direct manipulation interface in order to
provide effective visualisations for the different constructs introduced to the data model.
This has been achieved by using ADAM to build its own extensible interface, known as
EVE, with the EDEN object-oriented widget set [PaD94].

3 Visualisation of data modelling constructs

3.1 Properties of visualisations

Visualising information, especially complex and intricate information, has been the subject
of considerable research, but little of this has related to the external representation of
complex data models, and in particular modern object-oriented database systems.

The fundamental hypothesis underlying the work reported here is that the usability of
object-oriented semantic data modelling constructs can be enhanced by lucid and expressive
visual screen representations. Effective visual representations are of particular importance
where modelling constructs are intended to capture both the structural and the behavioural
semantics of real-world concepts. The challenge for the interface designer is to find clear,
concise and comprehensive representations which achieve in practice the usability gains over
textual representations which our hypothesis suggests are possible.

Designing visual representations of data models involves a kind of projection, where
the knowledge provided by the data model is transformed (mapped) into recognisable and
expressive pictorial representations. This process has parallels with knowledge elicitation,
as used by knowledge engineers in building knowledge-based systems [McG92]. Knowledge
elicitation techniques described in the literature include: document reviews and content
analysis, observation, interviews, concept and vocabulary analysis, and job and task anal-
ysis. Several of these approaches were applied to provide a starting-point in the iterative
search for effective representations of semantic modelling constructs, as described in section
6. Other factors informing the design process included an analysis of earlier theoretical and
empirical investigations of factors influencing usability. In [Fas84], usability is defined as
“the extent to which the user can exploit the potential utility of a system”. Other aspects
of usability which have been proposed include functionality (how well a system fits the
needs of a set of particular tasks [Ben84]), and acceptability (how willing users are to use
the system in their own organisational context [Ric87]). In addition to these, productivity
increase, which relates to efficiency in terms of time, money and quality assurance, is of
particular concern in commercial environments .

In [Nor88], the term wvisibility is used to indicate “the mapping between intended actions

and actual operations”. It is also suggested that there are occasions when too much visibility
can be a problem: “It is an excess of visibility that makes gadget-ridden, feature-laden
modern audio sets and VCRs so intimidating”. The author also distinguishes between
affordance, referring to whether the design of an object suggests (that is, affords) its
functionality, and perceived affordance, referring to what a person thinks can be done with
that object.

According to [Gil91], visibility should be thought of in terms of three separate dimen-
sions, two of which are static properties of the presentation, while the third is dynamic. The
first of the static components, accessibility, is associated with availability of information,
while the other, salience, is associated with its meaning. Accessibility and salience are
both properties of the display alone, independent of its use. The third dimension, namely
congruence, is a property of the display in interaction with the user, and reflects whether
the salience of a display is relevant to the user’s task.

In a complementary analysis [JDMMO91], three distinct components of usability are
investigated, which account for how the performance of a system changes with learning.
These are: guessability, learnability, and experienced user performance. Guessability is
defined as “a measure of time and effort required to get going with a system. The less time
and effort required the higher the guessability.”

Through analysis of this work and its relevance to the derivation of visual representa-
tions for semantic data modelling constructs in object-oriented databases, we have been led
to propose an additional usability dimension, referred to as lucidity, defined as the extent
to which a representation reflects and reveals the structure and meaning of the underlying
modelling construct. This concept incorporates aspects of visibility and guessability as de-
fined earlier, but we believe it more directly characterises the effectiveness of a visualisation
of a modelling construct for use in a database interface, which it is the aim of our work to
investigate.

Following from this analysis, sample visualisations were designs aimed at maximising
lucidity, and their success in achieving this goal was evaluated empirically. The aim of the
evaluation was to measure whether the characteristics of a data model were visible to the
user, and whether it was easy for the user to guess the structural semantics of the data
model, and the function it was intended to perform. Lucidity in the context of visualisation
of modelling constructs may be considered to have the following aspects: clarity, referring
to the number and organisation of visual components; accessibility, referring to the ease
of which information can be accessed; perspicuousness of visual representations, which
indicates if pictorial information can convey the appropriate meaning, and can be easily
understood without confusion; and transparency, meaning the ability to see through the
pictorial representation to the underlying semantics. Clarity and accessibility are directly
related to the speed of performance, that is, the ability of the user to find a particular piece of
information, or identify a particular visual clue or instruction that helps navigating through
the system, within an acceptable period of time. On the other hand, perspicuousness and
transparency directly affect user’s goals and his ability to perform the correct task.

The following section describes in detail the initial design of possible visual representa-
tions of composite objects, one of the more powerful data modelling extensions supported

by the ADAM OODB.

3.2 Visualisations of composite objects

A number of objects related by the subpart relationship are collectively called a composite
object [KBG89]. Each composite object has one or more subparts, each of which may
consist of other composite objects, or standard ADAM objects. The semantics of the part-

of relationship are discussed in [PDB93, Kim93].

In seeking lucid representations of composite object constructs, one approach which
seemed promising was to investigate the application of alternative visual paradigms. Can-
didate paradigms which immediately suggested themselves were form-based and graph-
based. Accordingly, three alternative representations of composite objects were designed.
The form-based representation (figures 2 and 3) is very similar to EVE’s conventional way of
visualising class instances (figure 1), with the exception that two different types of attribute
are distinguished, namely composite (subparts) and non-composite.

In figures 4 and 5, the subpart hierarchy is depicted as a tree in a separate window.
Note that the slot subpart represents a special type of relationship between a composite
object class and other classes. Thus the subparts window, shown in figure 4, could be
eliminated if (for example) we chose to use a different line style (different from the lines
shown in the layout window, figure 1) to represent such system-defined relationships. This
would enable the user to differentiate between user-defined relationships and the subpart
relationship. The justification for designing a subpart window is similar to the justification
for having separate is-a hierarchy window, namely to highlight the special semantics of the
relationship, and to prevent cluttering of the main layout window.

The representation shown in figures 6 and 7, has all the characteristics of the form-
based representation except for the subparts, which are shown as icons under the heading
Composite Attributes (Subparts). As in the graphical representation, the user can click on
any of the icons in the form to browse the subpart instances.

4 Evaluation

The goal of arriving at lucid representations of advanced semantic modelling constructs
cannot be achieved just by following design guidelines, such as those in [MS86] and [Bro88].
An iterative approach must be adopted involving formative evaluation in each iteration
[HH93]. Two evaluation cycles have been performed. Firstly, a pre-implementation paper-
based evaluation was carried out with the help of experienced users in the fields of databases
and interface design. Secondly, a practical (task-oriented) evaluation was conducted using
prototype implementations based on the results of the first stage of the evaluation. The
particular technique used was cooperative evaluation [MWHD93], which brings together
designers and users in a cooperative context, so as to involve the users in the design process
by giving feedback and identifying weak points at each stage.

The different backgrounds, expertise and experience of the representative users can pro-
vide valuable insights when the results of the evaluation are analysed and interpreted. Our
subject profiles, in the first stage of the evaluation (25 users), indicate that all of our rep-
resentative users were either lecturers, researchers, or graduate students, of whom half had
considerable knowledge about databases in general, and the other half were knowledgeable
about interface design. Expert users can provide critical facts and heuristics at the early
stage of the design. However, we appreciate that databases are not exclusively designed for
database or interface experts, and so subject profiles in the second stage of the evaluation
(25 users) included, in addition to expert users, novice and intermediate users, who are
likely to be the primary users of the system. Such users can have different needs, expecta-
tions and understanding of terminology. They also tend to draw different conclusions from
instructions provided by the interface [Mc(G92].

@%ﬁ ‘ Composite Object: vehicle ‘

Number of instance objects: 3
ATTRIBUTES:
registration_number: C546 UMS
—
owner: [Z=E2
SUBPARTS :
@ ‘ Subpart:whed! ‘
o B (i
wheel: Quantity: 4
| o (o) |
| type XR9849

Figure 2: Paper design 1: a proposed form-based visual representation of composite objects.

N Instances of the Class: vehicle | -]]

% Instance Operations s E
o Show Subpart Hierarchy
. 4

Total number of instances stored in the Databaze i
Nurmber of instances available to browse is:

Attrihitas:

owner: o ner

Composite Attributes (Subparts):

door: door..... (Mult]) ?

wheel... (Multi) E

Figure 3: Visualisation 1: an implementation of paper design 1, shown above.

wheel:

@Qﬁ el @2@ [commieoes vaae \

: \ Subparts Window
b Number of instance objects:3 NER
Attributes:
registration_number: C546 UMS
person
(‘%m
engine v B
g @ Subpart: wheel

B V a—
®‘ [on)

i Quantity: 4 Next Subpart |

Attributes:

@ Class properties
@ Subpart: wheel Uit U

dependency: independent

exclusivity: exclusive

quantity = 4

Figure 4: Paper design 2: a proposed graph-based visual representation of composite

objects.

daar
)
% ﬂ
shafl
Class
compaosite_vehide
engine

> ("W / Class

Comp. Class IEt0ce
Comp. Class \ y
= ®
Clazs
Clazs
—_
1 N
IEIND i

Figure 5: Visualisation 2: an implementation of paper design 2, shown above.

. - ‘ Composite Object: vehicle
%ﬁ 7

Number of instance objects: 3

VA
Attributes: NE Gl ’

E

registration_number: C 546 UMS
———

model: model I
Y A 4

e Cowe]

@ \ ibpm;whed \
——

@ &
Quantity: 4) e——
(ot |

Attributes:

type: XR9849

Figure 6: Paper design 3: a proposed mixed-mode visual representation of composite
objects.

e wstmcesoftedssivewse [
3 (et) [quit)

Total number of instances stored in the Database is: ... 4
Number of instances available to browse ist 4

Instance Operations

Attrihutas:

registration_number; Y1233y

cwner: person

Composite Attributes (Subparts)

engine daar wheel =
Io rbo -~
\’f‘ﬁ' = hd
[T
Comp. Class Class Class
—_
1 N
T To} I

Figure 7: Visualisation 3: an implementation of paper design 3, shown above.

For each checklist question, please tick the column which best describes your answer to
the question. Then write any comment which you feel you could make when answering a
checklist question, in the column Comments.

| Questions Related To Common Features. |

Not
Sure

Disagree

Question
Agree

Strongly ‘ Agree

Disagree ‘ Strongly H Comment

1. The concept of two levels of "Next”
button, in one class representation,

is confusing to me.

2. Having two levels of counters in one
form is confusing to me.

3. The link between the top left-hand
corner icons and the class level
properties is a good idea (see figure
4).

4. I prefer the class level properties
to be shown in a popup menu style.
5. I prefer the class level properties
to be shown in a dialog box form, as
in figure 4.

6. I find using icons to represent
class-specific visunalisation, as well

as construct-specific visualisation to
be a good idea.

7. I find using icons for quick
identification, whereby an icon is
positioned at the top left-hand corner
of every dialog box to be a good idea.
8. For browsing class instances, I

like the idea of giving the system

the choice between displaying a graph
based or a form based representation
based omn size of the counter.

9. Designing the “Quit” buttons to
cause recursive deletion is a good
idea.

Are there any comments (good or bad) you wish to add regarding the above issues?

Figure 8: Sample Checklist, presented to the representative users regarding the features
common to all visualisations.

4.1 Pre-implementation evaluation: (stage one)

The first stage of evaluation involved checklists, questionnaires answered by potential users
(see sample checklist, figure 8), which were used to obtain feedback on paper mock-ups of
visualisations (figures 2, 4 and 6). Such an evaluation technique offers a flexible strategy,
whereby checklists can be modified according to the nature of the evaluation, for the purpose
of reaching practical quantifiable evaluation results. This evaluation strategy followed a
similar approach to that presented in [RJ89, Shn92].

Following consistent guidelines in the early stages of interface design ensures a consis-
tent look and feel of the system as far as fonts, placement of menus, and wording of titles
and messages are concerned. In addition to the design guidelines, the pre-implementation
evaluation aimed to explore the extent to which the initial alternative visualisations suc-
ceed in capturing the structure and meaning of the data modelling constructs. This was
achieved by encouraging the experienced representative users to explore all initial designs
of visualisations, to give constructive critiques, and to suggest possible alternatives.

The first stage of the evaluation helps the designer to avoid, as much as possible, pro-
totyping poor visual representations that might require many revisions and modifications
later at the prototyping phase. However, some ideas might seem very appealing when eval-

uated on paper, and yet due to unexpected limitations in the implementation environment,
either cannot be implemented effectively, or turn out to be less effective in practice than
anticipated.

4.1.1 Results of pre-implementation evaluation

The results of the first stage of evaluation (see figure 9) indicated t hat graph-based visual
representations are not necessarily the preferred way of representing modelling constructs.
The representative users’ comments helped highlight ambiguous designs and wording of
titles. Mixed mode representations (figure 6, paper design 3) were appreciated, as was the
idea of hiding class properties behind icons to avoid confusion (see class properties window
in figure 4). They also stressed the importance of building consistent interfaces that do not
change the type of display without users’ instructions.

4.2 Prototype evaluation: (stage two)

The second stage evaluated prototyped implementations of the proposed visual representa-
tions. For the purpose of testing whether the results of the two evaluations correlate, and
whether the two stage evaluation approach is worth the time and effort involved, not only
the winning paper designs for these two modelling constructs have been implemented, but
all the proposed paper designs.

The second evaluation was task-oriented - representative users were asked to perform
certain specific tasks, and while looking at the information available to them on screen (that
is, the three visualisations), they were asked post-experience questions the aim of which was
to assess the usability of the system in general, and the lucidity of the visual representations
in particular (see figure 10). Questionnaire forms were divided into different sections, each
of which was based on certain criteria which are expected to be met by a well-designed user
interface.

4.2.1 Designing an evaluation task

As indicated earlier, one of our aims was to measure the [ucidity of the visual representations
of the data modelling constructs supported in the EVE interface, in addition to assessing
the usability of the system in general. To do so it was necessary to devise an evaluation
task that reflects what is meant by lucidity and how it could be measured.

The task performed by our representative users in the second stage of the evaluation
aimed at exploring the following interface issues:

¢ Do the visual representations succeed in suggesting to the user the meaning of the
data model, and do they reveal the semantics supported by the modelling constructs?

e Is it clear to the user that a construct, such as a composite object, is a normal object
in the database?

e How useful are icons for quick identification of related visual representations?
e How helpful is a hierarchical overview of special types of relationships?

o To what extent is the distinction between class level information and instance level
information recognised by the users?

It was equally important after deciding on the tasks to appraise them in order to check
their representativeness and the extent to which they explore the interface issues under

: : f L xceltent
Figure 2. ‘ g : — D Good
: : : : : . o
’ | f f : : - | o
0% 20% 0% 60% ‘80% 100%

Figure 9: Relative preference scores from the three paper designs in the pre-implementation
evaluation.

evaluation. To do so the proposed tasks were carried out by an experienced user in a pilot
investigation.

4.2.2 Conducting evaluations

During evaluation sessions the emphasis was placed on the reason behind how the user
found a certain answer, and why a certain conclusion was reached or a decision made.
Also, an emphasis was placed on finding out whether the representative users performed
subtasks within a reasonable period of time, which was an important factor in determining
the effectiveness of a visual representation. Users were encouraged to to think aloud, in
order to generate as much feedback as possible. This was achieved by asking questions after
performing each subtask (such as How did you know that? or What makes you think so?,
etc). For example, by asking the representative user a question like: How many vehicles are
stored in the database?, the designer is really interested in finding out whether the counter
in the representation is visible to the user, and whether or not the wording is confusing.

The representative users were kept unaware of the fact that the time taken to perform
each subtask was being monitored. Such an informal evaluation strategy created a relaxed
atmosphere, and enabled representative users to concentrate better on the screen without
interruption.

While the representative user is carrying out the task, the designer (evaluator), records
feedback information on a Think aloud protocol recording sheet. Such a recording sheet
contains questions such as: What does the task user notice? What is the task user thinking
now? What kind of clues is he/she looking for? What are the problems encountered at this
subtask? What suggestions are being made by the task user?

After the representative users performed the tasks using the different prototypes, they
were asked to rate the visualisations (figure 11) according to preference.

4.2.3 Results of prototype evaluation
The following are some of the results and the issues raised by the second evaluation.

e The representative users were almost evenly divided in their preferences between fig-
ures 3 and 7, even though in the pre-implementation evaluation figure 6 was the clear
favourite. Figure 3 is considered by many to be simpler and more consistent with
EVE’s conventional way of browsing instances. Figure 12 compares the relative per-
formance scores from both, paper (top) and practical (bottom), evaluations of the
three visualisations.

o The idea of showing a special hierarchy window to give an overview of special types
of relationship, such as the subpart relationship, was appreciated.

¢ The majority of the representative users like the idea of having a special button (say
Show Subparts Hierarchy), which can be selected if the user is interested to see the

Your task is to find the engine_number of the engine of the vehicle which has the
registration_number: 1234.

After carrying out the task, use the information available to you on the screen to
answer to each of the following post-experience questions.

1. Who 1s the owner of this vehicle? How did you know?

2. How many vehicles are stored in the database?

How did you know?

3. How many doors does the vehicle have?

How did you know?

4. Can two vehicles share the same engine?
Why/Why not?

5. What will happen to the vehicle if you try to remove an owner from the
database?
How did you know?

6. What fundamental difference is there in the way the registration_no and the
engine are modelled as properties of vehicle?
How did you know?

7. What is the fundamental difference between the way in which the engine of
a vehicle 1s modelled compared with the owner of a vehicle?

How did you know?
8. Is an engine a normal object in the database?
Why do you think it is/Why do you think it is not?

9. Is it a good idea to have a special button in the dialog box (figure 3 and 7)
which gives the user the choice of whether to display the Subparts Hierarchy
Window (figure 4) or not.

Explain why it is/isn’t a good idea?

Figure 10: Post-experience Questionnaires

hierarchy window (see figure 13). This means that the hierarchy window is not forced
on users who are not interested in looking at it.

Icons in the EVE interface represent classes in the database. In EVE, each class has a
class specific visualisation (such as the picture of a car to represent the class vehicle),
as well as a construct specific visualisation (being the object type, such as composite
class). Users preferred using words (such as composite class, to indicate that the class
vehicle is a composite class) over the use of symbolic graphical representations, since
the latter adds another level of abstraction which may or may not be easily recognised.
While expert users might easily recognise a symbol, novices might find it too abstract.

Icons played an important role in suggesting to the users that data modelling con-
structs are normal database objects. This is because the regular classes and the
constructs are displayed in the layout window using the same style of iconic repre-
sentation. However, some users were confused about the difference between an is_a

D Excellent
: : : : : m.
Figure 5. -
? : ‘ : : (| por
| I N -
0% éO°A) WA éO°A) ‘80% ‘100%

Figure 11: Relative preference scores from prototype evaluation of visualisations for
composite objects.

hierarchy window and a part_of hierarchy window.

The performance of our users improved significantly when they repeated the task
using the second prototype of visual representations, which conforms to the results of
the experimental study in [JDMM91], which describes components of usability that
account for how performance with a system changes with learning. Therefore, in
order to ensure better results, half of the representative users were asked to carry
the evaluation task using the first prototype first (figure 3), while the other half were
asked to start with the second prototype (figure 7).

The users appreciate the presence of icons in the top left-hand corner of every di-
alog box for the purpose of quickly identifying dialog boxes generated for browsing
instances.

Further investigation is needed regarding the object-oriented terminology and whether
it should be simplified by using a more familiar expressions at the interface level. Some
users found it hard to understand concepts such as slot, exclusivity, dependency, etc.
For example, novice and intermediate users prefer the use of the word attribute, rather
than the word slot. While using these terms at the interface level matters if the terms
are relevant to the task, using simpler terms can increase the lucidity of a visualisation
in particular and the performance and acceptability of a system in general. However,
designers must be careful when using different or simplified terminologies because they
can confuse experienced users.

When users were asked questions such as Can two vehicles share the same engine? or
What will happen to the vehicle if we delete the engine?, the first reaction of many
was to try to give logical answers. Some users tried to delete the engine to see the
results of such an action, and others tried to look at the screen searching for a clue.
This suggests that prior assumptions of the users matter and should be taken into
account at each stage of the evaluation.

Figure3. _
‘ ; ; ; s excatent
| 3 ; ; [oo
rares [T = 2 I
Figure 5. ; \ 3 3 - | B
t [l e
0% 20% 40% 60% 80% 100%

Figure 12: Relative preference scores from paper (top) and practical (bottom) evaluations
of visualisations for composite objects.

50%,

40% 4
30%4
30%4
20%4 I
L L L

Strongly Agree Not Disagree Strongly
Agree Sure Disagree

Figure 13: Do you agree with including a button in visualisation 1 for the purpose of
optional display of the subpart hierarchy window (vis. 2).

e The distinction between class level information and instance level information was
not always clear to some users - it is important to separate these in the display to
avoid confusion. Further study is needed to determine the best way to show class
level information and constraints.

4.3 Comparison of pre and post implementation evaluations

In [CHP90], the authors compare four different evaluation approaches used by software de-
signers to evaluate the usability of prototype interfaces. These approaches are summarised
as follows: formal analysis, paper based evaluations which are used to evaluate theoretical
models, system specifications, and to measure a hypothetical expert users’ performance; em-
pirical approaches, which test the interface system in an experimental or semi-experimental
setting such as in a usability laboratory; contextual research, which is ethnographic, and
attempts to understand (observe) users’ attitudes towards the interface in ecologically valid
situation (users’ normal environment); and finally, construct elicitation, which is a post-
event elicitation of users’ opinions, used to compare several prototypes.

Our pre-implementation evaluation followed the first approach for the purpose of testing
initial design ideas with the help of expert users, while the second evaluation followed the
fourth approach, comparing several prototyped visualisations by eliciting users’ opinion
after completing evaluation tasks. The second stage confirmed most of the results of the
pre-implementation evaluation regarding our initial design decisions and ideas.

5 Conclusion and future directions

Designers and evaluators use different evaluation methods to achieve an objective measure-
ment of the user/system interaction, and yet it is in fact the subjectivity of the evaluation
experience of the individual users which they are often after [CHP90]. This paper attempted
to exploit another dimension in interface evaluation, that is, the degree of lucidity of visual
representations, and has described our practical experience in evaluating visual represen-
tations of semantic data modelling constructs in object-oriented databases. The need for
expressive visual representations becomes important as the underlying systems support in-
creasingly rich semantics, and we believe that cooperative evaluations play a crucial role
in bringing the designers and the users together in a context that involve the users in the
design (pre-implementation) phase, and in the prototyping phase.

The advantages of the object-oriented paradigm became very clear during the design
and evaluation process. The evaluation of alternative visualisations required that rapid
prototyping and modification of existing displays was supported by the underlying system.

In practice, a uniform object-oriented approach to the implementation of both data model
extensions and interface constructs facilitated rapid revision to both the data model and its
visualisations.

Acknowledgement We are grateful to Carmel Smith for helpful comments relating to
pilot testing evaluation tasks, and to our colleagues who participated in the evaluations.

References

[AA91]

[Ben&4)

[BH90]

[Bro88]

[CHPIO]

[Dea90]

[DGI1]

[Eas84]
[Eps9l]
[Geass]
[Gea9?]

[Gil91]

[GKP92]

[GPT92]

[HH3]
[JDMMO1]

J. Almarode and T. L. Anderson. GemStone Visual Interface Designer: A Tool for
Object-Oriented Database Design. In Object-Oriented Databases: Analysis, Design and
Construction (DS-4), pages 73-94. North-Holland, 1991. W. Meersman et al (Eds).

J. L. Bennet. Managing To Meet Usability Requirements; Establishing And Meeting
Software Development Goals. In Visual Display Terminals, pages 161-183, 1984. J.
Bennet et al (Eds).

D. Bryce and R. Hull. SNAP: A Graphics-based Schema Manager. In Readings in
Object-Oriented Database Systems, pages 537-550. Morgan Kaufman Publishers, 1990.
S. Zdonik and D. Maier.

C. M. Brown. Human-Computer Interface Design Guidelines. Ablex Publishing Co,
NJ, USA, 1988.

J. Crellin, T. Horn, and J. Preece. Evaluating Evaluation: A Case Study Of The Use
Of Novel And Conventional Evaluation Techniques In A Small Company. In Human-
Computer Interaction - INTERACT 90, pages 329-335, (North-Holland), 1990. Elsevier
Science Publishers. D. Diaper et al (Eds).

O. Deux and et al. The Story of O2. In IEFE Transactions on Knowledge and Data
Engineering, (2), pages 91-108, 1990.

O. Diaz and P. M. D. Gray. Semantic-rich User-defined Relationship as a Main Con-
structor in Object-Oriented Database. In Object-Oriented Databases: Analysis, De-
sign and Construction DS-4. Elsevier Science Publishers (North-Holland), 1991. R. A.
Meersman and W. Kent and S Khosla (Eds).

K. D. Eason. Towards the Experimental Study of Usability. Behaviour and Information
Technology, 2(3), 1984.

R. G. Epstein. The TableTalk Query Language. Journal of Visual Languages and
Computing, pages 115141, February 1991.

K. J. Goldman and et al. ISIS: Interfaces for a Semantic Information System. In ACM
SIGMOD Conference on the Management of Data, pages 328-342, 1985.

T.R.G. Green and et al. Towards a cognitive browser for OOPS. International Journal
of Human Computer Interaction, 4(1), pages 1-34, 1992.

D. J. Gilmore. Visibility: A Dimensional Analysis. In People and Computers VI, Proc.
of the HCI ’91 Conference, pages 317-329. Cambridge University Press, 1991. D. Diaper
and N. Hammond (Eds).

P. M. D. Gray, K. G. Kulkarni, and N. W. Paton. Object-Oriented Databases: A
Semantic Data Model Approach. Prentice-Hall, 1992.

M. Gemis, J. Paredaens, and I. Thyssens. A Visual Database Management Interface
Based on GOOD. In The 1st International Workshop on Interfaces to Database Systems
(IDS92), Glasgow, pages 25-31. Springer-Verlag, 1992. R. Cooper (Ed).

D. Hix and H. R. Hartson. Developing User Interfaces. Wiley, 1993.

P. W. Jordan, S. W. Draper, K. K. MacFarlane, and S. McNulty. Guessability, Learn-
ability, and Experienced User Performance. In People and Computers VI, Proc. of the
HCI 91 Conference, pages 237-245. Cambridge University Press, 1991. D. Diaper and
N. Hammond (Eds).

[KBG8Y]

[Kim93]

[Kin86]

[KN89]
[McG92]
[MNG90]
[MS86]
[MWHD93]

[Nor88]
[PaD94]

[PaK92]

[PCE*94]

[PDBY3]

[Ric87]

[RI8Y]
[Shn92]

[Vea88]

[Wu90]

W. Kim, E. Bertino, and J. F. Garza. Composite Objects Revisited. In Proc. of the
1989 ACM SIGMOD, 18(2), pages 337-347, 1989. J. Clifford, B. Lindsay and D. Maier
(Eds).

W. Kim. Object-Oriented Database Systems: Promises, Reality, and Future. In Proc.
of the 19th VLDB, pages 652-687, Dublin, Ireland, 1993. R. Agrawal and et al (Eds).

R. King. A Database Management System Based on an Object-Oriented Model. In
Ezpert Database Systems: Proc. of the 1st International Workshop, pages 443-467. The
Benjamin/Cummings Publishing Co, 1986. L. Kerschberg (Ed).

R. King and M. Novak. FaceKit: a Database Interface Design Toolkit. In Proc. of the
15th VLDB, pages 115-123, 1989.

K. McGraw. Designing and Evaluating User Interfaces for Knowledge-Based Systems.
Ellis Horwood Publishers, 1992.

D. Maier, P. Nordquist, and M. Grossman. Displaying Database Objects. In Readings in
Object-Oriented Database Systems, pages 551-566. Morgan Kaufman Publishers, 1990.

J. Mosier and S. Smith. Guidelines for designing user interface software. Technical

Report MTR-10090, ESD-TR-86-278, The Mitre Corporation, Beford, MA, USA, 1986.

A. Monk, P. Wright, J. Haber, and L. Davenport. Improving Your Human-Computer
Interface: A Practical Technigue. Prentice Hall, 1993.

D. A. Norman. The Psychology Of Everyday Things. Basic Books, 1988.

N. W. Paton, G. al-Qaimari, and D. K. Doan. On Interface Objects In Object-Oriented
Database. In Directions in Databases, Proc. of the 12th British National Conference On
Databases (BNCOD 12), pages 153-169. Springer-Verlag (Lecture Notes in Computer
Science), 1994. D. S. Bowers (Ed).

N. W. Paton, G. al-Qaimari, and A. C. Kilgour. An Extensible Interface To An Exten-
sible Object-Oriented Database System. In The 1st International Workshop On Inter-
faces to Database Systems (IDS92), Glasgow, pages 265-281. Springer-Verlag, 1992. R.
Cooper (Ed).

N. W. Paton, R. Cooper, D. England, G. al-Qaimari, and A. C. Kilgour. Integrated
Architecture For Database Interface Development. In IEFE Proceedings - E, Computers
and Digital Techniques, Special issue on HCI, 141(2), pages 73-78, March 1994.

N. W. Paton, O. Diaz, and M. L. Barja. Combining Active Rules and Metaclasses for
Enhanced Extensibility. Data and Knowledge Engineering, (10), pages 45-63, 1993.

S. Richardson. Operationalizing Usability and Acceptability: a Methodological Review.
In New Methods In Applied Ergonomics, pages 125-134, 1987. J. R. Wilson and E. N.
Corlett (Eds).

S. Ravden and G. Johnson. FEvaluating Usability Of Human-Computer Interfaces: a
practical method. Ellis Horwood Limited, 1989.

B. Shneiderman. Designing The User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, second edition, 1992.

Y. Vassilion and et al. Iris - A Mapping Assistant for Generating Designs from Require-
ments. In Advances in Object-Oriented Database Systems, 2nd International Workshop
on QObject-Oriented Database Systems, pages 307-337. Springer-Verlag, 1988. K. R.
Dittrich (Ed).

C. T. Wu. Benefits of Object-Oriented Programming in Implementing Visual Database
Interface. JOOP, pages 8—16, March/April 1990.

