
An Algebra for Ontology CompositionGio WiederholdARPA and Stanford UniversityJuly 1994INTRODUCTIONTo compose large scale software there has to be agreement about the terms, since our modelsdepend on symbolic linkages among the components. In modestly-sized systems, we im-plicitely count on such an agreement. Within a speci�c domain terms are indeed likely to beconsistemt, so that speci�cations can be developed from English (or other natural) languagesource documents. When combined with a coherent framework we have the underpinningsfor a Domain-Speci�c-Software Architecture (DSSA). In this abstract we propose extendingconcepts used in object-based structural algebras and DSSA research to a knowledge-basedalgebra, suitable for composing larger systems that span multiple domains.The principal operations in the algebras are simple and provide for selection from theobjects in the source domain space and placing them into new domains that represent theinformation needed for the composed results.1. BACKGROUNDDivide-and-conquer is an essential approach in science and technology, and in large softwaresystems as well. Early manifestations of division of tasks in software were scienti�c subroutinelibraries, since their development and evaluation required uncommon rigor. These librariesgrew to encompass statistical procedures sas [Rose:83], and specialized libraries serve diversedomains as planetary navigation nasa [Acton:93] and Graphical User Interfaces. Todaycommercial �rms or funded service agencies provide most of such libraries.An alternative approach is the development of packages, which are not intended to beintegrated into larger suites. These were also popular in the statistical domain, as bmd[Dixon:69], but have been largely supplanted by composable routines, which allow the appli-cation of statistics to a variety of application domains.In this abstract we consider the construction of software from autonomous modules,megaprogramming [Wiederhold:92]. We refer to the scope of autonomous modules as theirdomain, and to the terms used to describe items and their relationships in a domain as theirdomain ontologies. While the terms in these ontologies are often only manipulated in paperform or perhaps as idef [Loomis:87] documents, we believe that the contents of ontologieswarrants formal manipulation if reliable systems are to be composed.1

2. DOMAIN SPECIFIC KNOWLEDGEObject technology has blosomed due to the incorporation of semantics within the units thatthe software and retrieval strategies deal with. The de�nitions that make retrieved objectscoherent are particular to a speci�c application area and its domain. The focus of researchin Domain-Speci�c-Software-Architecture (DSSA) has been the acquisition of knowledge ina speci�c domain. A working de�nition of a domain is an area of science or products wherethere is a common ontology Gruber:93].Having a common ontology enables collaborators to work together with minimal riskof misunderstanding each other. When computer systems are used as the intermediaries incollaborative work, the need for a common ontology is even greater because many of the cuesthat exist in face-to-face interaction, the raised eyebrow, the wandering of attention, etc.,cannot be perceived by one's partner.The architectural aspect of a DSSA approach is that, once enough knowledge has beengarnered about a speci�c domain, the object classes can be de�ned and placed in an oper-ational relationship to each other [Haddock:94]. Within a domain, we assume consistency,namely, that the terms mean the same thing, i.e., refer to the identical object instances[Wiederhold:91], and have the same relationship.3. DOMAIN DIFFERENCESHaving de�ned domains by their internal consistency, we must now consider the cases wheresuch consistency does not hold. First of all, di�erent domains will consider di�erent objects.Di�erent domains are likely to have di�erent ontologies. These di�erences can be simplydue to di�erences in naming and scope, both with respect to the names and semantics ofmeta-information about attributes that appear in the schema and the names and semanticsthat appear as values in the content of a database:1 Naming attribute items di�erently. This is common, but also the easiest inconsis-tency to resolve. A example of this type occurs when employees are named in thepayroll domain EMP and in the personnel domain PEOPLE. A simple table can beused to support the desired match and bring the information together.2 Scope di�erences are much more insidious, and have to be determined by contentanalysis. The personnel domain may include assignees from other institutions, whoare not listed in payroll. The Payroll may include support for student bene�ts foremployee's children, but those children are, appropriatly, not listed in personnel.Resolution requires establishing, validating, and processing of rules. These rulescan refer to variables in the domain that are not basic to the domain intersection.3 Encoding di�erences of values are common as well. When numbers are used, a con-version can be established with a formula, say meter = foot/0.305. More com-plex are di�erences in dates and identi�ers, say ssn with or without hyphens. Hererules have to be introduced as well, but when encodings are irregular, for instancestock-codes, tables have to be introduced. Tables dealing with instances of valuesoccuring in databases require ongoing maintenance. We can hope that practicalinteroperation provides feedback which eventually will encourage coherence amongdomains.4 Attribute scopes are often subjective. The term hot has a di�erent meaning inthe weather domain than the truck-engine or truck-cargo domains. If hotweather can e�ect the truck-engine, expert knowledge is needed to make the2

linkage. Di�erences in scope lead to di�erences in referencing, which makes theirresolution yet more critical. For example, both patients and nurses are subsetsof people, but their roles in a hospital are quite distinct, so that it would be unwiseto create generalized people objects and encapsulate all the di�erences internally.No central organization can resolve all these di�erences, they require knowledge about thesource domains and their intersection.The di�erences enumerated above can make a once-and-for-all integration of distinctdomain infeasible. A dynamic capability is essential if we wish to achieve associative access tomultiple domains, since the transformations required to achieve optimization must maintainthe correct semantics. For instance, the penguin system constructs objects as needed outof relational databases, given a structural model of connecting references [Barsalou:91].4. DOMAIN MERGINGThere are several approaches to dealing with building composed ontologies from domainsthat have ontological di�erences:1 Aggregate the terms from all relevant ontologies, give them to a committee, andask them to prepare de�nitions that are acceptable to all. When the de�nitions arecompletely documented, release the document and expect that all participants willadjust their usage to conform to the de�nitions.2 Assume that terms match, and when mismatches are discovered, make the termsdistinct, typically by pre�xing them with source or domain identi�er. This is theapproach used by umls [Humphreys:92]; all the sources are labeled to make suchdistinctions easy, and by cyc, where micro theories can encapsulate di�erences[Lenat:90]. Over time, the processes of sharing of information encouraged by theavailability of the joint ontology will cause convergence of meanings, although co-herence can never be assured.3 Assume that terms never mean the same thing unless explicitly instructed. Suchinstructions, encoded as matching rules, form a knowledge-base to be managedby collaborators from two or more domains. No restrictions are imposed on theevolution of local terms within a domain. Terms that are covered by matching rulesform a new, second layer abstract ontology. Higher abstract layers can be de�nedrecursively, leaving unneeded abstract terms local in their abstract layer.We focus here on the third alternative.5. An Example for Limited Domain SharingA multi-domain algebra needs the knowledge about the domains, speci�cally about the se-mantics of the intersecting terms.We will illustrate the concept with a simple example:S Domain S is of shoe stores, with objects as shoes to be sold, customers, their feet,sales people, business locations, and suppliers.F Domain F is of shoe factories, with shoes being produced, lasts, materials as leather,glue, nails, and thread, suppliers for the material, employees, and production ma-chinery.In order to create an information system that combines data from both, it is not necessaryto merge both the S and F ontologies completely. Only terms along their connections mustbe merged, we assume by default that terms do not match. The required knowledge is:3

S:supplier.name = F:factory.nameS:shoe.size = F:shoe.sizeS:shoe.color = color table (F:shoe.color)The color table provides the translation between the colors being attached to sales items,such as pretty pink and the color designation used in the factory, say, 13XF3. Sometimessuch relationships can be expressed as functions, say, conversions from cm to inches.Not included in the knowledge-base, and hence not composable is the term nail, whichin the store domain S is part of the customer's anatomy, and in the factory F designatespart of the material used to make shoes. Similarly, the employees remain distinct, since thedata collected for sales people di�er from those in the factory.The attached Figure illustrates the issues.|| The income tax domain I will establish other connections between it and the sales andfactory domains. A department store, incorporating many sales subdomains, will have moresemantic connections, but still avoid needing an unconstrained union of all its ontologies.We achieve scalability of information systems in this approach by the ontological par-titioning [Gruber:94]. We enable composition over the parts by having a knowledge-basedalgebra. The individuals chartered with de�ning and maintaining the knowledge need morebreadth than those that maintain domain-speci�c ontologies, but do not need the same depthof knowledge for the shoe supply connection. No knowledge about manufacturing detail isneeded, although the factory may provide an abstraction called quality.6. A DKB algebraGiven a formal Domain-Knowledge-Base model (DKB) containing matching rules that de-�ne sharable terms, the DKB-algebra should contain the following binary operations amongdomains:Operation symbol semanticsDKB-Intersection T(DKB) create a new subset ontology,comprised of sharable entriesDKB-Union S(DKB) create a new joint ontology, labelingall but shared entries with their sourceDKB-Difference (DKB) remove entries from an ontology, butshared entries are retainedSimple negation is avoided, so that no in�nite ontologies are created.Such an algebra can provide a basis for interrogating multiple databases which aresematically disjoint, but where a shared knowledge-base has been established. This processmirrors the approach used in carnot, where a knowledge base is used to create articulationaxioms for joining of data [Collet:91]. However, carnot uses the default assumption thateverything matches. When carnot uses a large and broad cyc knowledge base, manyirrelevant retrievals can occur, so that in practice carnot system applications limit thedepth of search. 4

An abstract layer created by taking the union (S(DKB)) of several prior intersections(T(DKB)) should not contain so many terms that coherence is hard to achieve. The relativeautonomy of the local source terms provides scalability. The layered structure actuallyabdopts for information structuring the domain management strategy used by the internetdistributed naming conventions [Kahn:87].With the conservative assumptions embedded in the DKB-model, the risk is that, be-cause of having insu�ciently many matching rules, too little information will be retrieved.By assigning the task of creating matching rules to many expert groups, we expect thathigh quality operations over data from distinct, but overlapping domains can be createdat a reasonable cost. To evolve these systems e�ectively, feedback loops must exist thatpermit users to suggest new candidate matching rules, or to modify existing ones. Havingsmall, distributed groups to maintain the partitioned DKB-models will help ensure responsivemaintenance of the domain knowledge.7. CONCLUSIONInformation technology is serving us well in speci�c domains, although we have remaineddependent on specialist model designers and programmers for the implementation. Objecttechnology lessens our dependence on specialists by being able to use an infrastructure whichaggregates detail into meaningful units.When the breadth of information system grows beyond coherent domains, further knowl-edge should be incorporated. To pro�t from such knowledge we propose a knowledge-basedinformation algebra. The tasks of collecting and maintaining such algebras can be natu-rally partitioned among specialists and collaboratoring integrators. Integration can proceedat multiple levels of abstraction, avoiding the centralization that hinders progress in dataexploitation of data from diverse sources.Tools are needed to support such development, but to have e�ective tools a commonformal structure is needed. Arti�cial Intelligence technology has been hard to scale whendomains grew large or became diverse. The technology we describecan provide the neededformalism by building on relational algebras, formal management of semantics, and theincorporation of ontological concepts as a foundation for the management of the requiredknowledge bases.REFERENCES[Acton:93]C.H. Acton: \Using the SPICE System to Help Plan and Interpret Space Sci-ence Observations"; Proceedings of the Second International Symposium on GroundData Systems for Space Missions Operations, Pasadena, California, November 16-20(JPL Publication No. 93-5, March 1, 1993).[Barsalou:91]T. Barsalou, N. Siambela, A. Keller, and G. Wiederhold: \Updating Re-lational Databases through Object-Based Views"; ACM SIGMOD Conf. on theManagement of Data 91, Boulder CO, May 1991.[Collet:91]C. Collet, M. Huhns, and W-M. Shen: \Resource Integrating Using a LargeKnowledge Base in carnot"; IEEE Computer, Vol.24 No.12, Dec.1991.[Dixon:69]Wilfrid J. Dixon and Frank J. Massey jr.: Introduction to Statistical Analysis;McGraw-Hill, 1969.[Gruber:93]Thomas R. Gruber: \A Translation Approach to Portable Ontology Speci�-cations"; Knowledge Acquisition, Vol.5 No. 2, pp.199-220, 19935

[Gruber:94]Thomas R. Gruber and Gregory Olsen: \An Ontology for Engineering Math-ematics"; in Jon Doyle, Piero Torasso, and Erik Sandewall, Eds., Fourth Interna-tional Conference on Principles of Knowledge Representation and Reasoning, Gus-tav Stresemann Institut, Bonn, Germany. Morgan Kaufmann Publishers, Inc., May1994.[Haddock:94]G. Haddock and K. Harbison: \From Scenarios to Domain Models: Pro-cesses and Representations"; Proceedings of the Conference on Knowledge-basedArti�cial Intelligence Systems in Aerospace and Industry, SPIE, April 1994.[Humphreys:92]B.L. Humphreys and D.A.B. Lindberg: \The Uni�ed Medical LanguageProject: A Distributed Experiment in Improving Access to Biomedical Informa-tion"; MEDINFO 92, North-Holland, 1992, pp.1496{1500.[Kahn:87]Robert E. Kahn: \Networks for Advanced Computing"; Scienti�c American,Vol 257 No.5; Oct.1987, pp.136-143.[Lenat:90]D. Lenat, R.V. Guha, et al.: \cyc: towards programs with common sense";Communications of the ACM, Vol.33 No.8, Aug.1990.[Loomis:87]Mary E.S. Loomis: The Database Book; MacMillan, 1987.[Rose:83]Robert F. Rose: \A `Data Engine' Using sas and inquire"; Journal of MedicalSystems, Vol.7 No.3, 1983, pp.257{266.[Wiederhold:91]Gio Wiederhold: \The Roles of Arti�cial Intelligence in InformationSystems"; Journal of Intelligent Information Systems, Vol.1 No.1, 1992, pp.35{56.[Wiederhold:92]Gio Wiederhold, Peter Wegner, and Stefano Ceri: \Towards Megapro-gramming"; Comm. ACM, November 1992, pp.89-99.

6

