Numerical modelling of the DART impact and the importance of the Hera mission

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Impacts and Astromaterials Research Centre, Imperial College London

May 1, 2019

IAA Planetary Defense Conference, Washington DC, US

Imperial College London

DART is a kinetic impactor test

DART = Double Asteroid Redirection Test

- S-type double asteroid system
- YORP asteroids ⇒ low cohesion and high porosity
- Diameter of the secondary ≈160 m

Figure 1: DART mission concept, at the point of impact. Source: ESA.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Crater ejecta provides the momentum enhancement, β

Figure 2: Momentum transfer and two possible outcomes for the β value.

Change in velocity of the asteroid in terms of β (Holsapple and Housen, 2012):

$$\Delta \mathbf{v} = \frac{P_{proj}}{M} \times \beta \tag{1}$$

$$\beta - 1 = \frac{P_{ejecta}}{P_{proj}} \tag{2}$$

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Crater ejecta provides the momentum enhancement, β

Figure 2: Momentum transfer and two possible outcomes for the β value.

Larger $\beta \implies$ more deflection!

Change in velocity of the asteroid in terms of β (Holsapple and Housen, 2012):

$$\Delta \mathbf{v} = \frac{P_{proj}}{M} \times \beta \tag{1}$$

$$\beta - 1 = \frac{P_{ejecta}}{P_{proj}} \tag{2}$$

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

DART

iSALE 2D and 3D to simulate the DART impact

Table 1: iSALE input parameters

<-	——— Projectile parameters –						
	radius	mass	velocity	density	strength	density	friction
	a	m	U	δ	Y_0	ρ	f
	(m)	(kg)	(km/s)	(kg/m ³)	(kPa)	(kg/m ³)	
	0.42	310	7.0	1000	10	2120	0.6

Figure 3: Diagram of the simulation set-up.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

iSALE 3D		

The vertical DART crater in 2D vs 3D

Figure 4: Ejecta distribution of a vertical DART impact modelled in 2D and in 3D.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

The 3D DART impact at 90° and 45°

Figure 5: Surface topography of the DART impact at four different times: 0.02 s, 0.10 s, 0.40 s and 0.80 s. 90° and 45° (impact direction is right to left).

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 6: Momentum enhancement, impactor momentum and target momentum vectors.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

iSALE 2D simulations of the DART impact

- a) homogeneous porous internal structure;
- b) layered targets;
- c) targets in which porosity exponentially decreases with depth.

Figure 7: Schematic representation of the Didymoon internal structure models.

For more details check out Raducan et al., 2019 (Icarus), Raducan et al. 2019 (PSS, in review)

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

iSALE 2D

iSALE 2D to simulate the DART impact - a) Homogeneous structure

Table 2: iSALE input parameters, homogeneous target, case a).

< Projectile parameters						et paramete	rs ——>
	radius	mass	velocity	density	strength	porosity	friction
	a	m	U	δ	Y_0	ρ	f
	(m)	(kg)	(km/s)	(kg/m^3)	(kPa)	(%)	
-	0.42	310	7.0	1000	0.1–100	0–50	0.6

Figure 8: Diagram of the simulation set-up.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

DART

iSALE 2D to simulate the DART impact - b) Layered structure

Table 3: iSALE input parameters, layered target, case b).

	—— Regolith parameters ————————————————————————————————————							
No.	strength, Y_{r0}	porosity, ϕ_{r0}	strength, Y_{s0}	porosity, ϕ_{s0}				
	(kPa)	(%)	(kPa)	(%)				
1.	1	35	100	0				
2.	1	50	100	0				
3.	1	35	100	10				
4.	1	50	100	10				

* h between 0.5a and 20a, a = impactor radius

Figure 9: Diagram of the simulation set-up.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

iSALE 2D

iSALE 2D to simulate the DART impact - c) Porosity gradient

Table 4: iSALE input parameters, exponential porosity gradient , case c).

—— Surface parameters ——><- Minimum porosity parameters –					
No.	porosity, ϕ_{upper}	porosity, ϕ_{lower}			
	(%)	(%)			
1.	50	0			
2.	35	10			

* E-folding depth, h_*/a , between \approx 2.5 and \approx 20, a = impactor radius

Figure 10: Diagram of the simulation set-up.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	iSALE 2D		
o	 		

β will be measured by Earth-based telescopes

Figure 11: Momentum transfer efficiency, β , for different target structures.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Assume β = 2.9. What are the target properties?

Figure 12: Momentum transfer efficiency, β , for different target structures.

	Same β , different targets	

Same β predicted - homogeneous targets

Assume β = 2.9. What are the target properties?

Figure 13: Momentum transfer efficiency, β , and crater radius, R/a for impacts into homogeneous targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Same β predicted - homogeneous targets

Assume β = 2.9. What are the target properties?

Figure 13: Momentum transfer efficiency, β , and crater radius, R/a for impacts into homogeneous targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Same β predicted - homogeneous targets

Assume β = 2.9. What are the target properties?

Figure 13: Momentum transfer efficiency, β , and crater radius, R/a for impacts into homogeneous targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Same β , different targets

iSALE simulations of the DART impact

a) homogeneous porous internal structure;

b) layered targets with a porous weak upper layer overlying a stronger bedrock layer;

c) targets in which porosity exponentially decreases with depth.

Figure 14: Schematic representation of the Didymoon internal structure models.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 15: iSALE crater profiles for h/a between 1 and 20.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets		
--	----------------------------------	--	--

Concentric craters

Figure 15: iSALE crater profiles for h/a between 1 and 20.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 15: iSALE crater profiles for h/a between 1 and 20.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 15: iSALE crater profiles for h/a between 1 and 20.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Figure 15: iSALE crater profiles for h/a between 1 and 20.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 16: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into layered targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 16: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into layered targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 16: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into layered targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 16: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into layered targets.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Same β , different targets

iSALE simulations of the DART impact

a) homogeneous porous internal structure;

b) layered targets with a porous weak upper layer overlying a stronger bedrock layer;

c) targets in which porosity exponentially decreases with depth.

Figure 17: Schematic representation of the Didymoon internal structure models.

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 18: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into targets with an exponential porosity gradient.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 18: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into targets with an exponential porosity gradient.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 18: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into targets with an exponential porosity gradient.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Assume β = 2.9. What are the target properties?

Figure 18: Momentum transfer efficiency, β , crater radius, R/a and crater depth, d/a for impacts into targets with an exponential porosity gradient.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

	Same β , different targets	

Same β predicted for different target structures

To validate our numerical models, we need:

- Morphology and size of the DART crater
- Bulk density measurements
- Asteroid surface survey
- Surface cohesion estimate

DART

3D

iSALE 2D

Same β, different target

Hera

Conclusions

We need Hera to validate our numerical models

ESA's Hera mission will arrive at Didymoon several years after the DART impact and will perform detailed measurements that will enable us to validate our numerical models:

- Morphology and size of the DART crater
- Bulk density measurements
- Asteroid surface survey
- Surface cohesion estimate

Figure 19: Hera at Didymoon. Source: ESA.

			Conclusions
Conclus	ions		

- 2D numerical simulations can be used to estimate the deflection caused by a vertical impact, but further testing is required to find if they can also estimate the vertical component of the ejecta momentum in an oblique impact;
- β greatly influenced by the cohesion, porosity and the target structure, expecting values between 2 and 4 (maybe even higher if the cohesion \approx few Pa);
- Same β values were observed for impacts into a variety of targets;
- Hera measurements are vital for validation purposes.

			Conclusions
Thank y	ou		

We gratefully acknowledge the developers of iSALE (www.isale-code.de) and STFC for funding (Grant ST/N000803/1).