
Improving the Extraction of Text in PDFs by Simulating

the Human Reading Order

Ismael Hasan
(Information Retrieval Lab, Computer Science Department

University of a Coruña, Spain
ihasan@udc.es)

Javier Parapar
(Information Retrieval Lab, Computer Science Department

University of a Coruña, Spain
javierparapar@udc.es)

Álvaro Barreiro
(Information Retrieval Lab, Computer Science Department

University of a Coruña, Spain
barreiro@udc.es)

Abstract: Text preprocessing and segmentation are critical tasks in search and text
mining applications. Due to the huge amount of documents that are exclusively pre-
sented in PDF format, most of the Data Mining (DM) and Information Retrieval (IR)
systems must extract content from the PDF files. In some occasions this is a difficult
task: the result of the extraction process from a PDF file is plain text, and it should
be returned in the same order as a human would read the original PDF file. However,
current tools for PDF text extraction fail in this objective when working with complex
documents with multiple columns. For instance, this is the case of official government
bulletins with legal information. In this task, it is mandatory to get correct and or-
dered text as a result of the application of the PDF extractor. It is very usual that
a legal article in a document refers to a previous article and they should be offered
in the right sequential order. To overcome these difficulties we have designed a new
method for extraction of text in PDFs that simulates the human reading order. We
evaluated our method and compared it against other PDF extraction tools and algo-
rithms. Evaluation of our approach shows that it significantly outperforms the results
of the existing tools and algorithms.

Key Words: PDF, text preprocessing, text extraction, ordered text extraction, text
mining, evaluation

Category: I.7.4, I.7.5, J.1

1 Introduction

Nowadays an important portion of the information published in the web is avail-
able in PDF format [McKinley 1997]: presentations in slides, official bulletins,
articles, news, technical reports, etc. Much of this information is presented with
complex layouts. For instance, several official government organisations publish

Journal of Universal Computer Science, vol. 18, no. 5 (2012), 623-649
submitted: 29/12/10, accepted: 21/2/12, appeared: 1/3/12 © J.UCS



a lot of documents using this format; we can cite, as examples, the Bulletin of
the European Union or the Federal Register. The access to this kind of informa-
tion is a general request by the citizens, companies and institutions. Because of
that, lately, great efforts have been taken in building DM and IR systems that
deal with this kind of sources. But, usually these documents are very long and
contain a lot of information, and the users usually do not want a huge docu-
ment with several tens of pages as a result of a query. In order to provide search
over these documents the text contained in them must be segmented. When ap-
proaching the task of document segmentation one crucial point is text extraction
from PDF files. However, the existing PDF toolkits tend to make mistakes in
the extraction of ordered text from multiple columns. We think that a heuristic
approximation may be suitable to solve this issue because the PDF documents
are generated using computer applications, so the degree of variability can be
captured by heuristics.

The problem with the PDF text extractors is that sometimes the text is not
correctly processed. For instance, it can happen that the text is not extracted
in the order a human would expect, but in the order in which the PDF files
are rendered. This issue may cause a bad impression to the users accessing the
results. The reaction of a user when the result of a system is not the expected
(unordered paragraphs, for instance) usually is to think that the system is im-
mature or inaccurate.

Moreover, the cited kind of documents are almost always divided in sections.
The pre-processing of their information is advisable, so the users can search in-
side the sections instead of inside entire documents. The pre-processing of the
information becomes much more important in the case of government publica-
tions (regulations, etc): these documents are usually very long, and they can be
segmented in logical parts: title, articles, etc; each one of these parts should be
individually searchable in an IR system. It is crucial for this segmentation task
that the textual content is recovered in the same order as it is displayed in the
PDF document.

The main implication of the previous remarks is that, in order to build a
competitive IR system, the text obtained through a PDF text extraction tool
should be ordered in the same way as in the original document. Therefore the
correct extraction of text from PDFs is an important problem and a critical
feature for IR systems which have to deal with passages, sentences, generation
of summaries and snippets, etc.

With this motivation, we have developed an algorithm which extracts the
text in the “right order” from PDF documents with multi-column layout in
which the text blocks are separable by horizontal and vertical cuts, commonly
named Manhattan layout. The algorithm was successfully applied to a collection
of official legal bulletins, but it also can be used with other kinds of documents

624 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



such as research papers, patent documents, and others.
The algorithm uses high-level operations over the PDF files to simulate the

way in which a document would be read by a person. As an added benefit, the
algorithm also returns the column structure of the documents, so the information
can be offered to an user in a way similar to the original format if desired.

The rest of the paper is organised as follows. In section 2, some PDF text
extraction tools and previous works are introduced. Section 3 describes the par-
ticularities of the domain documents. Section 4 describes the algorithm and show
a detailed description of each step (including pseudocode). In section 5 the algo-
rithm is evaluated in terms of effectiveness and complexity, defining a metric, the
test datasets, and comparing the results with the results of other tools. Finally,
in the last section, conclusions and future work are presented.

2 Previous Works

2.1 Existing Tools

There are a lot of free and commercial tools offering text extraction from PDF,
so reviewing all of them is unfeasible. As an example, a list of utilities can be
found at [PlanetPdf 2010].

As free tools, we can name [PDFBox 2010], a project recently taken by the
Apache Software Foundation, [Multivalent 2010], a Java tool which offers text
extraction from command-line, [Pstotext 2010], a freeware utility which offers
text extraction from PDF and Postscript files, and [PDF-Analyzer 2010], a desk-
top freeware application for Windows. As purely commercial tools we can name
[PDF-File-Converter 2010], offering also format extraction (font type, size, etc),
and [TextFromPdf 2010], offering layout extraction.

Sadly, these tools make mistakes. When applying any of them, it can happen
that the text is extracted in wrong order. An actual example of bad extraction
using Multivalent is shown in Fig. 1, where the bordered areas are extracted in
the order indicated by the numbers. An explanation of this behaviour can be
found in the documentation of the pstotext tool, where it is explicitly stated
that the ordered extraction may not be the expected: “pstotext outputs words in
the same sequence as they are rendered by the document. This usually, but not
always, follows the order that a human would read the words on a page”. We
have found that most of the aforementioned tools (PDFBox, Multivalent, PDF-
Analyzer and PDF-File Converter) use a similar approach, since the results
offered by these utilities are very similar to the one obtained using pstotext : for
instance, when using these tools to extract the text from the Federal Register
bulletins, the footnotes always appear at the beginning of the page.

Regarding TextFromPdf, it uses a different technique; studying the output
of this tool, it seems that it generates paragraphs, and then it sorts them first

625Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



Figure 1: Order of extraction using Multivalent. Taken from the Official Journal
of the European Union; March, 31th 2009; page 4.

by y-coordinate (the upper elements are returned in the first place), and then
by x-coordinate, from left to right. The main problem of this approach is that a
paragraph does not correspond with a column, so the paragraphs belonging to
different columns are mixed in the output according to their y-coordinates.

2.2 Previous Literature

This section is divided in two parts; the layout detection in OCR algorithms, and
the layout detection from PDF documents. The reason to include the reference to
the OCR techniques is because they provide a clear explanation of the different
approximations to layout detection; and, despite the fact that image files and
PDF documents are processed in completely different ways, some of the ideas
behind the OCR techniques can be applied to PDF text extraction.

In the OCR field there are several works which present techniques to ob-
tain the layout of images containing text. Basically, there are three main ap-
proaches to the identification of the layout: bottom-up techniques [Mitchell 2000,
Simon et al. 1997, O’Gorman 1993], which first identify minimum items (black
pixels), and then recursively construct larger items (words, phrases, etc); top-
down [Baird et al. 1990, Chakraborty et al. 2003, Krishnamoorthy et al. 1993],
which first identify global elements of a page (black and white stripes, etc),
and then split them into smaller items; and hybrid techniques, which combine
both approaches. Particularly, top-down approaches are suitable to analyse doc-
uments with a Manhattan layout (documents in which the pages are separable
into blocks by vertical and horizontal cuts) in linear time; bottom-up approaches
can be applied to any layout, but they usually are quadratic in time and space
[Simon et al. 1997]. Because of this, the use of generic bottom-up techniques
would be unwarranted when we are dealing with Manhattan layout documents.
It is important to mention that most of the cited articles are focused on the

626 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



detection of layout, being [Mitchell 2000] the only one which approaches the
problem of the order in which the layout items should be extracted.

In the field of PDF text extraction we must emphasise that works on bottom-
up techniques are used, [Rosenfeld et al. 2002] and [Lovegrove et al. 1995]; re-
garding to top-down techniques, it is very remarkable the work in [Meunier 2005].
Finally, a hybrid technique to detect the layout of PDF files can be found in
[Bloechle et al. 2009]. Some brief explanations about them follow:

In [Rosenfeld et al. 2002] the authors propose a text extraction system which
preserves documents structure using a bottom-up strategy. The characters of a
page are grouped to build bigger entities, until all of the text has been retrieved.
This grouping is done by using neighbourhood metrics. But, the decisions about
the results may present some problems when working in complex scenarios:

– In order to build lines, the characters are grouped. One of the premises
used to decide if two characters are neighbours is the similarity between y-
coordinates. A direct consequence of this would be that a superscript char-
acter and the superscripted character are not neighbours (which can mean
that they are extracted in different lines).

– In order to build paragraphs, it is required that lines belonging to the same
paragraph share the same font. There are documents which do not follow
this rule, indeed, there are documents in which the same line can contain
several font types.

– In order to build columns font similarity is assumed. Also, a threshold is
defined to decide if two paragraphs belong to the same column, according to
the vertical separation between them.

The documents we want to deal with, publications from official organisations,
usually do not follow these premises; so, this method would not be suitable for
our purposes.

In [Lovegrove et al. 1995] the authors propose a bottom-up strategy based
upon the type of fonts. The steps of the algorithm regarding text extraction
proceed as follows:

1. The words (previously obtained) are grouped into lines.

2. Each line is characterised with a key consisting of the point size and the
font. A bin is created for each unique pair of point size and font.

3. Operations over the bins are done to separate them into sub-bins, and the
space separation between lines is searched using these sub-bins. With this
information, blocks are found.

4. The following steps of merging of blocks, and identification of hierarchy
between blocks, are done according to font characteristics.

627Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



The problems of the algorithm (addressed by the authors) are that the font
comparisons may fail (for instance, a line may have, at most, italic characters,
so it will not be merged with the upper and lower lines if the italic characters
do not prevail in them). Also, the characterisation of the spaces between lines
may be poorly recognised.

In [Meunier 2005] the author proposes a top-down method based on the pop-
ular XY-cuts algorithm [Nagy and Seth 1984] [Mao and Kanungo 2001] to seg-
ment the page and offer its contents in reading order. The original method works
by dividing the page with horizontal or vertical cuts and by recursively applying
the algorithm on the divisions. Meunier modifies the original method so the re-
sult is more similar to the common order of reading in formal documents (guided
by columns). The modification consists in giving more importance to the vertical
cuts instead of to the horizontal cuts: once it gets all of the available combina-
tions of horizontal cuts, the combination which is most conducive to the creation
of long vertical cuts is selected. This method seems suitable to our problem, the
extraction of content from legislative documents. But, as the author mentions,
to deal with non uniform layouts (for instance, with varying interlinear space)
it may be necessary to set the parameters of the algorithm so each line is ex-
tracted as a block. Taking into account that the algorithm computational time
depends on the number of horizontal cuts, having as many cuts as lines will
greatly increase the execution time of the algorithm. The author reports that
the detection of the layout of a complex page may take even days. Meunier deals
with this issue by applying dynamic programming, which considerably reduces
the time of execution of the algorithm. However, the algorithm is not robust on
the input parameters (minimum widths for vertical and horizontal separations).

In [Bloechle et al. 2009] the authors developed a canonical format for repre-
senting structured electronic documents, OCD. They present an hybrid technique
to detect the layout of PDF documents in order to convert them to the OCD
format. The first step is a bottom-up process, based on the previous works of
the authors [Bloechle et al. 2006], in which the structures of the document are
detected (i.e., paragraphs, images). The novelty, regarding their previous work,
is to include a second top-down step, to overcome the under-segmentation prob-
lem of their initial technique. The next step proposed by the authors is to use
this layout to generate the logical structure of the documents using a learning
system, Dolores [Bloechle et al. 2008]. Once the logical structure is obtained, it
is pretty straightforward to obtain the text of the document in reading order.
However, we think that a heuristic approximation is more suitable for the do-
main we are working with. These documents are built in a semi-automated way,
using PDF tools for instance, so the variability is limited.

Finally, it is fair to mention that the detection of tables inside the documents
is beyond of the scope of our work.

628 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



3 Data Characteristics

This work focuses on official publications in PDF with a Manhattan layout, like
patent documents, research papers and publications from official organisations
(i.e., official bulletins). Fig. 2 shows a page of an official bulletin. The method
works with documents with single column format or multiple column format.
Some issues to take into account when analysing these documents are:

Page Headers
In the official publications, it is very usual that pages have a header including
the name and number of the publication, the date, the number of page, etc.

Columns and regions
A document can be structured using columns of text; for instance, the two-
column format is widely used. We will refer to these text columns just as columns.
A region is a part of a page defined by its coordinates inside the page; we will
refer as text regions to the ones containing text, as image regions to the ones
containing images and as blank regions to the empty ones. The regions have the
following properties:

– They are rectangular in shape.

– There must be a minimum vertical separation between regions (meaning
the separation between columns). On the other hand, it is not required a
minimum horizontal separation between regions.

– Two regions can not overlap each other. This also entails that nested regions
can not exist.

Multiple Column
Different parts of a document’s page can contain different number of columns.

Documents with Images
It is very usual that the documents contain images: graphs, photos, scanned
texts, etc. These items sometimes determine the way in which a person reads
the document. This issue is clearly shown in Fig. 2, where the correct order of
extraction of the regions is marked with numbers.

629Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



Figure 2: Page crossed by an image. Taken from the Federal Register; February,
12th 2009; page 7161.

630 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



4 The Algorithm

4.1 General features

The idea behind our method is that the text belonging to the same region must
be extracted together. The method relies on tools which can provide some high-
level functionalities over PDF documents. The main functionalities used are:

– A way of obtaining general parameters of the document, for instance the
width and height of a page, the number of pages, and similar features.

– Extraction of the text from a rectangle, which is defined using Cartesian
coordinates inside a page.

– Retrieval of the images of a document, obtaining their coordinates.

We coined our algorithm as “Left Regions Expansion” (LRE) because the
key of the algorithm is to detect the top of each region on the left of a page,
and then extend it as much as possible. The next step is to find the regions on
the right of the previously found regions, and finally the images contained in the
page are used to split the regions (if necessary). The algorithm applies the next
steps to each page in the document:

1. Detecting the regions which are present in the page.

2. Retrieving the list of images and creation of regions using the images coor-
dinates.

3. Splitting the text regions which are crossed by image regions.

4. Sorting the regions of a page in the following way:

(a) The region comprising the header of the page.

(b) The top left region.

(c) The regions on the right of the one obtained in (b).

(d) The region on the left of the page which is below the previously found
regions.

(e) The regions on the right of the one obtained in (d).

(f) Steps (d) and (e) are repeated until no more regions are found.

5. Extracting the text of each region, in the order stated in (4).

631Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



Figure 3: LRE algorithm steps. Text regions are marked in light gray, image
region is marked in dark grey and final order of extraction is circled.

632 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



To get the text regions (step 1), the algorithm uses the separation between
columns of text. Baird et al. used a similar method in [Baird et al. 1990]: they
developed a technique to get the text from an image by detecting the blank
regions. A similar method can be found in [Krishnamoorthy et al. 1993].

We will show an example of the algorithm over Fig. 2. The central part of
the page (the diagram) is not text, but a scanned image. The algorithm works
as follows:

1. It detects the header, and three more regions: one comprising the blocks 1
and 4, one comprising the blocks 2 and 5, and one comprising the blocks 3
and 6.

2. It retrieves the image to create a new region.

3. It splits the previously found regions, due to the fact that they are crossed
by an image. The layout shown in the image is obtained in this step.

4. It sorts the regions in the following order:

(a) The region comprising the header of the page.

(b) The top left region (1).

(c) The regions on the right of the one obtained in (b) (2 and 3).

(d) The region on the left of the page which is below the previously found
regions (4).

(e) The regions on the right of the one obtained in (d) (5 and 6).

5. It extracts of the text of each region, in the order previously stated.

Next, we will go in depth with the algorithm steps. The functions explained
in sections 4.2, 4.3, 4.4 and 4.5 implement the first step of the algorithm (Fig.
3); they are sequentially applied to each page to obtain the text regions. The
second and third steps, the ones referring to images, are covered in 4.6. The last
steps of the algorithm, the extraction of the text of each region, is explained in
4.7.

It must be noted that the coordinates used in the algorithm are Cartesian
coordinates, which means that the bottom left of a page will be (0,0). In the pseu-
docode, the coordinates of a region will be referred as regionx.left, regionx.right,
regiony.top and regiony.bottom. We will also refer to the limit values these co-
ordinates can have as xmin (left), xmax (right), ymin (bottom) and ymax (top).
The next operations will be used in the pseudocode:

– increase(coordinate) - increase the value of a coordinate by 1.

633Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



– decrease(coordinate) - decrease the value of a coordinate by 1.

– pdfTool.getTextFrom(region) - get the text inside a region (it returns the text
of the lines of the region from the top line to the bottom one).

4.2 Retrieval of the Header

In this article we are mostly working with official bulletins; the pages of these
documents often contain a header, which includes the number of the page, the
name and number of the bulletin, the date, etc. Since the goal of the algorithm
is to provide a text extraction method to be used in specialised DM and IR
systems, it can be assumed that we know in advance if the documents of the
domain contain headers.

The location of the header is based in two properties: first, the header is a
standard region which always appears at the top of a page. Second, it does not
contain several columns, so its extraction requires no complex processing. An
example of a page with header is shown in Fig. 2.

The process in detail is shown in the algorithm of Fig. 4. The algorithm
initialises a region at the top of the page; this region has the width of the page,
and has no height. Then, the region is extended towards the bottom of the page
until it contains a line of text, which contains the header.

GetHeader(page, pdfTool)
1 region ← region with full width and no height, at the top of the page
2 text← ∅
3 while text = ∅ and regiony.bottom �= ymin

4 do
5 decrease(regiony.bottom )
6 text← pdfTool.getTextFrom(region)
7 endwhile
8 if text �= ∅
9 then

10 return region
11 endif

Figure 4: Algorithm of extraction of the header of a page

In order to simplify the explanation we have made the assumption that we
know if the documents to be extracted have page headers. However, if this as-
sumption does not hold, the presence of a header can be inferred quite easily. By
applying the function GetHeader to all of the pages, we obtain all of the sup-
posed headers. Since this is a standard part of the documents, all of the headers
should be very similar; this can be checked using text similarity techniques. The
method to check if a document has header can be used to check if the header
contains several lines: we can compare the first line of every page; if they are

634 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



similar enough to be the header, then we proceed to compare the second line of
each page. The process is repeated until line n, which does not hold the simi-
larity comparison: the header will consist of the first n− 1 lines of each page. A
simple improvement of the method can be done by splitting this comparison in
even and odd pages, and comparing them independently, as it is very usual that
headers in even pages slightly differ from headers in odd pages.

4.3 Computation of the Separation between Columns

LRE requires knowing the size of the separation between text columns in order
to obtain the regions of each page. This size will be used to decide the horizontal
extension of the regions, as it will be explained in section 4.4.

In order to get the column separation size the algorithm searches for blank
regions, with a minimum width, along the x-axis. If the document does not have
page headers the height of the blank regions will be the height of the page;
otherwise, it will be the distance between the end of the header and the end of
a page.

Once the blank regions are obtained, the width of the narrowest region is
selected as the column separation size for the page.

The algorithm is shown in Fig. 5; in Fig. 6 the column separations are shown
over an image. To keep a certain level of abstraction, the following issues were
not considered in the pseudocode:

– The left and right indentation of the page are not considered as separations
between columns.

– A default value is returned in the case we can not find any separation using
this method. This value can be calculated in several ways; the mean of the
separations of the other pages, a percentage of the width of the page, the
separation of the previous or next page, etc.

– In the pseudocode the regions are initialised to cover the height of the page.
However, if the page has a header, the top of these regions should be the
bottom of the header, and not the top of the page.

Threshold
The only parameter of the algorithm is the threshold used to decide if a separa-
tion is wide enough to be considered as a candidate for the value of the separation
between columns. This value is crucial: a high value for the threshold would im-
ply that no separation between columns can be found, and the document would
be under-segmented, and a low value for the threshold would imply that too
much separations are found, and the document would be over-segmented. We
used a fixed value in the complexity and efficiency tests, due to the limited vari-
ability of the domain this approximation shows good results. However, to apply

635Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



GetColumnSeparation(pdfTool, threshold)
1 result ← default value
2 region ← region with full height and no width, at the left of the page
3 text← ∅
4 separations← empty list of separation widths
5 while regionx.right �= xmax

6 do
7 increase(regionx.right)
8 text← pdfTool.getTextFrom(region)
9 if text �= ∅

10 then
11 decrease(regionx.right)
12 separation ← regionx.right − regionx.left

13 if separation ≥ threshold
14 then
15 add separation to separations
16 endif
17 beginPosition ← regionx.right + 1
18 region ← region with full height and no width, at beginPosition
19 endif
20 endwhile
21 if separations �= ∅
22 then
23 result ← min(separations)
24 endif
25 return result

Figure 5: Algorithm to obtain the width of the separation between columns

Figure 6: Columns separations. Taken from the Federal Register; February, 12th
2009; page 7110.

the algorithm to domains with more variability the next approaches can be taken:

Calculate the threshold according to the width of the pages
A rule of thumb is that the separation should be at least a 5% of the page width:
the width of a simple character of the content (not a character of a title) rarely
exceeds a 1% of the page width, so with this setting we are assuming that a
separation between columns should be larger than at least five times the width
of a character. The advantage of this method is that it is very easily computed,

636 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



and it is valid for most of the documents of the domain. The main disadvantage
is that it would fail when a page is an outlier: for instance, the modal font size
of a page may be very small, and so would be the separations between columns.

Calculate the threshold according to the font size of the page
Another rule of thumb is to compute the threshold considering the modal font
size of the characters in the page. Firstly, the bounding boxes for the characters
whose font size is equals to the mode are retrieved. Next the mean width of
those bounding boxes is computed, let us name this mean as δ. Once this δ is
obtained we can set the value of the threshold to five times δ, loosely speaking,
this means that column separation should be at least five times larger than the
average width of a character. The main advantage of this approximation is that
the obtained threshold value is very accurate; the main disadvantage is that it
adds some computational load to the algorithm.

4.4 Retrieval of the Regions Located on the Left of the Page

This step of the algorithm uses the results from the previous steps (header and
width of column separation) to obtain the regions on the left of a page, which
will be used in section 4.5 to obtain the remaining regions of a page. There are
two main steps to obtain each left region:

– Locating the regiony.top, and initialising the region (algorithm in Fig. 7).

– Extending the region until the end of a page is reached, or a different region
begins (algorithm in Fig. 8).

GetInitialRegion(upperlimit, pdfTool)
1 region ← region with full width and no height, at the top of the page
2 text← ∅
3 while text = ∅ and regiony.bottom �= ymin

4 do
5 decrease(regiony.bottom )
6 text← pdfTool.getTextFrom(region)
7 endwhile
8 if text �= ∅
9 then

10 regionx.left ← xmin

11 regionx.right ← start of the first column separation inside the region
12
13 endif
14 return region

Figure 7: Algorithm for regions’ initialisation

637Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



ExtendRegion(region, pdfTool, columnSeparation)
1 newRegion ← region with the x-axes of region and as y-axes regiony.bottom

2 text← ∅
3 while text = ∅ and newRegiony.bottom �= ymin

4 do
5 decrease(newRegiony.bottom )
6 text← pdfTool.getTextFrom(newRegion)
7 endwhile
8 if text = ∅
9 then

10 regiony.bottom ← ymin

11 return region
12 endif
13 while no CS found on the right of newRegion and newRegionx.right �= xmax

14 do
15 increase(newRegionx.right )
16 endwhile
17 if newRegion contains a CS
18 then
19 return region
20 endif
21 if newRegionx.right ≤ regionx.right
22 then
23 regiony.bottom ← newRegiony.bottom

24 return extendRegion(region, pdfTool, columnSeparation)
25 endif
26 compareRegion ← region
27 compareRegionx.right ← newRegionx.right

28 text← pdfTool.getTextFrom(region)
29 compareText← pdfTool.getTextFrom(compareRegion)
30 if text = compareText and
31 compareRegion has a CS on his right
32 then
33 regiony.bottom ← newRegiony.bottom

34 regionx.right ← newRegionx.right

35 return extendRegion(region, pdfTool, columnSeparation)
36 else
37 return region
38 endif

Figure 8: Algorithm of extension of a region. The abbreviation CS specifies a
blank space with a width equal or greater than the column separation

First, the top of the upper left region is located. Afterwards, the region is
extended by decreasing regiony.bottom in order to obtain the initial region. When
it can not be further extended, the steps are repeatedly applied to compute the
region on the left below the previously found one: the top of the region is located,
the region is extended and another left region below the last one is searched for.

The algorithm in Fig. 7 computes the top of a region. It is computed by
initialising a blank region, without height and with the width of the page. The
values of regiony.top and regiony.bottom are initialised to the bottom of the last
found region (it may be the header). If there is not any previous found region,
the values are set to ymax. Then, the region is extended towards the bottom
of the page until it contains some text; regiony.bottom is set to the value of the
y-coordinate in which the text was found, regionx.left is set to the value of xmin.
Also, it is computed the x-coordinate in which the found text contains the first

638 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



blank space wider than the size of the column separation: regionx.right is set to
the value of the start of that blank space.

The algorithm in Fig. 8 computes the extension of the region. Along this
process, regionx.left and regiony.top will remain unchanged. The algorithm tries
to find a text line below the current limit of the region. If there is no such line
the end of the region is reached (the region is stored); otherwise, the region is
extended to include the line (regionx.right may be increased, and regiony.bottom

is decreased). An exception to this extension occurs when the line below the
region has a different column structure than the region itself: in this case the
region is stored, and a new region begins with the new line. The conditions to
determine that the column structure is different are:

(a) The line immediately below the region contains a blank space wider than
the size of the column separation for the page, and all of the width of this
space is entirely below the region. Fig. 9 shows an example: the line fol-
lowing the region contains a blank space (filled with gray) below the region
(the checking of this condition is done in lines 17 to 20 of the algorithm
in Fig. 8). An example in which this conditions do not hold is shown in
Fig. 10: the regionx.right is extended towards the x.right of the line, and the
regiony.bottom is extended towards the y.bottom of the line.

Figure 9: Condition (a) to end a region. Taken from the European Bulletin;
October, 2008; page 8.

(b) The line following the region is wider than the region (according to x-axis).
In this case, if there is more text above that line than the text contained
in the region (as shown in Fig. 11.1), or if the region would not fulfil the
minimum separation between columns in the case that its xright is set to the
end of the next line (as shown in Fig. 11.2), the region ends (the checking of
these conditions is done in lines 26 to 38 of the algorithm in Fig. 8).

639Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



Figure 10: (a) Region before being extended, and next line. (b) Region after
being extended with the next line. Taken from the European Bulletin; April,
2008; page 2.

4.5 Retrieval of the Remaining Regions

At this point of the algorithm, we have retrieved the header and the regions on
the left of a page. With these left regions, the remaining regions of the page can
be obtained searching for regions parallel to them (with similar y-coordinates).
Also, there can be several regions parallel to a left one: they will be separated
by blank spaces wider than a threshold. The algorithm is shown in Fig. 12.

4.6 Retrieval of the Images, and Modification of the Obtained Text
Regions

As previously stated, the images could modify the regions previously obtained.
This is easily explained using Fig. 2: if the images were not considered, regions
1 and 4 would be extracted as one region, as would be regions 2 and 5, and 3
and 6. But, using the coordinates of the image, the algorithm identifies that the
image crosses the regions, meaning a horizontal cut in the layout.

When an image modifies the layout of one region, all of the regions with the
same y-coordinates are affected in the same way if they are also crossed by that
image. The modification consists in the split of the region into two regions, the
portion above the image and the portion below it. An image will modify the
regions previously found if:

– Overlaps at least two text regions.

640 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



Figure 11: Condition (b) to end a region. (1) Taken from the Federal Register;
April, 21th 2009; page 18240. (2) Taken from the Diario Oficial de Galicia;
December, 9th 2008; page 21880.

– Overlaps one region, and extending the region to contain the image would
not fulfil any of the properties given about the regions in section 3.

This operation could be introduced in the ExtendRegion algorithm, in 4.4. But,
by keeping it in a separate function, it will be easier to treat the particular cases
we could find. Also, despite the fact that image regions and text regions are used
in the same way, the implementation of getting the images and getting the text
regions is quite different.

641Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



getRightRegions(leftRegion, columnSeparation)
1 blankRegion ← region with the y-coordinates of leftRegion
2 blankRegionx.left ← leftRegionx.right + 1
3 blankRegionx.right ← blankRegionx.left + columnSeparation
4 separations← empty list of blank regions
5 result ← empty list of regions
6 while blankRegionx.right ≤ xmax

7 do
8 text← getTextFrom(blankRegion)
9 if text �= ∅

10 then
11 increase(blankRegionx.left )
12 increase(blankRegionx.right )
13 else
14 increase(blankRegionx.right )
15 text← getTextFrom(blankRegion)
16 while blankRegionx.right ≤ xmax and text = ∅
17 do
18 increase(blankRegionx.right )
19 text← getTextFrom(blankRegion)
20 endwhile
21 decrease(blankRegionx.right )
22 add copyofblankRegion to separations
23 blankRegionx.left ← blankRegionx.right + 1
24 blankRegionx.right ← blankRegionx.left + columnSeparation
25 endif
26 endwhile
27 result ← list of regions delimited by separations
28 return result

Figure 12: Algorithm to get the regions on the right of a page

4.7 Retrieval of the Text of each Page Using the Regions

In the last step, the text of the regions is extracted in the order stated in 4.1.
At this point, it could be interesting to return the original structure of the page,
instead of the plain text, by returning the regions. Moreover, by returning the
text regions along with the image regions, the original content of a document
could be reconstructed to offer it to an user in a similar way in which it was
originally published.

5 Evaluation

The algorithm was evaluated in two ways:

– Effectiveness: correction of the extraction process, i.e., the ratio of pages
correctly extracted. We implemented the algorithm using Java and we com-
pared the results of our method with PDFBox and XY-cuts. We also tested
Multivalent, but the results are not reported because they were exactly the
same as with the PDFBox tool.

– Computing complexity: the asymptotic analysis of the pseudocode shows
that the algorithm is linear over the number of pages. We also ran analysis
experiments to check the complexity.

642 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



5.1 Dataset

5.1.1 Dataset for the effectiveness study

This collection was built from eight sources 1: official publications from the
European Union, the United States of America, England, France and Spain.
From each source, two bulletins were selected, providing a total of 1024 pages
for the evaluation. This is an heterogeneous selection according to the number
of pages per document; some sources contain hundreds of pages per document,
and some sources tens of pages. However, the target of this dataset is to provide
a complete representation of each source, thus entire bulletins were used: it
may happen that the first section of a bulletin uses a particular structure (two-
column, for instance), and some other section a different structure (three-column,
for instance).

It must be noted that some of the documents contain empty pages; these
pages were excluded from the effectiveness evaluation (they have no text to be
extracted). The information about the total number of non-empty pages from
each source follows:

– The Bulletin of the European Union (BEU): 300 pages,
[http://europa.eu/bulletin/en/welcome.htm].

– Official Journal of the European Union (OJEU): 30 pages,
[http://eur-lex.europa.eu/].

– Federal Register (FR): 89 pages,
[http://www.gpoaccess.gov/fr/].

– Command Papers and House of Commons Papers (UK): 62 pages,
[http://www.official-documents.gov.uk/].

– Journal Officiel (JO): 56 pages,
[http://www.journal-officiel.gouv.fr/].

– Bolet́ın Oficial del Estado (BOE): 63 pages,
[http://www.boe.es/].

– Diario Oficial de Galicia (DOG): 128 pages,
[http://www.xunta.es/diario-oficial].

– Bolet́ın Oficial de Castilla y León (BOCYL): 296 pages,
[http://bocyl.jcyl.es/bocyl/].

5.1.2 Dataset for the complexity study

The second dataset was built to check the complexity of the algorithm. A single
PDF file was built by merging all of the European Bulletin publications between
January 2007 and June 2009. This file provided 3949 pages to run the tests.
1 The evaluation dataset is published in http://www.irlab.org/files/lre_dataset.
zip

643Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



5.2 Methodology

5.2.1 Methodology for the effectiveness study

The evaluation metric to compare the result of our algorithm with the result
from PDFBox was the ratio of the pages correctly extracted. We consider that
the text of a page is correctly extracted when all of the text is retrieved, and
in the right order. We manually inspected the results for the aforementioned
collection.

To conduct the experiment, the PDFBox text extraction method, a XY-cuts
implementation and our implemented method were applied to the pages of the
bulletins presented in 5.1, in order to obtain the text. The outputs were manually
checked to get data about the number of pages correctly extracted. PDFBox does
not need parameters to extract the text; neither does LRE, a priori. But it may
happen that the algorithm cannot infer the separation between columns for a
document, and must use a default value. This value was not tunned for every
source: the same value was used for every document.

It should be said that sometimes PDFBox repeatedly made the same extrac-
tion error. For instance, with the UK bulletins the header is always extracted
at the end of a page. In the evaluation, these occurrences were not considered
as wrong extracted pages. The reason is that they would systematically penalise
the extraction with the PDFBox tool.

Also, we implemented the XY-cuts algorithm by adapting the pseudocode
from [Mao and Kanungo 2001] to compare the detection of the layout offered by
that method. Unfortunately, this technique is not stable on the input parameters
[Meunier 2005]: the documents from different sources of legal information have
different interlinear and intercolumn spaces, so the parameters tunned for a
source of documents produce under-segmentation with some sources (ignoring
vertical and horizontal separations), and over-segmentation with other sources
(separating words inside the same line, lines inside the same paragraph, etc).
This explains the poor behaviour of XY-cuts in several bulletins.

Finally, as previously stated, we must mention that the extraction of tables is
beyond the scope of the present work, and it was not considered in the evaluation.

5.2.2 Methodology for the complexity study

The complexity of our algorithm was theoretically computed by executing an
asymptotic analysis. Also, the complexity was empirically computed: the algo-
rithm was run several times to extract the text from 10 ∗ 2x pages, being [0, 9]
the range of x; the computing time of each run was stored and the complexity
was obtained by applying convergence analysis techniques to the obtained data.

644 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



5.3 Results

5.3.1 Effectiveness results

The results are shown in Table 1. The table shows the sources, the number of
pages from each source, and the ratio of the pages correctly extracted by the
XY-cuts algorithm, PDFBox and LRE, our algorithm. As explained earlier, the
XY-cuts algorithm does not perform well, so it will not be commented again. It
can be observed that the results of PDFBox are quiet acceptable, with a total
ratio of 87% of the pages correctly extracted. However, our algorithm improves
these results. For all of the sources, our algorithm’s result stands over 90%,
and PDFBox results can lower to 57%. Moreover, it must be noted that in
the evaluation the errors produced by PDFBox in a systematic way, along an
entire document, were ignored. The improvement is maintained over every kind
of bulletin.

Bulletin Pages XY-cuts PDFBox LRE

BEU 300 0.23 0.95 0.96
OJEU 30 0.33 0.87 0.97
FR 89 0.08 0.57 0.92
UK 62 0.08 0.92 0.98
JO 56 0.77 0.80 1.00
BOE 63 0.78 1.00 1.00
DOG 128 0.19 0.77 0.91
BOCYL 296 0.83 0.91 0.98
Overall 1024 0.44 0.87† 0.96†�

Table 1: Ratio of pages correctly extracted from each source, using a XY-cuts
implementation, PDFBox and our method. Statistical significance differences of
the mean over the XY-cuts algorithm are daggered, and over the PDFBox API
are starred, both according with the Wilcoxon test, (p < 0.05).

5.3.2 Complexity results

Although the efficiency was not the objective of this paper, we have to remark
that, as expected, our algorithm is slower than the standard PDFBox API, but
its complexity still is O(n), being n the number of pages. The linearity of the
algorithm on the number of pages can be examined by reviewing the process
of extraction of text from a document. For each page, it repeats a constant
number of steps: detection of the header, detection of the column separation,

645Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



detection of the left regions, detection of the remaining regions, detection of the
images and extraction of text. These steps are executed at the level of a page,
so the algorithm is linear on the number of pages. The linear complexity of the
algorithm was also empirically confirmed, through an analysis of convergence.
It also can be argued that the algorithm is dependent on the number of lines
per page, the number of columns or even the size in pixels due to the fact
that the algorithm is based on pixel steps. Despite this argumentation, we can
assume maximum values for these variables, so they do not add complexity to the
algorithm: to the best of our knowledge, there are not legal documents with more
than 150 lines per page, neither with more than 5 columns per page nor with
more than 2000 pixels per page height or per page width. Moreover this point
has been thoroughly confirmed with a convergence analysis over the number of
total processed lines. The results of that analysis are that the time complexity
is also linear over the number of lines.

The execution time results are shown in Table 2; the collection is the one
exposed in section 5.1.1, with the difference that the empty pages were included
in the execution time comparison because, despite the fact they are empty, they
are processed by both PDFBox and LRE, and so they increase the execution
time. As stated before, PDFBox is faster than LRE, being capable of processing
a page in 107 ms (LRE needs 1 347 ms)2. However, our algorithm can process
more than 2 600 pages per hour, and still seems suitable to be used in a system
which is daily updated.

Bulletin PDFBox LRE

Name Pages Total Per Page Total Per Page

BEU 300 20 928 69.76 196 295 654.32
OJEU 30 1 854 61.8 37 599 1 253.3
FR 89 14 667 164.8 156 329 1 756.51
UK 66 3 338 50.58 66 508 1 007.7
JO 56 3 774 67.39 89 226 1 593.32
BOE 63 5 958 94.57 90 317 1 433.6
DOG 128 28 041 219.07 208 185 1 626.45
BOCYL 400 42 689 106.72 680 287 1 700.72
Overall 1132 121 249 107.11 1 524 746 1 346.95

Table 2: Execution time of PDFBox and LRE (ms)

2 Tests are run in a Quad CPU at 2.40GHz with 4 GB of RAM

646 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



6 Conclusions and Future Work

In this work we developed an algorithm to extract the text from PDF documents
with a Manhattan layout which preserves the original column-format structure.

The results are better than the ones obtained with XY-cuts and PDFBox, an
extended PDF text extraction solution; moreover, the algorithm can offer more
information than this tool (the column structure of the document).

An implementation of the algorithm is currently being used in a legislative
information retrieval system, where it offers good results; also, it can be used in
different domains: scientific papers, papers in magazines, textbooks and hand-
books.

There are several interesting issues in which we will continue with this work.
Some of them are the following:

– The page headers usually can be represented with a regular expression. If
the expression is known, it becomes very easy to extract the header. Also,
the metainformation of the header can be obtained for further processing.

– At this moment, the algorithm does not care about the tables. However,
they mean a noise factor which could affect to the correct working of the
algorithm. It would be great to add some step in the algorithm so it can
detect tables and extract them in a “right way”. The works of Liu et al.
[Liu et al. 2009, Liu et al. 2008a, Liu et al. 2008b] in the field of table bound-
aries detection are very interesting, and they can be combined with our
approach so the tables inside the text are identified. Also, the XY-cuts algo-
rithm seems to be very suitable to the task of segmenting the contents of a
table according to the experiments we observed.

– The images of a document can contain textual information such as scanned
texts, for instance. It would be interesting the use OCR techniques to analyse
these images, and to integrate their content with the rest of the extracted
text.

– The algorithm does not use the information about font types, colours, sizes,
etc. These information could be used to improve the effectiveness of the
method.

– It can be interesting to allow region nesting and to develop a reliable method
to obtain them, therefore the result would contain a hierarchy of regions.

References

[Baird et al. 1990] Baird, H., Jones, S., and Fortune, S. (1990). “Image segmentation
by shape-directed covers”. In ICPR ’99: Proceedings of the International Conference
on Pattern Recognition, pages 1:820–825.

647Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



[Bloechle et al. 2009] Bloechle, J.-L., Lalanne, D., and Ingold, R. (2009). “OCD: An
optimized and canonical document format”. In ICDAR ’09: Proceedings of the 10th
International Conference on Document Analysis and Recognition, pages 236–240,
Washington, DC, USA. IEEE Computer Society.

[Bloechle et al. 2008] Bloechle, J.-L., Pugin, C., and Ingold, R. (2008). “Dolores: An
interactive and class-free approach for document logical restructuring”. In DAS ’08:
Proceedings of the 8th IAPR International Workshop on Document Analysis Systems,
pages 644–652, Washington, DC, USA. IEEE Computer Society.

[Bloechle et al. 2006] Bloechle, J.-L., Rigamonti, M., Hadjar, K., Lalanne, D., and In-
gold, R. (2006). “XCDF: A canonical and structured document format”. In DAS’06:
Proceedings of the 7th IAPR International Workshop on Document Analysis Systems,
pages 141–152.

[Chakraborty et al. 2003] Chakraborty, A., Liu, P., and Hsu, L. (2003). “Extracting
anchorable information units from PDF files”. In ICME ’03: Proceedings of the 2003
International Conference on Multimedia and Expo, pages 173–176, Washington, DC,
USA. IEEE Computer Society.

[Krishnamoorthy et al. 1993] Krishnamoorthy, M., Nagy, G., Seth, S., and
Viswanathan, M. (1993). “Syntactic segmentation and labeling of digitized
pages from technical journals”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(7):737–747.

[Liu et al. 2009] Liu, Y., Bai, K., Mitra, P., and Giles, C. L. (2009). “Improving the
table boundary detection in PDFs by fixing the sequence error of the sparse lines”. In
ICDAR ’09: Proceedings of the 10th International Conference on Document Analysis
and Recognition, pages 1006–1010, Washington, DC, USA. IEEE Computer Society.

[Liu et al. 2008a] Liu, Y., Mitra, P., and Giles, C. L. (2008a). “A fast preprocessing
method for table boundary detection: Narrowing down the sparse lines using solely
coordinate information”. In DAS ’08: Proceedings of the 8th IAPR International
Workshop on Document Analysis Systems, pages 431–438, Washington, DC, USA.
IEEE Computer Society.

[Liu et al. 2008b] Liu, Y., Mitra, P., and Giles, C. L. (2008b). “Identifying table
boundaries in digital documents via sparse line detection”. In CIKM ’08: Proceed-
ing of the 17th ACM Conference on Information and Knowledge Management, pages
1311–1320, New York, NY, USA. ACM.

[Lovegrove et al. 1995] Lovegrove, W. S., David, and Brailsford, F. (1995). “Document
analysis of PDF files: methods, results and implications”. Electronic Publishing,
8(3):207–220.

[Mao and Kanungo 2001] Mao, S. and Kanungo, T. (2001). “Empirical performance
evaluation methodology and its application to page segmentation algorithms”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(3):242–256.

[McKinley 1997] McKinley, T. (1997). “Why PDF is everywhere”. Inform, the journal
of AIIM, 11(8).

[Meunier 2005] Meunier, J.-L. (2005). “Optimized XY-Cut for determining a page
reading order”. In ICDAR ’05: Proceedings of the 8th International Conference on
Document Analysis and Recognition, pages 347–351, Washington, DC, USA. IEEE
Computer Society.

[Mitchell 2000] Mitchell, P. (2000). “Document page segmentation and layout analysis
using soft ordering”. In ICPR ’00: Proceedings of the 15th International Conference
on Pattern Recognition, volume 1, page 1458, Washington, DC, USA. IEEE Com-
puter Society.

[Multivalent 2010] Multivalent (2010). “Multivalent”. http://multivalent.
sourceforge.net/.

[Nagy and Seth 1984] Nagy, G. and Seth, S. (1984). “Hierarchical representation of
optically scanned documents”. In ICPR ’84: Proceedings of the 7th International
Conference on Pattern Recognition, pages 347–349.

648 Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...



[O’Gorman 1993] O’Gorman, L. (1993). “The document spectrum for page lay-
out analysis”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1162–1173.

[PDF-Analyzer 2010] PDF-Analyzer (2010). “Pdf-analyzer”. http://www.
pdf-analyzer.com/.

[PDF-File-Converter 2010] PDF-File-Converter (2010). “Pdf-file converter”. http:
//www.pdf-file.com/.

[PDFBox 2010] PDFBox (2010). “Pdfbox”. http://pdfbox.apache.org/.
[PlanetPdf 2010] PlanetPdf (2010). “Planetpdf”. http://www.planetpdf.com/.
[Pstotext 2010] Pstotext (2010). “Pstotext”. http://pages.cs.wisc.edu/~ghost/
doc/pstotext.htm.

[Rosenfeld et al. 2002] Rosenfeld, B., Feldman, R., and Aumann, Y. (2002). “Struc-
tural extraction from visual layout of documents”. In CIKM ’02: Proceedings of the
11th ACM Conference on Information and Knowledge Management, pages 203–210,
New York, NY, USA. ACM.

[Simon et al. 1997] Simon, A., Pret, J.-C., and Johnson, A. P. (1997). “A fast al-
gorithm for bottom-up document layout analysis”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(3):273–277.

[TextFromPdf 2010] TextFromPdf (2010). “Textfrompdf”. http://www.
textfrompdf.com/.

649Hasan I., Parapar J., Barreiro A.: Improving the Extraction ...


