Interlinking Distributed Social Graphs

Matthew Rowe
OAK Group
Department of Computer Science
University of Sheffield, UK

http://www.flickr.com/photos/leecullivan/141114012/
Outline

• Problems and Motivation
• Requirements
• Approach
 – Social Graph Exportation
 • Social Graph Enrichment
 – Social Graph Aggregation
 • Graph Reasoning
 – Producing Linked Data
 • Social Graph Control
• Experiments
 – Datasets
 – Results
• Conclusions
Problems/Issues

• Social web and web 2.0 platforms and services allow an individual to enrich their online persona
 – Lack of functionality to export social graphs from such platforms
 – Access to data is restricted, hidden within a walled garden

• Web users maintain a profile on many different web platforms
 – Decentralisation of identity details
 – Each platform contains a different facet of their online identity
 • Different subsets of contacts, with some overlap
 – Lack of functionality to link together such information from multiple locations
Motivation

- Interlinked social graphs would allow:
 - Importing existing contact lists when signing up for a new service
 - Establishing trust networks through transitive relationships
 - Recommendations and suggestions could be made using the interlinked data
 - Ability to break down the wall

- An interlinked social graph maintains a decentralised description of a person’s online identity
 - Individual social graphs are linked together from multiple locations
 - URIs provide references to additional information without duplicating data
 - Able to maintain a rich representation of a person’s online identity
Requirements

• The approach to interlinking distributed social graphs is divided into two stages:
 – Creation of social graphs from individual social web platforms
Requirements

• The approach to interlinking distributed social graphs is divided into two stages:
 – Creation of social graphs from individual social web platforms
 – Interlinking of the created social graphs
Requirements

• The approach to interlinking distributed social graphs is divided into two stages:
 – Creation of social graphs from individual social web platforms
 – Interlinking of the created social graphs

• Such an approach must meet the following requirements:
 – Export social data contained within data silos into the same semantic format
 – Link person instances from separate social networks referring to the same real world person
 – Maximise the number of correct links whilst minimising the number of incorrect links
 – Publish a decentralised linked social graph
Requirements
Social Graph Exportation

• The majority of social web and web 2.0 platforms store information within a ‘walled garden’ data silo
 – Prevents unwanted parties viewing my data
 – Hinders data exportation when I wish to transport it

• Climbing the wall involves interacting with the service’s API and handling the received response
 – Authentication: Can this party access this data?
 – Return response: XML schema, JSON, etc
Social Graph Exportation

- To export a social graph in a semantic format:
 - Map components of the XML schema to necessary ontology concepts (FOAF, Geonames, etc)
 - Request the user for an OpenID (enabling person resolution and information linkage)
 - Assign URIs to people within the exported social graph
 - Using the user ID / username from the service
      ```xml
      <foaf:knows>
        <foaf:Person rdf:about="#617555567">
          <foaf:name>Sam Chapman</foaf:name>
        </foaf:Person>
      </foaf:knows>
      ```
 - Assign URIs to location concepts from the Geonames Web Service
 - Query service using city and country
        ```xml
        <foaf:knows>
          <foaf:Person rdf:about="#617555567">
            <foaf:name>Sam Chapman</foaf:name>
            <foaf:based_near>
              <geo:Feature rdf:about="http://sws.geonames.org/2638077">
                <geo:name>Sheffield</geo:name>
                <geo:inCountry>United Kingdom</geo:inCountry>
              </geo:Feature>
            </foaf:based_near>
          </foaf:Person>
        </foaf:knows>
        ```
Social Graph Exportation

Matthew Rowe - Interlinking Distributed Social Graphs
Social Graph Aggregation

• Identify matching instances of foaf:Person in separate graphs and provide links between the instances using owl:sameAs
 – Provides a technique to produce linked data given two distributed social graphs

• A decision must be made when to create the link and when not to… Graph Reasoning:
 – Treat individual instances of foaf:Person and the accompanying properties as an individual graph
 – Compare graphs (essentially person objects) to derive a similarity measure
 – Should the measure exceed a set threshold, then provide a link between the instances of foaf:Person
Graph Reasoning

• When comparing instances of foaf:Person, the sole use of the foaf:name property to identify a match is insufficient (name ambiguity)

• Additional properties assigned to foaf:Person instances must be used to aid the reasoning process:
 – Unique identifiers
 • Inverse functional properties confirm a definite match between instances (e.g. foaf:mbox, foaf:homepage)
 – Geographical details
 • Compare geo:Feature instances from each person
 – Compare URI for a match
 – Compare semantic relation of the locations
 » e.g. Crookes dbprop:district Sheffield
 » Query a knowledge base to derive a relation (i.e. DBPedia)
Producing Linked Data

• A new RDF graph is created describing the interlinked content
• Information contained within separate social graphs is not duplicated
 – Instead links are provided to additional information through URIs:

    ```
    <foaf:knows>
        <foaf:Person rdf:about="#samchapman">
            <foaf:name>Sam Chapman</foaf:name>
            <owl:sameAs rdf:about="http://namespace.com/fb.rdf#617555567"/>
            <owl:sameAs rdf:about="http://namespace.com/twitter.rdf#samchapman"/>
        </foaf:Person>
    </foaf:knows>
    ```

• Access to the linked data is now controlled by the hosting service
 – This allows access policies to be set accordingly and only grant access to relevant parties (FOAF+SSL, OAuth)
Producing Linked Data

Matthew Rowe - Interlinking Distributed Social Graphs
Experiments

• Evaluate the accuracy of our graph reasoning method to provide links between foaf:Person instances
 – Accuracy is measured by minimising type I (false positives) and type II (false negatives) errors when creating links
 – Optimum result would be no type I or type II errors

• Datasets
 – Experiment 1: Social graphs exported from Twitter, MySpace and Facebook for one user
 – Experiment 2: Social graphs exported from Twitter and Facebook for ten separate users
 – The datasets contain overlap where links should be created
Experiments

• Results
 – Experiment 1:

<table>
<thead>
<tr>
<th></th>
<th>Fb' : MySp'</th>
<th>GS: Fb' : MySp'</th>
<th>Fb' : Twit'</th>
<th>GS: Fb' : Twit'</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Pos</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>True Neg</td>
<td>389</td>
<td>389</td>
<td>660</td>
<td>662</td>
</tr>
<tr>
<td>False Pos</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>False Neg</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

– Experiment 2:

<table>
<thead>
<tr>
<th></th>
<th>Fb' : Twit'</th>
<th>GS: Fb' : Twit'</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Pos</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>True Neg</td>
<td>2122</td>
<td>2136</td>
</tr>
<tr>
<td>False Pos</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>False Neg</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusions

• This approach to interlinking distributed social graphs:
 – Exports semantic information from walled garden data silos using existing ontologies
 – Links together instances of foaf:Person referring to the same real world person
 – Provides accurate linkage using low-level bespoke reasoning
 • Maximising correct links and minimising incorrect links
 – Produces a decentralised linked social graph
 – Maintains the access control to additional information of aggregated foaf:Person instances

• Future Work:
 – Releasing the service to allow web users to link their information together
 – Provide additional exportation tools for social web platforms
Questions?