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Abstract. Generic programming in C++ is characterized by the use of
template parameters to represent abstract data types (or “concepts”). How-
ever, the C++ language itself does not provide a mechanism for explicitly
handling concepts. As a result, it can be difficult to insure that a concrete
type meets the requirements of the concept it is supposed to represent.
Error messages resulting from incorrect use of a concrete type can be
particularly difficult to decipher. In this paper we present techniques to
check parameters in generic C++ libraries. Our techniques use standard
C++ and introduce no run-time overhead.

1 Introduction

A conceptis a set of requirements (valid expressions, associated types, semantic invari-
ants, complexity guarantees, etc.) that a type must fulfill to be correctly used within the
context of a generic algorithm. In C++, concepts are represented by formal template
parameters to function templates (generic algorithms). However, C++ has no explicit
mechanism for representing concepts — template parameters are merely placeholders.
By convention, these parameters are given names corresponding to the concept that is
required, but a C++ compiler does not enforce compliance to the concept when the
template parameter is bound to an actual type.

Naturally, if a generic algorithm is invoked with a type that does not fulfill at least
the syntactic requirements of the concept, a compile-time error will occur. However,
this error will notper sereflect the fact that the type did not meet all of the requirements
of the concept. Rather, the error may occur deep inside the instantiation hierarchy at the
point where an expression is not valid for the type, or where a presumed associated type
is not available. The resulting error messages are largely uninformative and basically
impenetrable.

What is required is a mechanism for enforcing “concept safety” at (or close to) the
point of instantiation. Re-engineering the template system in C++ to accommodate con-
cepts is a daunting task (and we feel there are better mechanisms than simply adding
yet more onto C++ for providing concept-safe genericity). We present instead a tech-



nique that uses standard C++ constructs to enforce early concept compliance and that
provides more informative error messages upon non-compliance. We have applied this
mechanism to the SGI implementation of STL, and the changes are now in the main
distribution.

Note that with this technique we only address the syntactic requirements of concepts
(the valid expressions and associated types). We do not address the semantic invariants
or complexity guarantees, which are also part of concept requirements..

2 Example

We present a simple example to illustrate incorrect usage of a template library and
the resulting error messages. In the code below, the genericstd::stable sort()

algorithm from the Standard Template Library (STL) [1, 6, 7] is applied to a linked list.

bad_error_eg.cpp:
1 #include <list>
2 #include <algorithm>
3
4 struct foo {
5 bool operator<(const foo&) const { return false; }
6 };
7 int main(int, char*[]) {
8 std::list<foo> v;
9 std::stable_sort(v.begin(), v.end());

10 return 0;
11 }

Here, thestd::stable sort() algorithm is prototyped as follows:

template <class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

Attempting to compile this code with Gnu C++ produces the following compiler error.
The output from other compilers is listed in the Appendix.

stl_algo.h: In function ‘void __merge_sort_loop<_List_iterator
<foo,foo &,foo *>, foo *, int>(_List_iterator<foo,foo &,foo *>,
_List_iterator<foo,foo &,foo *>, foo *, int)’:

stl_algo.h:1448: instantiated from ‘__merge_sort_with_buffer
<_List_iterator<foo,foo &,foo *>, foo *, int>(

_List_iterator<foo,foo &,foo *>, _List_iterator<foo,foo &,foo *>,
foo *, int *)’

stl_algo.h:1485: instantiated from ‘__stable_sort_adaptive<
_List_iterator<foo,foo &,foo *>, foo *, int>(_List_iterator
<foo,foo &,foo *>, _List_iterator<foo,foo &,foo *>, foo *, int)’

stl_algo.h:1524: instantiated from here
stl_algo.h:1377: no match for ‘_List_iterator<foo,foo &,foo *> & -

_List_iterator<foo,foo &,foo *> &’

In this case, the fundamental error is thatstd:list::iterator does not model
the concept ofRandomAccessIterator. The list iterator is only bidirectional, not fully
random access (as would be a vector iterator). Unfortunately, there is nothing in the
error message to indicate this to the user.



To a C++ programmer having enough experience with template libraries the error
is obvious. However, for the uninitiated, there are several reasons why this message
would be hard to understand.

• The location of the error, line 9 ofbad error eg.cpp is not pointed to by the
error message, despite the fact that Gnu C++ prints up to 4 levels deep in the
instantiation stack.

• There is no textual correlation between the error message and the documented
requirements forstd::stable sort() and forRandomAccessIterator.

• The error message is overly long, listing functions internal to the STL that the
user does not (and should not!) know or care about.

• With so many internal library functions listed in the error message, the program-
mer could easily infer that the error is due to the library, rather than to his or her
own code.

The following is an example of what we might expect from a more informative message
(and is in fact what the system presented here can produce):

concept_checks.h: In method ‘void LessThanComparable_concept
<_List_iterator<foo,foo &,foo *> >::constraints()’:

concept_checks.h:334: instantiated from ‘RandomAccessIterator_concept
<_List_iterator<foo,foo &,foo *> >::constraints()’

bad_error_eg.cpp:9: instantiated from ‘stable_sort<_List_iterator
<foo,foo &,foo *> >(_List_iterator<foo,foo &,foo *>,
_List_iterator<foo,foo &,foo *>)’

concept_checks.h:209: no match for ‘_List_iterator<foo,foo &,foo *> &
< _List_iterator<foo,foo &,foo *> &’

This message rectifies several of the shortcomings of the standard error messages.

• The location of the error,bad error eg.cpp:9 is specified in the error message.

• The message refers explicitly to concepts that the user can look up in the STL
documentation (RandomAccessIterator).

• The error message is now much shorter and does not reveal internal STL func-
tions.

• The presence ofconcept checks.h andconstraints() in the error message
alerts the user to the fact that the error lies in the user code and not in the library
implementation.

3 Concept Checks

Ideally we would like to catch, and indicate, the concept violation at the point of in-
stantiation. As mentioned in D&E [8], the error can be caught by exercising all of
the requirements needed by the function template. Exactly how the requirements (the



valid expressions in particular) are exercised is a tricky issue, since we want the code
to be compiled —but not executed. Our approach is to exercise the requirements in a
separate function that is assigned to a function pointer. In this case, the compiler will
instantiate the function but will not actually invoke it. In addition, an optimizing com-
piler will remove the pointer assignment as “dead code” (though the run-time overhead
added by the assignment would be trivial in any case). It might be conceivable for a
compiler to skip the semantic analysis and compilation of the constraints function in
the first place, which would make our function pointer technique ineffective. However,
this is unlikely because removal of unnecessary code and functions is typically done
in later stages of a compiler. We have successfully used the function pointer technique
with GNU C++, Microsoft Visual C++, and several EDG-based compilers (KAI C++,
SGI MIPSpro). The following code shows how this technique can be applied to the
std::stable sort() function:

template <class RandomAccessIterator>
void stable_sort_constraints(RandomAccessIterator i) {

typename std::iterator_traits<RandomAccessIterator>
::difference_type n;

i += n; // exercise the requirements for RandomAccessIterator
...

}
template <class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last) {

typedef void (*fptr_type)(RandomAccessIterator);
fptr_type x = &stable_sort_constraints;
...

}

There is often a large set of requirements that need to be checked, and it would
be cumbersome for the library implementor to write constraint functions likestable-

sort constraints() for every public function. Instead, we group sets of valid ex-
pressions together, according to the definitions of the corresponding concepts. For each
concept we define a concept checking class template (using theconcept suffix as a
naming convention). The template parameter is for the type to be checked. The class
contains acontraints() member function which exercises all of the valid expres-
sions of the concept. The objects used in the constraints function, such asn andi , are
declared as data members of the concept checking class.

template <class Iter>
struct RandomAccessIterator_concept {

void constraints() {
i += n;
...

}
typename std::iterator_traits<RandomAccessIterator>

::difference_type n;
Iter i;
...

};

We can still use the function pointer mechanism to cause instantiation of the con-
straints function, however now it will be a member function pointer. To make it easy



for the library implementor to invoke the concept checks, we wrap the member function
pointer mechanism in a macro namedREQUIRE. The following code snippet shows how
to useREQUIREto make sure that the iterator is aRandomAccessIterator.

template <class RandomAccessIter>
void stable_sort(RandomAccessIter first, RandomAccessIter last)
{

REQUIRE(RandomAccessIter, RandomAccessIterator);
...

}

The definition of theREQUIREis as follows. Thetype var is the type we wish
to check, andconcept is the name that corresponds to the concept checking class. We
assign the address of the constraints member function to the function pointerx , which
causes the instantiation of the constraints function and checking of the concept’s valid
expressions. We then assignx to x to avoid unused variable compiler warnings, and
wrap everything in a do-while loop to prevent name collisions.

#define REQUIRE(type_var, concept) \
do { \

void (concept##_concept <type_var>::*x)() = \
concept##_concept <type_var>::constraints; \

x = x; \
} while (0)

To check the type parameters of class templates, we provide theCLASSREQUIRES

macro which can be used inside the body of a class definition (whereas theREQUIRES

macro can only be used inside of a function body). This macro declares a nested class
template, where the template parameter is a function pointer. We then use the nested
class type in a typedef with the function pointer type of the constraint function as the
template argument. We use thetype var andconcept names in the nested class
and typedef names to help prevent name collisions.

#define CLASS_REQUIRES(type_var, concept) \
typedef void (concept##_concept <type_var> \

::* func##type_var##concept)(); \
\

template <func##type_var##concept FuncPtr> \
struct dummy_struct_##type_var##concept { }; \

\
typedef dummy_struct_##type_var##concept< \

concept##_concept <type_var>::constraints> \
dummy_typedef_##type_var##concept

In addition, there are versions ofREQUIREandCLASSREQUIRESthat take more
arguments, to handle concepts that include interactions between two or more types.
CLASSREQUIRESwas not used in the implementation of the STL concept checks be-
cause several compilers do not implement template parameters of function pointer type.

The conceptRandomAccessIterator defines the set of requirements that we would
like to use to check the parameters ofstable sort() . Below we show how the com-
plete concept checking class for this concept is constructed. The expressions within the



constraints() function correspond to the valid expressions section of the documen-
tation forRandomAccessIterator. Typedefs can also be added to enforce the associ-
ated types of the concept. TheRandomAccessIterator concept builds upon, orrefines
BidirectionalIterator, so we use theREQUIREmacro to invoke the concept checking
class for that concept. By organizing the concepts in this way, we can reuse the con-
cept checking classes such asBidirectionalIterator concept andLess-
ThanComparable concept within the concept checking classes for more refined
concepts such asRandomAccessIterator.

template <class Iter>
struct RandomAccessIterator_concept
{

void constraints() {
REQUIRE(Iter, BidirectionalIterator);
REQUIRE(Iter, LessThanComparable);
REQUIRE2(typename std::iterator_traits<Iter>::iterator_category,

std::random_access_iterator_tag, Convertible);
typedef typename std::iterator_traits<Iter>::reference R;

i += n;
i = i + n; i = n + i;
i -= n;
i = i - n;
n = i - j;
i[n];

}
Iter a, b;
Iter i, j;
typename std::iterator_traits<Iter>::difference_type n;

};
}

One potential pitfall in designing concept checking classes is using more expres-
sions in the constraint function than necessary. For example, it is easy to accidentally
use the default constructor to create the objects that will be needed in the expressions
(and not all concepts require a default constructor). This is the reason we write the
constraint function as a member function of a class. The objects involved in the expres-
sions are declared as data members of the class. Since objects of the constraints class
template are never instantiated, the default constructor for the concept checking class is
never instantiated. Hence the data member’s default constructors are never instantiated
(C++ Standard Section 14.7.1 9).

4 Programming with Concepts

The process of deciding how to group requirements into concepts and deciding which
concepts to use in each algorithm is perhaps the most difficult (yet most important) part
of building a generic library. A guiding principle to use during this process is one we
call therequirement minimization principle.

Requirement Minimization Principle: Minimize the requirements on the input pa-
rameters of a component to increase its reusability.



There is natural tension in this statement. By definition, the input parameters must be
used by the component in order for the component to accomplish its task (by “compo-
nent” we mean a function or class template). The challenge then is to implement the
component in such a way that makes the fewest assumptions (the minimum require-
ments) about the inputs while still accomplishing the task.

The traditional notions ofabstractiontie in directly to the idea of minimal require-
ments. The more abstract the input, the fewer the requirements. Thus, concepts are
simply the embodiment of generic abstract data types in C++ template programming.

When designing the concepts for some problem domain it is important to keep in
mind their purpose, namely to express the requirements for the input to the components.
With respect to the requirement minimization principle, this means we want to minimize
concepts.

It is important to note, however, that minimizing concepts does not mean simply re-
ducing the number of valid expressions in the concept. For example, thestd::stable-

sort() function requires that the value type of the iterator beLessThanComparable,
which not only includesoperator<() , but alsooperator>() , operator<=() , and
operator>=() . It turns out thatstd::stable sort() only usesoperator<() .
The question then arises: shouldstd::stable sort() be specified in terms of the
conceptLessThanComparable or in terms of a concept that only requiresopera-

tor<() ?
We remark first that the use ofLessThanComparable does not really violate the

requirement minimization principle because all of the other operators can be trivially
implemented in terms ofoperator<() . By “trivial” we mean one line of code and a
constant run-time cost. More fundamentally, however, the use ofLessThanCompa-
rable does not violate the requirement minimization principle because all of the com-
parison operators (<, >, <=, >=) are conceptually equivalent (in a mathematical sense).
Adding conceptually equivalent valid expressions is not a violation of the requirement
minimization principle because no new semantics are being added — only new syntax.
The added syntax increases re-usability.

For example, the maintainer of thestd::stable sort() may some day change
the implementation in places to useoperator>() instead ofoperator<() , since,
after all, they are equivalent. Since the requirements are part of the public interface,
such a change could potentially break client code. If insteadLessThanComparable
is given as the requirement forstd::stable sort() , then the maintainer is given a
reasonable amount of flexibility within which to work.

Minimality in concepts is a property associated with the underlying semantics of
the problem domain being represented. In the problem domain of basic containers, re-
quiring traversal in a single direction is a smaller requirement than requiring traversal
in both directions (hence the distinction betweenForwardIterator andBidirectionalIt-
erator). The semantic difference can be easily seen in the difference between the set of
concrete data structures that have forward iterators versus the set that has bidirectional
iterators. For example, singly-linked lists would fall in the set of data structures having
forward iterators, but not bidirectional iterators. In addition, the set of algorithms that
one can implement using only forward iterators is quite different than the set that can
be implemented with bidirectional iterators. Because of this, it is important to factor



families of requirements into rather fine-grained concepts. For example, the require-
ments for iterators are factored into the six STL iterator concepts (trivial, output, input,
forward, bidirectional, and random access).

5 Concept Covering

We have discussed how it is important to select the minimal requirements (concepts)
for the inputs to a component, but it is equally important to verify that the chosen
conceptscoverthe algorithm. That is, any possible user error should be caught by the
concept checks and not let slip through. Concept coverage can be verified through the
use ofarchetype classes. An archetype class is an exact implementation of the interface
associated with a particular concept. The run-time behavior of the archetype class is not
important, the functions can be left empty. A simple test program can then be compiled
with the archetype classes as the inputs to the component. If the program compiles then
one can be sure that the concepts cover the component.

The following code shows the archetype class for theTrivialIterator concept. Some
care must be taken to ensure that the archetype is an exact match to the concept. For
example, the concept states that the return type ofoperator*() must be convertible
to the value type. It does not state the more stringent requirement that the return type
beT& or const T& . That means it would be a mistake to useT& or const T& for the
return type of the archetype class. The correct approach is to create an artificial return
type that is convertible toT, as we have done here withinput proxy . The validity
of the archetype class test is completely dependent on it being an exact match with the
concept, which must be verified by careful (manual) inspection.

template <class T>
struct input_proxy {

operator T() { return t; }
static T t;

};
template <class T>
class trivial_iterator_archetype
{

typedef trivial_iterator_archetype self;
public:

trivial_iterator_archetype() { }
trivial_iterator_archetype(const self&) { }
self& operator=(const self&) { return *this; }
friend bool operator==(const self&, const self&) { return true; }
friend bool operator!=(const self&, const self&) { return true; }
input_proxy<T> operator*() { return input_proxy<T>(); }

};

namespace std {
template <class T>
struct iterator_traits< trivial_iterator_archetype<T> >
{

typedef T value_type;
};

}



Generic algorithms are often tested by being instantiated with a number of common
input types. For example, one might applystd::stable sort() with basic pointer
types as the iterators. Though appropriate for testing the run-time behavior of the algo-
rithm, this is not helpful for ensuring concept coverage because C++ types never match
particular concepts, they often provide much more than the minimal functionality re-
quired by any one concept. That is, even though the function template compiles with a
given type, the concept requirements may still fall short of covering the functions actual
requirements. This is why it is important to compile with archetype classes in addition
to testing with common input types.

6 Alternative Approaches

Concept checking tests whether certain expressions are valid and compile successfully.
An alternative approach is to declare the signature that must be provided by the input.
Such an approach is is used in Generic Java [3], Theta [5], and the Signatures extension
to C++ [2].

Within the signature-based methods there are two approaches: the subtype approach
and the where-clause approach. The subtype approach uses the equivalent of an abstract
base class (or Java interface) to group the required method signatures. Base classes are
used to place requirements on the input types in the component interface declaration. In
C++ and Java, non-abstract classes must explicitly declare which abstract classes they
implement, while in the Signatures C++ extension this is not necessary: the relationship
is implicit, determined by the compiler at the function call site. The where-clause ap-
proach lists the required function signatures directly in the component interface, without
grouping them into base classes [5].

The following is an example similar to one in D&E[8] that shows how the subtype-
approach might look in C++. Typically a vector class would not require its element
type to be comparable, but we include this to more closely follow Stroustrup’s D&E
example.

template <class T>
class Comparable<T> {

bool operator==(const T&);
bool operator<(const T&);

}

template <class T : Comparable<T> >
class vector { ... };

There are several problems with signature-based methods.

1. Signatures are not appropriate for C++ template programming because there is
not a one-to-one relationship between expressions and the signatures that can
implement the expression. For example,operator++() can be implemented as
a free function or as a member function which have different signatures. It would
be overly restrictive to list only one of the signatures as the interface requirement.



2. In some languages the subtype approach only applies to class types and not built-
in types. The built-in typeint is certainlyComparable, but it is not a class with
member functionsoperator==() andoperator<() .

3. Template programming is heavily based on parametric polymorphism, which is
very different from subtype polymorphism. For example, one characteristic of
type constraints for function templates is that they often involve functions with
more than one argument, such as comparison operators. These kind of constraints
are particularly difficult to express using subtyping [4], whereas they are quite
natural to express with concept checks (which use parametric polymorphism).

The advantage of signatures is that they allow for the separate type-checking of the
generic components , that is type-checking before instantiation of the template in a par-
ticular context. This negates the need for the more clumsy archetype classes described
above. The signature-approach can also allow for separate compilation if dynamic dis-
patch is used.

7 Looking to the Future

Designing, implementing, and verify concept checks for generic C++ libraries must
presently be done manually. As a result, the process is time-consuming and (likely to
be) error-prone. Implementors would benefit greatly if some or all of this process could
be automated.

A first step would be to have a tool that statically analyzes a class or function tem-
plate and records all the kinds of expressions that involve the template parameter types.
Such a tool would ease the task of verifying concept coverage. A second step would pat-
tern match the set of all required expressions against a standard set (or library-defined
set) of concepts, thereby summarizing the requirements in terms of concepts. This in-
formation could then be used in two ways. First it could be used to create readable
reports for library documentation. Second, it could be used to provide informative
compiler error messages without the need to manually insert concept checks.

Finally, we remark that there is much exciting work to be done in the general area
of generic programming. Taking a step back from the task of providing better support
for generic programming within the framework of the existing C++ language, there are
a number of approaches one could take for designing a language that directly supports
concepts.
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8 Appendix

8.1 Error messages using KAI C++ (with EDG frontend)

The following is an excerpt from the error message when compilingbad error-
eg.cpp with KAI C++ and without concept checking.

"algorithm", line 1274: error:
no instance of overloaded function "std::min" matches the argument list
argument types are: (std::iterator_traits<std::list<foo,

std::allocator<foo>>::iterator>::difference_type,
<error-type>)

Distance len = min(p.second, Distance(last-first));
ˆ

detected during instantiation of "void
std::stable_sort(RandomAccessIterator, RandomAccessIterator)"

The following is an excerpt from the error message when compilingbad error-
eg.cpp with KAI C++ and with concept checking.

"concept_checks.h", line 248: error:
no operator "<" matches these operands
operand types are: std::list<foo, std::allocator<foo>>::iterator <

std::list<foo, std::allocator<foo>>::iterator



r = a < b || a > b || a <= b || a >= b;
ˆ

detected during:
instantiation of "void LessThanComparable_concept<Iter>::constraints()"

at line 373
instantiation of "void RandomAccessIterator_concept<Iter>::constraints()"

at line 9 of "bad_error_eg.cpp"
instantiation of "void std::stable_sort(RandomAccessIterator,

RandomAccessIterator)"

8.2 Error messages using Microsoft Visual C++

The following is an excerpt from the error message when compilingbad error-
eg.cpp with Microsoft Visual C++ and without concept checking.

algo(1164) : error C2784: ’_Distance __cdecl std::operator -(
const class std::reverse_iterator<_RandomAccessIterator,_Tp,

_Reference,_Pointer,_Distance> &,
const class std::reverse_iterator<_RandomAccessIterator,_Tp,

_Reference,_Pointer,_Distance> &)’
: could not deduce template argument for
’const class std::reverse_iterator<_RandomAccessIterator,_Tp,

_Reference,_Pointer,_Distance> &’
from ’struct std::_List_iterator<struct foo,struct

std::_Nonconst_traits<struct foo> >’
algo(1452) : see reference to function template instantiation

’void __cdecl std::__inplace_stable_sort(
struct std::_List_iterator<struct foo,

struct std::_Nonconst_traits<struct foo> >,
struct std::_List_iterator<struct foo,

struct std::_Nonconst_traits<struct foo> >)’
being compiled

The following is an excerpt from the error message when compilingbad error-
eg.cpp with Microsoft Visual C++ and with concept checking.

concept_checks.h(341) : error C2676: binary ’+=’ :
’struct std::::_List_iterator<struct foo,

struct std::::_Nonconst_traits<struct foo> >’
does not define this operator or a conversion to a type acceptable
to the predefined operator

concept_checks.h(332) : while compiling class-template member function
’void __thiscall RandomAccessIterator_concept<

struct std::::_List_iterator<struct foo,
struct std::::_Nonconst_traits<struct foo> >

>::constraints(void)’


