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Abstract
Perinatal brain injury is a major cause of neurological disability in both
premature and term infants. In this review, we summarize the evidence
behind some established neuroprotective practices such as administration
of antenatal steroids, intrapartum magnesium for preterm delivery, and
therapeutic hypothermia. In addition, we examine emerging practices such
as delayed cord clamping, postnatal magnesium administration,
recombinant erythropoietin, and non-steroidal anti-inflammatory agents and
finally inform the reader about novel interventions, some of which are
currently in trials, such as xenon, melatonin, topiramate, allopurinol,
creatine, and autologous cord cell therapy.
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Introduction
Perinatal brain injury is a major cause of neurological disability 
in both premature and term infants1 and may include disorders 
of hearing, vision, speech, motor function, intellectual disability, 
and seizures. Therefore, preventive and restorative strategies for  
perinatal brain injury are critically needed to minimize adverse  
neurological sequelae. In this review, we discuss the established 
and emerging interventions for perinatal neuroprotection in term 
and preterm infants.

Prevention of preterm delivery
Prematurity is the leading cause of morbidity and mortality in 
childhood within the developed world2. Preterm birth (and low  
birth weight independently) is a leading risk factor for cerebral 
palsy (CP) and associated neurologic impairments and neuro-
sensory disabilities3,4. Therefore, prevention of preterm delivery  
is a crucial strategy for perinatal neuroprotection.

Antenatal steroids
A Cochrane systematic review including 30 studies (7774 women 
and 8158 infants) mostly from high-income countries found 
that treatment with antenatal corticosteroids (dexamethasone 
or betamethasone) as compared with placebo or no treatment is  
associated with a reduction in perinatal death (relative risk 
[RR] 0.72, 95% confidence interval [CI] 0.58 to 0.89),  
neonatal death (RR 0.69, 95% CI 0.59 to 0.81), and intraven-
tricular hemorrhage (IVH) (RR 0.55, 95% CI 0.40 to 0.76)5.  
Treatment with corticosteroids was associated with less devel-
opmental delay in childhood, although the data were deemed  
insufficient.

Antenatal steroids promote lung maturation6, thereby stabilizing 
respiratory and hemodynamic system. In addition, they stabilize 
germinal matrix vasculature7,8 and exert vasoconstrictive effects 
on fetal cerebral blood flow, thereby offering protection against  
IVH and hypercapnia-induced vasodilatation9,10.

Antenatal corticosteroid administration in women at risk of  
preterm birth is the standard of care. However, further research is 
warranted to support this practice in lower-income settings and 
high-risk obstetric groups.

Magnesium sulfate
Several randomized controlled trials (RCTs) have demonstrated 
the neuroprotective effects of antenatal magnesium sulfate in 
preterm infants11–15. A recent meta-analysis that included the  
above-mentioned trials concluded that antenatal magnesium 
sulfate given prior to preterm birth for fetal neuroprotection  
(4448 babies) prevents CP (mild, moderate, and severe) and 
reduces the combined risk of fetal/infant death or CP (RR 0.86,  
95% CI 0.75 to 0.99)16. This benefit was seen independently of 
reason for preterm birth with similar effects across a range of  
preterm gestational ages. (It should be noted that the trials  
included in this analysis included women at less than 33 weeks’ 
gestation.) These results were consistent with previous meta- 
analyses that found that magnesium sulfate administered to  
women at high risk of delivery before 34 weeks of gestation  
reduced the risk of CP and rate of gross motor dysfunction17–19. 

Antenatal magnesium sulfate is also associated with reduced  
cerebellar hemorrhage on magnetic resonance imaging (MRI) 
in preterm newborns20. However, long-term follow-up has not  
demonstrated improved neurological, cognitive, behavioral, or 
functional outcomes in school age for children of women receiving 
magnesium sulfate for preterm delivery (<30 weeks)21,22.

Based on the above data, antenatal magnesium remains the  
standard of care for women at less than 32 weeks’ gestation who 
are at risk for imminent delivery. Evidence for effectiveness  
between 34 to 37 weeks remains to be established.

Recent studies have also demonstrated improvements in short- 
term neurological outcomes after postnatal magnesium sulfate 
infusion. Two small RCTs using postnatal magnesium sulfate  
infusion (250 mg/kg per day) for 3 days in term neonates with  
severe birth asphyxia resulted in an improved survival with  
normal results of cranial computed tomography and electroen-
cephalography in the treated group compared with the control  
group23,24. However, no significant neurodevelopmental improve-
ment was noted at 6 months25. A prospective observational  
study, however, reported normal neurodevelopmental outcomes 
at 18 months in 73% of infants with moderate to severe hypoxic 
ischemic encephalopathy (HIE) treated with magnesium  
sulfate (in combination with dopamine) within 6 hours of birth26. 
A multicenter RCT of therapeutic hypothermia plus magnesium  
sulfate versus hypothermia alone of term and near term  
newborn infants born at, at least 35 weeks (the Mag Cool Study) 
with a clinical diagnosis of moderate or severe HIE found no  
differences in the short-term adverse outcomes (death, seizures,  
and intracranial hemorrhage) between the two groups27.

The mechanism underlying the neuroprotective effects of  
magnesium sulfate is not well elucidated. It is widely accepted 
that magnesium prevents excitotoxic damage through N-Methyl- 
d-aspartic acid (NMDA) receptor blockade28. Moreover,  
magnesium has anti-inflammatory properties29 and reduces the 
production of pro-inflammatory cytokines interleukin-6 and  
tumor necrosis factor-alpha30. Animal models have also dem-
onstrated that magnesium sulfate changes expression of several 
genes, thereby altering the mitochondrial and metabolic  
substrate of the immature brain and reducing vulnerability  
to hypoxia31. Therefore, magnesium-induced preconditioning 
of the brain via development of mitochondrial resistance and  
suppression of inflammation likely contributes to its mechanism  
of perinatal protection32.

As advances in neonatal care enable increased survival of infants 
of 22 to 23 weeks’ gestational age, studies will need to be  
carried out in this population to determine the effectiveness of  
interventions.

Delayed umbilical cord clamping
Delayed cord clamping is typically defined as a lapse of at 
least 30 to 60 seconds before clamping the umbilical cord after  
delivery. In term infants, a meta-analysis of 15 trials involving 
a total of 3911 women and infant pairs found no significant  
differences between early (<60 seconds) and late (>60 seconds) 
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clamping in terms of neonatal mortality (RR 0.37, 95% CI 
0.04 to 3.41) or for most other neonatal morbidity outcomes33.  
However, mean birth weight was significantly higher in the late 
cord clamping group, and infants in the early cord clamping  
group were more likely to be iron-deficient at 3 to 6 months  
(RR 2.65, 95% CI 1.04 to 6.73).

In preterm infants, a 2012 meta-analysis of 15 studies  
(738 infants born at between 24 and 36 weeks’ gestation) found 
that delaying cord clamping for 30 to 180 seconds was associated 
with less IVH (RR 0.59, 95% CI 0.41 to 0.85), decreased need 
for transfusions for anemia (RR 0.61, 95% CI 0.46 to 0.81), and 
lower risk for necrotizing enterocolitis compared with immediate  
clamping34. However, there were no clear differences in severe 
(grade 3 or 4) IVH and periventricular leukomalacia. A later 
trial comparing immediate with delayed cord clamping for  
30 seconds among preterm neonates born at between 24 and 34 
weeks of gestation found a lower rate of IVH among neonates 
in the delayed cord clamp group compared with neonates in the  
immediate clamp group but this was not statistically significant35. 
A trial assessing the effects of delayed cord clamping in 208  
preterm (<32 weeks’ gestation) infants on neonatal and 18-month 
motor outcomes found that although delayed cord clamping did 
not alter the incidence of IVH in preterm infants, it improved 
motor function at 18 to 22 months’ corrected age (odds ratio  
0.32, 95% CI 0.10 to 0.90)36. More recently, a meta-analysis 
of 18 RCTs comparing delayed versus early clamping in 2834  
infants born at less than 37 weeks’ gestation found that  
delayed clamping (30 seconds to more than 120 seconds) 
reduced hospital mortality (RR 0.68, 95% CI 0.52 to 0.90);  
however, delayed cord clamping did not reduce the incidence 
of intubation for resuscitation, mechanical ventilation, IVH, 
or brain injury37. Maternal postpartum hemorrhage or the need 
for maternal blood transfusion was not impacted by delayed  
clamping.

As a result, the American College of Obstetricians and  
Gynecologists recommends a delay in umbilical cord clamping 
for at least 30 to 60 seconds after birth in vigorous term and  
preterm infants38. This has been endorsed by the American 
Academy of Pediatrics, and recent Neonatal Resuscitation  
Program guidelines recommend delayed umbilical cord  
clamping for at least 30 to 60 seconds for most vigorous term and 
preterm infants39,40.

It has been postulated that delayed cord clamping allows  
improved cardiovascular transition with resultant improved 
cerebral autoregulation41. Also, delaying clamping for at least  
60 seconds may increase the number of infants breathing before 
the cord is clamped and this may decrease need for invasive  
mechanical ventilation and endotracheal intubation37. Animal 
data suggest that timing cord clamping on the basis of the infant’s  
physiology may optimize the potential benefits and that 
delayed cord clamping may be of greatest benefit to apneic  
infants42–44.

Non-steroidal anti-inflammatory drugs
Indomethacin, a non-selective cyclo-oxygenase (COX) inhibitor 
was shown to reduce the incidence of IVH in preterm infants  

(RR 0.66, 95% CI 0.53 to 0.82)45. A meta-analyses of 19 
large RCTs found that prophylactic indomethacin in preterm 
infants did not improve mortality or long-term developmental  
outcomes46. However, pooled data from recent observational  
studies suggest that the use of prophylactic indomethacin may be 
associated with a small reduction in mortality risk, particularly in 
infants with birth weights above the 10th percentile47.

Ibuprofen is another non-selective COX inhibitor but has not  
been shown to prevent IVH in premature infants48.

Indomethacin promotes maturation of the cerebral vasculature49; 
blunts cerebral vascular responses caused by hypoxia,  
hypercapnia, hypertension, and asphyxia50,51; and improves  
cerebral vascular autoregulation52, all of which may contribute to  
a reduction of IVH.

Prophylactic indomethacin administration continues to be used 
in many centers across the United States despite conflicting  
evidence. Well-designed contemporary studies are required to  
guide clinical practice.

Therapeutic hypothermia
Multiple RCTs of therapeutic hypothermia in term newborns 
have demonstrated that hypothermia (33–35 °C) for 72 hours  
starting within about 6 hours of birth is associated with 
improved survival and decreased neurological impairment53–59.  
A meta-analysis60 of 11 of these trials involving 1505 term and 
late preterm infants with moderate or severe encephalopathy  
found that therapeutic hypothermia resulted in decreased death 
or major disability by 18 to 24 months of age (RR 0.75, 95%  
CI 0.68 to 0.83), as well as decreased mortality (RR 0.75, 95% 
CI 0.64 to 0.88), and reduced neurodevelopmental disability  
in survivors (RR 0.77, 95% CI 0.63 to 0.94). Subgroup 
analysis revealed that infants with severe encephalopathy  
demonstrated significant reduction in mortality but no signifi-
cant reduction in major disability, although there was a trend 
toward improvement (RR 0.75, 95% CI 0.50 to 1.12), and the  
lack of significance was attributed to the small number of infants 
in this category. There was no significant reduction in death or  
moderate to severe disability at 6 to 7 years of age among those 
that underwent hypothermia, but there was a clinically important  
trend toward improvement (RR 0.81, 95% CI 0.64 to 1.04) 
and a significant reduction in death at 6 to 7 years of age. The  
CoolCap trial, for instance, found that the measured outcome 
at 18 months was strongly associated with overall functional 
scores at 7 to 8 years of age, supporting a sustained treatment  
effect of therapeutic hypothermia61. The NICHD (Eunice  
Kennedy Shriver National Institute of Child Health and Human 
Development) trial found no significant reduction in the  
combined outcome of death or an IQ score of less than 70 at 6 
to 7 years in the hypothermia group; however, hypothermia  
resulted in lower death rates and did not increase rates of severe 
disability among survivors62.

The above-mentioned meta-analysis also demonstrated a  
significant reduction in CP in the hypothermia groups (RR 
0.66, 95% CI 0.54 to 0.82)60. Therapeutic hypothermia was also  
associated with significant reduction in the presence of abnormal 

Page 4 of 12

F1000Research 2019, 8(F1000 Faculty Rev):2031 Last updated: 29 NOV 2019



findings on MRI60, in particular in the basal ganglia or  
thalamus, white matter, and abnormal posterior limb of the 
internal capsule63. A retrospective cohort study of 224 neonates 
found that therapeutic hypothermia in moderate encephalopathy 
was associated with reduced seizures (RR 0.43, 95% CI 0.30 to 
0.61)64.

It remains to be seen whether the therapeutic window for  
hypothermia may extend beyond 6 hours. A multicenter RCT 
spanning 8 years and including term infants with moderate  
or severe HIE found that hypothermia initiated at 6 to 24 hours 
after birth compared with non-cooling resulted in a 76%  
probability of any reduction in death or disability at 18 to 22 
months65. The neuroprotective mechanisms of hypothermia  
include reduced concentrations of free creatine, lactate, NAA, 
and neurotransmitters such as glutamate, glutamine, GABA, 
and aspartate and increased concentration of taurine and  
phosphocreatine. Animal models have also demonstrated that 
hypothermia reduces synthesis of free radicals and nitric oxide  
and suppression of microglial activation66. Overall, hypothermia 
attenuates cellular energy demand and secondary energy  
failure67.

Although therapeutic hypothermia is now the standard of care 
for term and late preterm infants with moderate/severe HIE,  
future directions include investigating the neuroprotective  
mechanism in infants with mild encephalopathy and in preterm 
infants. There is recent evidence to suggest that mild HIE is  
associated with disability68. In addition, the combination of  
hypothermia with other therapeutic agents such as those described  
below is being investigated.

Recombinant human erythropoietin
Several studies suggest that erythropoietin, either alone or in  
combination with hypothermia therapy, improves neurodevel-
opmental outcomes and is safe. A case control study in Egypt 
with 45 neonates with mild to moderate HIE found that neonates 
that received human recombinant erythropoietin 2500 IU/kg  
subcutaneously daily for 5 days had decreased serum nitrous  
oxide concentrations, fewer seizures, improved electroencepha-
logram backgrounds, and favorable neurologic outcomes at  
6 months of age. An RCT in China in 167 term neonates 
with moderate to severe hypoxia-ischemia demonstrated that  
erythropoietin monotherapy 300 to 500 IU/kg reduced disability 
at 18 months in infants with moderate but not severe injury69.  
A trial in India in 100 term neonates with moderate or severe HIE 
found that erythropoietin 500 U/kg monotherapy given within 
6 hours of birth resulted in significant reduction of death or  
moderate or severe disability at 19 months of age (RR 0.57,  
95% CI 0.38 to 0.85) and lower risk of CP in survivors (RR 0.52, 
95% CI 0.25 to 1.03). A phase II, multicenter, double-blinded  
controlled trial in the Unites States (NEATO) in term  
newborns with moderate to severe HIE found that multiple doses 
of erythropoietin (1000 U/kg) given intravenously for 7 days was  
associated with reduced severity of brain injury on neonatal  
MRI, specifically in the subcortical region, and improved 
motor function at 1 year among infants undergoing therapeutic  
hypothermia70. Phase III trials are under way to determine whether 
high-dose erythropoietin in conjunction with hypothermia 

in infants with moderate/severe HIE reduces the combined  
outcome of death or neurodevelopmental disability and improves 
neurodevelopmental outcomes at 2 years of age, without  
significant adverse effects, when compared with hypothermia 
alone71. A pilot prospective study of nine patients who met  
criteria for hypothermia suggests that combination therapy 
with 300 U/kg erythropoietin every other day for 2 weeks,  
250 mg/kg magnesium sulfate for 3 days, and therapeutic  
hypothermia is feasible in newborns with HIE. Phase II and II  
studies are needed to investigate the neuroprotective effect of  
this strategy.

However, it should be noted that a recent mouse model study 
suggested that, when used immediately after the insult,  
erythropoietin may not be beneficial in situations of extreme  
oxidative stress and may, in fact, worsen the injury72.

Preliminary data also suggest a benefit of erythropoietin in  
preterm infants. A retrospective analysis73 of neurodevelopmental 
outcome data from extremely-low-birth-weight infants given 
500 to 2500 U/kg erythropoietin × 3 doses in a phase I/II trial74  
found that erythropoietin administration correlated with  
improvement of cognitive and motor scores. A study of 102  
infants reported improved cognitive scores at 18 to 22 months 
in preterm infants that received low doses of erythropoietin  
(400 U/kg, 3×/week subcutaneously) or darbepoetin (10 μg/kg,  
1×/week subcutaneously)75. In a large multicenter placebo- 
controlled randomized trial in Switzerland of very preterm  
infants (born at between 26 and 32 weeks), there were no  
significant differences in neurodevelopmental outcomes at  
2 years between those that received prophylactic early high-
dose erythropoietin for neuroprotection and those that received  
placebo76. However, subgroup analyses revealed that high-dose 
erythropoietin administration was associated with reduced brain 
injury, improved white matter development in the major white  
matter tracts, and an increase of local structural connectivity 
strengths77–79. A large RCT of 800 infants of not more than 32 
weeks’ gestational age demonstrated that repeated low-dose  
erythropoietin (500 IU/kg) reduced risk of long-term neuro-
logical disability in very preterm infants at 18 months of age  
(RR 0.40, 95% CI 0.27 to 0.59)80. A meta analyses of four 
RCTs including 1133 preterm infants showed that prophylactic 
erythropoietin improved neurocognition at 18 to 24 months’ 
corrected age but had no significant effect on motor  
development, hearing, or vision81.

A recent Cochrane review of 34 studies spanning 22 countries 
enrolling 3643 infants, gestational age of less than 37 weeks  
and/or birth weight of less than 2500 g concluded that early 
treatment with erythropoiesis-stimulating agents significantly  
decreased rates of IVH, periventricular leukomalacia, and 
necrotizing enterocolitis82. It also found a reduction in any  
neurodevelopmental impairment at 18 to 22 months in the  
erythropoietin group compared with the placebo group (typical  
RR 0.62, 95% CI 0.48 to 0.80), but the quality of evidence was 
deemed to be low.

Further trials are needed to determine optimal dosing strategy  
and long-term assessment of developmental outcomes. The  
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Phase 3 Preterm Erythropoietin Neuroprotection (PENUT) trial 
(ClinicalTrials.gov Identifier: NCT01378273) randomly assigned 
941 preterm infants between 24 and 27 weeks’ gestation to 
receive erythropoietin 1000 U/kg or placebo given intravenously 
every 48 hours for six doses, followed by 400 U/kg or sham 
injections three times a week through 32 weeks postmenstrual 
age83. Results are pending publication. Other trials using eryth-
ropoietin in preterm or very preterm infants (ClinicalTrials.gov  
Identifiers: NCT02550054 and NCT02076373) are under way to 
assess neurodevelopmental outcomes84,85.

The neuroprotective and neuroregenerative effects of erythropoi-
etin are likely related to its anti-inflammatory86, anti-excitotoxic, 
anti-oxidant87, and anti-apoptotic effects on neurons and  
oligodendrocytes and regenerative effects of oligodendrogenesis, 
neurogenesis, and angiogenesis88–92.

Melatonin
Data from animal studies suggest a role of melatonin in  
perinatal neuroprotection93–97. In a randomized controlled 
pilot study of 45 newborns, 30 of whom had HIE, melatonin  
administration together with hypothermia was associated with 
fewer seizures, fewer white matter abnormalities on MRI,  
and better mortality rate at 6 months without developmental or 
neurological abnormalities98. A phase II multi-center double- 
blinded randomized placebo-controlled trial (Mint study)  
evaluating the neuroprotective effect of intravenous melatonin 
in 58 preterm infants born at less than 31 weeks’ gestation 
found no difference in white matter fractional anisotropy99. The  
PREMELIP study aimed to assess the neuroprotective effect 
of melatonin administered in the immediate prepartum period  
in very preterm infants (<28 weeks’ gestation) using MRI but was 
terminated100. The “Protect Me Trial”, which aims to evaluate 
the effect of maternal melatonin supplementation in pregnancies  
with early-onset fetal growth restriction on neurodevelopmental 
outcomes at 2 years of age, is under way101.

Melatonin’s neuroprotective effects are likely due to its  
antioxidant102,103, anti-inflammatory94,96,104, and anti-apoptotic94,105 
effects, which may protect against free radical–induced  
damage incurred during times of increased oxidative stress  
perinatally106.

Xenon
Xenon has demonstrated neuroprotection in animal models 
of moderate HIE and this effect is enhanced when combined  
with cooling107,108. However, a single phase II trial randomly 
assigning 92 newborns with moderate to severe HIE to either  
cooling plus xenon or cooling alone did not show signifi-
cant differences between magnetic resonance biomarkers of 
brain damage or in occurrence of seizures during primary  
hospitalization56. Long-term neurodevelopmental outcomes were 
not reported. However, this study was limited by delay before  
starting xenon (median of 11 hours). Thus, current evidence is  
inadequate to determine whether xenon therapy for newborns  
with HIE is effective109.

Xenon’s neuroprotective effects are thought to be related to its  
inhibition of NMDA subtype of the glutamate receptor, a 

key step in the neurotoxic cascade, and activation of two 
species of potassium channels which have been linked to  
neuroprotection110.

Topiramate
Topiramate has demonstrated neuroprotective effects in animal 
models of transient global cerebral ischemia, ischemic stroke, 
and neonatal hypoxic ischemic cerebral injury111–113. A phase II 
trial in term newborns with moderate to severe HIE treated with  
hypothermia showed that treatment with topiramate was safe 
but that, compared with cooling alone, it did not improve death  
or neurological disability114. There was a reduction in the  
prevalence of epilepsy observed in the topiramate group. The 
neuroprotective properties of topiramate are presumed to be  
due to AMPA and kainate receptors inhibition115, blockade 
of sodium116 and high voltage-activated calcium currents, and 
inhibitory effect on mitochondrial permeability transition  
pores117,118.

Allopurinol
A 2012 Cochrane review including 114 infants in three trials  
found no clear differences in severe neurodevelopmental  
disability or death among survivors at 18 months or at 4 to  
8 years after allopurinol versus placebo (RR 0.78, 95% CI 0.56 
to 1.08)119. In addition, a follow-up study of two of the trials  
included in the above review found no differences in mortality 
or developmental disability at the age of 4 to 8 years in the  
overall group of asphyxiated infants; however, a subgroup 
revealed significantly less severe adverse outcome in the  
allopurinol-treated moderately asphyxiated infants compared 
with controls (RR 0.40, 95% CI 0.17 to 0.94)120,121. A more 
recent follow-up study of 222 women in labor with suspected 
fetal hypoxia randomly assigned to receive allopurinol or  
placebo demonstrated that allopurinol administration does not 
improve long-term developmental and behavioral outcome at 
5 years of age121,122. Currently, a multicenter European trial  
(ClinicalTrials.gov Identifier: NCT03162653) is under way 
to evaluate whether early postnatal allopurinol in addition to  
standard of care reduces the incidence of death or severe  
neurodevelopmental impairment at 24 months of age in newborns 
with HIE123.

Allopurinol, a xanthine oxidase inhibitor, preserves NMDA  
receptor integrity and prevents adenosine degradation and oxygen 
radical formation and this potentially confers neuroprotection in 
HIE124.

Autologous cord blood cell therapy
Preclinical evidence is emerging to support the use of cord- 
derived mesenchymal stromal cells (MSCs) for regeneration and 
repair of injured immature brain125,126. Animal models suggest 
that exogenous administration of MSCs significantly reduces 
brain injury and post-hemorrhagic hydrocephalus after IVH by  
protecting against inflammation, gliosis, and apoptosis of the 
injured brain127–129.

Limited clinical data exist suggesting that the use of  
autologous cord blood cells for perinatal/preterm brain injury 
is safe and feasible130–132. Further clinical trials are under way to  
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evaluate safety and efficacy of autologous cord blood cells  
for neonatal brain injury133–138.

MSCs are thought to restore neurological injury by differen-
tiation to neuronal cells or, more importantly, via secretion of 
paracrine factors such as insulin-like growth factor (IGF-1),  
vascular endothelial growth factor (VEGF), and brain-derived  
neurotrophic factor (BDNF), which augment neuronal and glial 
cell proliferation and survival139,140. These transplanted MSCs  
secrete the paracrine factors at variable levels in response to 
cues from the local substrate141. Moreover, MSCs are shown to  
secrete anti-inflammatory cytokines127.

Vitamin E
A meta-analysis of 26 randomized clinical trials found that  
vitamin E supplementation in preterm infants (gestational age  
less than 37 weeks or birth weight less than 2500 g) reduced 
the risk of intracranial hemorrhage but increased the risk of  
sepsis142. Currently, there are no data to support the use of vitamin 
E for perinatal neuroprotection.

Creatine
Animal experiments demonstrate that, when given as a  
supplement to the mother’s diet during pregnancy, creatine  

protects the fetal brain against hypoxic insult at term143–145.  
Further trials are needed to evaluate the effect of antenatal  
creatine supplementation on neuroprotection of the fetus. 

Creatine is involved with cellular energy production but also 
has demonstrated antioxidant actions146, stabilization of lipid 
membranes147, and interactions with glutamate and GABAA  
receptors148 that diminish excitotoxicity145,149.

Conclusions
Recent clinical and laboratory advances in neuroprotection 
of the developing brain suggest that there is a cascade of  
biochemical events that can be partially disrupted, lead-
ing to reduced brain injury. Brain cooling and blockade of 
NMDA glutamate receptors are two of the earliest interven-
tions that showed an ability to reduce brain injury and these 
interventions can be synergistic. Cooling has been shown to 
reduce brain injury in human term infants by impeding the  
cascade of injury, especially the events in the mitochondria. 
Magnesium has shown neuroprotective activity in numerous  
studies, several possibly by anti-inflammatory and anti-glutamate 
effects. Anti-erythropoietin protective effects have also been iden-
tified. Recent advances in perinatal neuroprotection are growing 
briskly as we identify more potential therapeutic targets.
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