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Abstract: Parkinson’s Disease (PD) is characterized by primary and secondary plasticity that occurs
in response to progressive degeneration and long-term L-DOPA treatment. Some of this plasticity
contributes to the detrimental side effects associated with chronic L-DOPA treatment, namely L-
DOPA-induced dyskinesia (LID). The dopamine D3 receptor (D3R) has emerged as a promising target
in LID management as it is upregulated in LID. This upregulation occurs primarily in the D1-receptor-
bearing (D1R) cells of the striatum, which have been repeatedly implicated in LID manifestation. D3R
undergoes dynamic changes both in PD and in LID, making it difficult to delineate D3R’s specific
contributions, but recent genetic and pharmacologic tools have helped to clarify its role in LID. The
following review will discuss these changes, recent advances to better clarify D3R in both PD and
LID and potential steps for translating these findings.

Keywords: dopamine D3 receptor; dopamine D1 receptor; D1R–D3R; Parkinson’s Disease; L-DOPA-
induced dyskinesia; striatum

1. Introduction

Parkinson’s Disease (PD) is the second-most-common neurodegenerative disorder
and is primarily characterized by the death of midbrain dopaminergic neurons in the
substantia nigra pars compacta. The loss of dopaminergic inputs to the striatum results
in the manifestation of PD’s cardinal motor symptoms: bradykinesia, akinesia, postural
instability and rigidity [1]. However, behavioral manifestations of PD do not appear until
significant cell death has already occurred [2]. This is due to the fact that nuclei within
the basal ganglia undergo significant changes to compensate for the progressive loss of
dopaminergic cells. Some of this compensation is clearly evidenced in morphological stud-
ies that show enlarged remaining nigrostriatal terminals, innervation of projections from
non-dopaminergic areas and post-synaptic dendritic sprouting [3]. Additionally, changes
to dopamine receptor localization, signaling and function have all been demonstrated
in PD.

Over 60 years ago, L-DOPA was discovered as an effective treatment to replenish the
loss of endogenous dopamine [4]. Although L-DOPA remains the gold-standard phar-
macotherapy and initially provides motor benefit, chronic treatment inevitably results in
L-DOPA-induced dyskinesia (LID) in up to 95% of patients after 15 years of treatment [5,6].
Given that L-DOPA therapy is normally started in mid-stage PD, the previously described
neuroplasticity that compensates in post-symptomatic PD can indicate the individual for
LID. As PD progresses and LID manifests, dopamine receptors exhibit dynamic plasticity
that differentially participates in PD/LID. The following review will track the plasticity of
dopamine receptors, namely the dopamine D3 receptor (D3R), throughout PD and LID.
In the past decade, multiple pharmacologic (Table 1) and non-pharmacologic (Table 2)
strategies have revealed the therapeutic potential of targeting D3R.
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2. The D3 Receptor

The dopamine D3 receptor (D3R) was first molecularly cloned and characterized in
1990 [7,8]. Since its discovery, D3R has emerged as a promising yet enigmatic target for
treatment in PD, substance abuse and schizophrenia [9,10]. D3R belongs to the dopamine
D2-like (D2R, D3R, D4R) family of G-protein-coupled receptors (GPCRs), which, pro-
totypically, are Gi-coupled and act by inhibiting adenylate cyclase (AC) signaling and
downstream effectors [11]. This is in opposition to the D1-like (D1R, D5R) family of re-
ceptors, which are Gs/q/olf-coupled and positively regulate downstream signaling. D3R
shares 75–80% transmembrane domain homology with D2R [11]. However, the structural
differences that do exist, mainly in loop regions, between D2R and D3R result in profound
functional outcomes. The crystallization of D3R in 2010 revealed the presence of an al-
losteric extracellular binding pocket in D3R that likely contributes to the widely variable
responses of D3R-targeting compounds [12]. Additionally, whereas D2R rapidly internal-
izes upon stimulation, D3R displays little agonist-induced internalization. This is likely
due to differences in intracellular loops which, when swapped, reversed the internalization
profile of D2R and D3R.

Notably, D3R possesses the highest affinity for dopamine and potently interacts with
many putative D2R-like agonists [7]. Therefore, minor changes to D3R expression may
significantly modify dopaminergic signaling. Neural D3R expression is more restricted
than D1R and D2R, which display diffuse expression throughout functionally heterogenous
structures of the brain. D3R is robustly expressed in the islands of Calleja, the ventromedial
shell of the nucleus accumbens, the substantia nigra, olfactory tubercle and in some areas
of the cerebellum [7,13,14]. A population of D3R also exists in the pyramidal cells of the
prefrontal cortex, where they regulate cell excitability via a subtype of calcium channels [15].
D3R has also been pharmacologically interrogated in the rat hippocampus, where D3R is
post-synaptically situated [16].

3. Dopamine D3 Receptor (D3R) in the Parkinsonian Brain
3.1. Dopamine D1 Receptor (D1R) and Dopamine D3 Receptor (D3R) Expression Following
Denervation

Parkinson’s Disease (PD) is characterized by the progressive and irreversible loss of
midbrain dopaminergic cells. The striatum normally receives dense dopaminergic input
from these cells and undergoes significant changes to compensate for the loss of dopamine.
Changes to dopamine receptor expression, largely on medium spiny neurons (MSNs), are
one way in which this compensation manifests. This is clearly evident in D1R subcellular
localization and function. D1R shares 75–80% transmembrane domain homology with
the other D1-like receptor, D5R [17]. However, in terms of relative expression in the
brain, D1R dominates. It displays high levels of expression in the caudate–putamen,
nucleus accumbens, substantia nigra, olfactory bulb, amygdala and frontal cortex. In the
hippocampus, cerebellum, thalamus and hypothalamic areas, D1R is also expressed but
at lower levels [11,17]. D1R can localize on MSNs both post-synaptically in opposition to
incoming DA afferents and pre-synaptically to modulate γ-Aminobutyric acid (GABA)
release in output nuclei such as the substantia nigra pars reticulata [18]. It does not appear
that changes to overt D1R expression significantly contribute to D1R receptor sensitivity,
although this remains a matter of debate. Rather, changes to D1R localization within the
cell may be more important (Figure 1). In 2007, Guigoni and colleagues found increased
D1R immunoreactivity in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated primates specifically in perimembranous regions, indicating increased D1R
recruitment to the plasma membrane [19]. A nearly identical result was also found in
hemi-parkinsonian rats [20]. The consequences of increased expression of D1R at the cell
surface have implications in LID. Interestingly, in a genetic model of PD, mice expressing
the disease-associated mutant G2019S LRRK2 also displayed impaired internalization of
D1R [21]. Alterations in D1R trafficking may be a hallmark of both idiopathic and sporadic
forms of PD.
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Figure 1. Summary of major changes associated with dopamine D1/D3 receptors in the striatum and
nigra. Studies in cells, mice, rats, non-human primates and humans have demonstrated dynamic
changes to dopamine receptors D1 (D1R) and D3 (D3R) across Parkinson’s Disease (PD) and L-DOPA-
induced dyskinesia (LID). In the denervated state, D1R are sensitized. This is partially achieved by
increases in membrane-bound G-protein-coupled D1R. In L-DOPA-induced dyskinesia (LID), D1R
are unable to internalize and effectively terminate signaling, leading to further supersensitization and
second messenger signaling. Some evidence suggests that striatal D3R are also supersensitive in PD
but are expressed at almost undetectable levels. In LID, D3R are upregulated predominantly on D1R
cells, where they display cooperativity with D1R at the level of downstream signaling. In contrast, in
striatonigral terminals, D3R inhibits D1R signaling in the denervated state. This inhibitory property
is maintained in severely (but not mildly) dyskinetic subjects. Image credit: Servier medical art
(http://smart.servier.com/; Access date: 15 March 2021).

Other changes occur to D1R in the DA-denervated brain related to G-protein coupling
and downstream effectors. As previously described, D1R canonically couples with Gαs.
However, D1R has been observed to also couple with other stimulatory G-proteins such as
Gαolf, particularly in the rodent striatum. In response to 6-OHDA lesion, Gαolf expression
is increased in the striatum, as is DA-dependent AC activity [22,23]. Though others have
found that gross Gαolf expression is not changed [24], D1R coupling with Gαolf is enhanced
according to co-immunoprecipitation. Therefore, this shift has been postulated to play a role
in the supersensitivity of D1R before L-DOPA initiation begins. Notably, Gαolf levels were
also increased in postmortem PD brains [23]. In the same vein, increased levels of Gαolf-
dependent AC type 5 (AC5) have also been observed in both the striatum and substantia
nigra pars reticulata in hemi-parkinsonian rats, suggesting enhanced downstream signaling
in addition to G-protein coupling [25]. Therefore, converging evidence suggests that a
shift to a more sensitive state related due to cellular localization, G-protein coupling and
downstream signaling contributes to D1 sensitivity following DA cell loss (Figure 1). In the
past few years, the role of other DA receptors, namely D3R, has become increasingly clear.

As mentioned, D3R expression in the rodent is considerably more restricted than
expression of D1R and D2R. Interestingly, despite the fact that the ventral striatum is less
affected in PD modeling, D3R mRNA and binding is reduced in the nucleus accumbens
following a 6-OHDA lesion in rats or MPTP treatment in monkeys [26]. In tandem, D3R
mRNA in the substantia nigra reticulata is decreased [7]. The consequences of these
changes in expression are not well understood. In the striatum, where D3R expression is
considerably lower, subtle changes in expression following dopamine depletion might be
difficult to detect. In rats, striatal D3R binding does not change in response to 6-OHDA
lesion [27]. In MPTP-treated monkeys, decreases in D3R binding have been observed
in the caudate but not in the putamen [28–30]. In humans, in vivo imaging of D2-like

http://smart.servier.com/
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receptors with [11C] Raclopride demonstrated an increase in D2-like receptors in early PD
within the putamen [31]. In contrast, D3R expression was not changed in postmortem
samples from PD patients [32]. In human studies, these observational differences in D3R
expression may be because D3R undergoes distinct changes during disease progression
and then again during L-DOPA treatment. Discrepancies in these observations might also
be related to the species-specific differences in D3R expression compounded with a lack
of pharmacological probe specificity. In general, it seems that in species where D3R is
normally not expressed at detectable levels in the striatum (e.g., rodents), DA denervation
does not significantly change D3R expression. However, in animals where D3R is lowly
expressed (e.g., non-human primates and humans), D3R expression undergoes modest
changes in expression that depend on disease duration. The use of D3R expression as a
biomarker in prodromal/preclinical PD is extensively discussed in [33].

3.2. Dopamine D3 Receptor (D3R) Signaling Changes Following Denervation

Although overt changes to D3R expression in PD are still not completely clear, parame-
ters related to D3R signaling do change in response to dopamine cell loss (Figures 1 and 2).
Following 6-OHDA striatonigral lesions, the D3R agonist 7-OH-DPAT displays enhanced
potency in the striatum [34]. Moreover, electrophysiological and behavioral studies sug-
gest that D3R activity may be enhanced, displaying a supersensitive profile similar to
D1R [35,36]. The mechanisms for D3R supersensitization are not entirely clear, but one of
these may relate to D3R interactions with its truncated receptor splice variant D3nf. One of
the purposes of truncated receptors is to modulate the activity of full-length receptors at the
cell surface. Therefore, when it is colocalized and interacting with D3R, D3nf decreases the
capacity of D3R to interact with ligands. Notably, this does not correspond with decreased
membrane localization of D3R, explaining why differences in ligand binding in PD may
or may not be observed [37]. Moreover, D3R/D3Rnf ratios are sensitive to hyper- and
hypodopaminergic states [38]. Neurotoxic 6-OHDA lesion significantly reduced D3nf
protein in the striatum of rats [35]. As a result, the internal regulatory mechanisms of D3R
via the production of D3nf may be compromised in the DA-denervated state and contribute
to D3R supersensitivity [39].
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Figure 2. Theoretical signaling pathways of the dopamine D1/D3 receptors in the healthy, Parkinsonian or dyskinetic
striatum. In the intact brain, dopamine (DA) is released from striatonigral terminals and interacts with post-synaptic D1
receptors (D1R; low DA affinity but high expression) and dopamine D3 receptors (D3R; high DA affinity but low expression)
which couple with canonical G-proteins to increase or decrease G-protein signaling, respectively. Each of these receptor
properties is theoretically maintained in PD, with reductions in DA levels due to the retraction of striatonigral terminals.
D1R is sensitized due to increased presence at the membrane. In the dyskinetic state, DA is exogenously provided via
L-DOPA. D3R is upregulated and interacts with D1R, potentially in the form of a heteromer. D1R–D3R cooperate to
drive downstream signaling, such as phosphorylation of ERK (pERK). This signaling might be G-protein-independent.
cAMP: cyclic AMP; AC: adenylyl cyclase. Image credit: Servier medical art (http://smart.servier.com/; Access date: 15
March 2021).

http://smart.servier.com/


Biomedicines 2021, 9, 314 5 of 13

D3R changes in response to denervation have also been reported downstream from
the striatum in striatonigral terminals (Figure 1). In the intact brain, within these terminals,
D3R interacts with D1R to potentiate GABA release [18,40]. Although this is atypical
signaling for D3R in terms of its canonical G-protein, others have reported similar effects
when D1R and D3R colocalize [41,42]. Importantly, within the SNr, the ability of D3R to
potentiate D1R signaling is dynamic and depends on levels of cytoplasmic Ca2+. When
calcium/calmodulin-dependent protein kinase II (CaMKII) is activated by Ca2+, CaMKII
phosphorylates the third intracellular loop of D3R. In this phosphorylated state, D3R is
no longer able to potentiate D1R signaling [40,43]. However, in the 6-OHDA lesioned
rat, this property of D3R seems to malfunction [44]. Regardless of CaMKII levels, D3R
is unable to potentiate D1R levels and D3R actively suppresses D1R signaling following
D1R stimulation, suggesting that D3R switches from typical (potentiating) to atypical
(inhibiting) signaling. Interestingly, this switch is not applied ubiquitously across all
D3R in striatonigral terminals, as both typical and atypical signaling is observed [45].
Collectively, these data highlight the fact that dopamine depletion differentially modifies
D3R’s actions in the basal ganglia.

4. Dopamine D3 Receptor (D3R) in the Dyskinetic Brain
4.1. Dopamine D3 Receptor (D3R) Changes to Expression in LID

Dopamine replacement therapy with L-DOPA remains the gold-standard pharma-
cotherapy to mitigate the symptoms of PD. However, with chronic use, LID develops in
the majority of patients. Previous plasticity of dopamine receptors, such as the increased
synaptic localization of D1R or supersensitization of D3R, that helped to compensate
for dopamine loss likely contributes to LID manifestation. In the striatum, D3R changes
both in expression and function. As early as 1997, Bordet and colleagues noted that the
ectopic expression of D3R in the striatum occurs as a result of L-DOPA administration
and actively participates in behavioral sensitization [46]. Since then, this phenomenon has
been replicated across multiple other laboratories and models of LID. In 6-OHDA-lesioned
rats and mice [27,47,48], MPTP-treated mice [49] and MPTP-treated monkeys [27,30,50],
dyskinetic subjects display enhanced D3R expression. In monkeys, L-DOPA normalizes
the MPTP-induced decrease in D3R in the caudate, but levels are increased beyond con-
trols in animals with LID [29]. Furthermore, putaminal D3R levels and LID expression
are positively correlated, a trend that has not been observed for any other DA receptor
subtype. This upregulation is largely, if not exclusively, post-synaptic, considering that
most DA terminals are degraded at this late stage [30]. Although experimental overexpres-
sion of D3R alone is enough to produce some stereotyped behaviors [51], it appears that
endogenous upregulation depends on both DA loss and subsequent L-DOPA treatment,
as neither denervation nor L-DOPA alone produces significant upregulation [49]. In rats
rendered dyskinetic with chronic L-DOPA, D3R agonism results in profound dyskinesia
in a dose-dependent manner [52]. Upregulation of D3R has also been reported in striatal
output nuclei within the globus pallidus interna in both monkeys [28] and humans with a
history of L-DOPA treatment [53,54].

D3R normally displays low expression in the dorsal striatum, which makes upregula-
tion of D3R notable in and of itself. Blocking D3R upregulation via intrastriatal infusion of
oligonucleotide antisense to dopamine D3R mRNA attenuated the development of LID in
the 6-OHDA rodent model [55]. Though D3R is traditionally considered a member of the
D2-like family, upregulation of D3R predominantly occurs on D1R-bearing direct-pathway
MSNs [27,46–48]. Although D3R might upregulate, to a lesser degree, on D2R-bearing
MSNs, the specific upregulation on direct-pathway MSNs likely plays a causal role in LID
manifestation. In 2017, Solis et al. found that global knockout of D3R not only attenu-
ates LID but also reduces direct-pathway-associated markers of LID (Table 2). The same
study used a combination of genetic and pharmacological approaches to better clarify the
relationship between D1R and D3R. Heterozygous D1± mice that were administered a
D3R antagonist in conjunction with L-DOPA displayed reduced LID compared to both
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WT and D1±mice receiving L-DOPA alone (Tables 1 and 2). Furthermore, this group had
lower expression of FosB and acetylation of histone 3, which they previously identified
to occur primarily in D1R+ striatal cells. It appears that D1R and D3R are undeniably
interacting within the same cell in LID. Within these cells, some data suggest a physical
interaction of D1R–D3R in the form of a heteromer. In transfected mammalian systems
and striatal membrane preparations, D1R and D3R form heteromers [41,42]. One con-
sequence of this interaction is that D3R effectively makes D1R resistant to individual
agonist-induced internalization, making D1R “locked” in the membrane [41]. In 2014,
Guitart and colleagues expanded these findings to show that, in vitro, D1R and D3R form
higher-order heterodimers in the form of two homodimeric complexes [56]. Whether or not
this complex exists in vivo remains to be determined, but, minimally, in both the rat and
monkey striatum, D1R–D3R heteromers are detectable in dyskinetic subjects [27]. Very re-
cently, researchers found that in human brain samples, D1R–D3R densities better predicted
disease progression and treatment than either receptor alone [57]. We recently directly
tested the dyskinesiogenic effect of D3R by injecting a D3R miRNA into the striatum of
D1-Cre rats prior to chronic L-DOPA treatment. As summarized in Table 2, we showed that
region- (striatal) and cell- (D1R- cells in the striatum) specific knockdown of D3R results in
attenuated LID development without compromising L-DOPA’s therapeutic benefits [58].
Whether or not this resulted in a reduction in D1R–D3R heteromers is not known. However,
anti-dyskinetic strategies reduce D1R–D3R heteromers, suggesting that these interactions
are indeed specific to LID [59].

Table 1. Pharmacologic strategies to target D3R.

Compound (Action) Model Effect on LID L-DOPA Efficacy Ref.

ST 198 (antagonist) MPTP macaque ↓ expression ↓ [28]

BP 897 (partial agonist) MPTP macaque ↓ expression = [28]
MPTP squirrel monkey ↓ expression ↓ [60]

PG01037 (antagonist) Striatal 6-OHDA mice ↓ expression = [48]
Striatal 6-OHDA mice ↓ development = [48]

MFB 6-OHDA rats ↓ expression = [61]
MFB 6-OHDA mice ↓ expression = [62]

S33084 (antagonist) MPTP marmoset ↓ development = [63]
MFB 6-OHDA rats ↓ development of sensitization ? [63]
MFB 6-OHDA rats - expression of sensitization ? [63]
MFB 6-OHDA rats - development ↑ [64]
MFB 6-OHDA rats - expression ↑ [64]
MPTP marmoset - expression ↑ [65]

GR103691 (antagonist) MFB 6-OHDA rats - expression = [66]

PG01042 (agonist) MFB 6-OHDA rats ↓ expression = [65]

SK609 (agonist) MFB 6-OHDA rats ↓ expression ↑ [67]

Summary of pharmacologic strategies to target or normalize D3 receptor function in L-DOPA-induced dyskinesia (LID), where ↓ indicates
reduction; ↑ indicates increase; - indicates no effect on LID; = indicates no change in L-DOPA efficacy; ? indicates not reported. MFB
(medial forebrain bundle); 6-OHDA (6-hydroxydopamine); MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).

The mechanism of D3R upregulation is not fully understood. However, D3R expres-
sion can be bidirectionally modified with D1R agonism/antagonism, suggesting a role of
D1R stimulation in recruitment of D3R [46,47]. In support of this, we previously demon-
strated that D1R and D3R agonism results in cross-sensitization. Prior sub-chronic exposure
to either a D1R or D3R agonist results in a sensitized dyskinetic response when the other
agonist is acutely administered [68]. There are some data linking D1R stimulation and D3R
expression with elevated expression of striatal brain-derived neurotrophic factor (BDNF),
an important factor in cellular proliferation, differentiation and survival [69]. In heterozy-
gous BDNF mice, D3R mRNA is lower than in wildtype controls within the striatum.
Exogenous intrastriatal administration of BDNF partially restores D3R mRNA [70]. In the
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context of PD/LID, Guillan and colleagues found that BDNF antagonism during L-DOPA
treatment blocks D3R upregulation and behavioral sensitization in 6-OHDA-lesioned
rats [71]. In this work, these authors suggest that BDNF originating from hyperactive
corticostriatal projections works in conjunction with D1R agonism to recruit D3R to the
striatum. Although overexpression of striatal BDNF alone increases D3R receptor expres-
sion, this also exacerbates both LID and D1R-agonist induced dyskinesia [59,72]. BDNF
overexpression also increased the expression of D1R–D3R heteromers [73]. There is clearly
a link between D1R stimulation, BDNF expression and induction of D3R. Whether or not
there is an opportunity to leverage this therapeutically remains unclear. This effect is also
not entirely consistent across other models of PD/LID. In MPTP-treated monkeys, levels
of BDNF are not related to LID expression [74]. Although others have found that levels
of BDNF are at least correlated with LID [75], the direct role of BDNF in D3R expression
remains somewhat speculative.

Table 2. Non-pharmacologic strategies to target D3R.

Strategy Model Effect on LID L-DOPA Efficacy Ref.

Global knockout Striatal 6-OHDA D3R -/- mice ↓ development = [48]

Striatal knockdown MFB 6-OHDA rats ↓ development = [55]

Cell-specific striatal knockdown MFB 6-OHDA D1R-Cre rats ↓ development = [58]

Summary of non-pharmacologic strategies to target or normalize D3 receptor function in L-DOPA-induced dyskinesia (LID), where ↓
indicates reduction; ↑ indicates increase; - indicates no effect on LID; = indicates no change in L-DOPA efficacy; ? indicates not reported.
MFB (medial forebrain bundle); 6-OHDA (6-hydroxydopamine); MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).

4.2. Dopamine D3 Receptor (D3R) Changes to Signaling in LID

By itself, D3R can signal both G-protein-dependently and independently. In MPTP-
treated mice rendered dyskinetic, a low dose of a D3R agonist (PD128907; 0.05 mg/kg)
results in blunted MAPK signaling [49]. In contrast, we found that a low but dyskine-
siogenic dose (0.1 mg/kg) of the same D3R agonist does not modify striatal pERK1/2
signaling in 6-OHDA-lesioned dyskinetic rats [52]. This discrepancy could be related to
the PD model, dose of drug or timing of tissue collection. The employment of recently
available PKA and ERK1/2 sensors will be important in delineating the timeline of intra-
cellular signaling, which can fluctuate significantly during the duration of treatment [76].
Downstream in striatonigral projections, D3R agonism alone does not modify cAMP accu-
mulation in synaptosomal preps but D1R–D3R co-stimulation does modify both GABA
release and cAMP accumulation. In the denervated state, this potentiation is lost and
D3R becomes antagonistic to D1R signaling [44]. The antagonistic relationship between
D1R and D3R was only eliminated in mildly dyskinetic subjects, whereas this relationship
remained in severely dyskinetic subjects.

In the striatum, a different pattern emerges in LID between D1R and D3R. This relation-
ship is cooperative, rather than antagonistic. D3R antagonism during L-DOPA treatment
in heterozygous D1± reduces direct-pathway markers associated with cellular activation,
suggesting a cooperative, rather than antagonistic, interaction between the two receptors
in terms of signaling [48]. In in vitro preparations, D1R–D3R complexes signal through G-
protein-independent signaling cascades, where D1R–D3R maintain a canonical antagonistic
relationship at the level of cAMP but synergistically cooperate to drive phosphorylation
of ERK [56]. A similar, G-protein-independent, functional selectivity was also found in
the nucleus accumbens, where D1R–D3R basally interact [77]. It remains to be determined
if a similar pattern of signaling occurs in vivo in the dorsal striatum, where D1R–D3R
interactions become ectopically expressed (Figure 2). We previously demonstrated that
systemic coadministration of D1R and D3R agonists results in synergistic increases in
both dyskinesia and striatal expression of pERK1/2 [52], supporting previous research
demonstrating the site-specific cooperativity of D1R–D3R in downstream signaling [41,77].
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5. Targeting D3R in LID

Given the abundance of data suggesting a dyskinesiogenic role of D3R, it is not surpris-
ing that this has emerged as an intriguing pharmacological target to manage LID (Table 1).
Given that D3R potentiates D1R activity, strategies to normalize D3R function (either via
partial agonism or antagonism) could interfere with this reciprocal relationship. In line
with this, Bézard and colleagues administered BP 897 to MPTP-intoxicated macaques ren-
dered dyskinetic by chronic L-DOPA. BP 897 is a mixed D3R partial agonist and antagonist
(depending on dose). When administered with L-DOPA, BP 897 attenuated LID by 66%
without affecting L-DOPA’s antiparkinsonian effects [28]. However, BP 897 did interfere
with L-DOPA’s efficacy in squirrel monkeys, where the dosage resulted in higher plasma
levels that might modify BP 897’s selectivity for D3R alone [60], suggesting a narrow thera-
peutic window for this compound. Paradoxically, both a highly selective (ST 198) and less
specific (nafadotride) D3R antagonist also interfered with L-DOPA efficacy in the MPTP
macaque model [28]. In marmosets, twice daily coadministration of S33084, a selective com-
petitive D3R antagonist, resulted in attenuated LID development over the 30-day treatment
period compared to L-DOPA alone subjects. This did not come at the expense of L-DOPA’s
antiparkinsonian actions. Following a 2-week washout period, previously S33084-treated
subjects still displayed lower LID in response to a L-DOPA challenge, but this effect was
lost in 50% of subjects at the next 2-week timepoint [63]. The same study also tested the
efficacy of S33084 to alleviate L-DOPA sensitization (as assayed by rotational behavior)
in the 6-OHDA rat model and found that D3R antagonism effectively reduced L-DOPA
sensitization development, but not expression. Similarly, another group found that S33084
did not affect established LID in MPTP-intoxicated marmosets, although it did improve
the antiparkinsonian actions of L-DOPA and ropinirole [78]. Data from 6-OHDA-lesioned
rats support these findings, with S33084 not improving LID development or expression
but potentially improving Parkinsonian disability, either as a monotherapy or adjunctive
treatment to L-DOPA [64]. Similarly, the D3R antagonist GR103691 had no effect on LID
when administered as a co-treatment to L-DOPA [66].

However, some D3R antagonists are more promising in ameliorating LID, even if
the mechanisms by which they convey their effects remain elusive. Administration of
the D3R antagonist PG01037 both before and after L-DOPA administration significantly
reduced LID expression in dyskinetic rats, with the 15 min post-L-DOPA regimen being
the most effective [61]. PD1037 also interfered with apomorphine-, but not D1R agonist-,
evoked dyskinesia. Another group confirmed the anti-dyskinetic effects of PG01037 when
administered 15 min post-L-DOPA [48]. In 2016, Sebasianutto and colleagues demonstrated
that even lower doses of PG01037 can reduce AIM expression without impacting other
locomotor measures [62]. The structurally similar partial D3R agonist PG01042 also reduced
LID when coadministered with L-DOPA, mimicking the previously observed effects of
D3R partial agonism of BP 897 [28,65]. Similarly, the D3R partial agonist SK609 improved
LID, L-DOPA’s therapeutic effect and even cognitive performance in a PD model [67,79]. To
our knowledge, there is no evidence that an anti-dyskinetic D3R antagonist might worsen
Parkinsonian symptoms.

Clearly, D3R-targeting compounds are highly variable (Table 1). There are several
reasons that these contradictions in the literature may exist. The simplest explanation is
that of specificity. The aforementioned similarity in D2R and D3R helps to explain many of
these cases, in that “D3R” tools are not entirely selective for D3R. However, inconsistencies
persist even when using highly selective D3R pharmacological probes. As discussed, D3R
signaling is extremely diverse and D3R-specific ligands likely engage this diversity, biasing
D3R signaling towards one or more intracellular pathway. Biased agonism that results
in functional GPCR selectivity is being described more frequently, both behaviorally and
cellularly, particularly with DA receptors [80]. Additionally, allosteric modulation because
of heteromerization is a common outcome across several GPCR heteromers [80]. Given
that D1R–D3R heteromers might signal G-protein-independently to synergistically drive
downstream signaling [52,56,77], engaging G-protein-dependent signaling of D3R (either
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via partial agonism or antagonism) or targeting D1R–D3R cooperativity might be the key
to unlocking D3R’s therapeutic potential [9]. Furthermore, region-specific understanding
of D3R is warranted. D3R may play an antagonistic [44] or cooperative [48,52] role in D1R
depending on where it is localized within the basal ganglia. D3R also forms heteromers
with other receptors beyond D1R, which further contributes to its functional selectivity,
signaling diversity and DA processing [81–84]. For many years, a lack of ligand specificity
hindered the ability to rigorously test D3R’s role in the brain and behavior. Now, more
D3R tools are available and being used in vivo to accomplish this goal [9,85].

6. Conclusions and Future Directions

Since its discovery in 1990, D3R has been implicated as a key player in many disorders
characterized by dopamine dysfunction [7,8]. Indeed, as early as 1997, Bordet and col-
leagues linked D3R upregulation to behavioral sensitization to L-DOPA [46]. Shortly after,
the same group connected D1R stimulation to D3R upregulation in a model of PD [47].
D1R–D3R interactions have been thoroughly characterized in vitro [41,42,56] but many
questions about their in vivo significance still remain. Cell-specific targeting of D3R has
revealed a dyskinesiogenic role of D3R, but how this might be leveraged therapeutically
remains an open question [58]. Despite early studies suggesting that D3R has limited thera-
peutic potential [28,60,64,78], the generation of new compounds that take into account the
unique signaling properties of D3R has reinvigorated the field. D3R is a promising target
once again [9,67]. In fact, the targeting of D3R to alleviate LID is already being translated
clinically. The D3R antagonist IRL790 (Mesdopetam) is currently undergoing clinical trials
for LID management in PD patients. Early phases suggest that IRL790 is well-tolerated
and effective in reducing LID [86,87] and phase IIB trials (NCT04435431) are currently
underway. As more information is gathered regarding the structural relationship between
D3R and its binding/signaling partners, the number of highly specific D3R compounds is
only expected to rise [12,88]. These developments have the potential to impact both LID
management and a number of disorders marked by aberrant D3R activity.
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