A first approach to test case generation for BPEL compositions of web services using Scatter Search

Search-Based Software Testing
April 1, 2009, Denver

Raquel Blanco, José García-Fanjul, Javier Tuya
[rblanco, jgfanjul, tuya]@uniovi.es

This work is supported by the Ministry of Science and Innovation (Spain).
National Program for Research, Development and Innovation.
Projects Test4SOA (TIN2007-67843-C06-01) and RePRIS (TIN2007-30391-E)

Introduction

- **Previous works:**
 - Generation of test cases for BPEL specification using Model Checking [García-Fanjul et al., 2006]
 - Generation of test cases for structural testing using Scatter Search (TCSS-LS) [Blanco et al., 2009]

- **Objective:** Scatter Search based algorithm to automatically generate test cases for BPEL business processes

- **BPEL specification:** behaviour of business processes based on web service compositions
- **Adequacy criterion:** transition coverage
BPEL business processes

- XML documents with two parts:
 - Declarations
 - Services that interact with the business process
 - Specifications of the business process
 - Set of activities
 - sequence
 - while
 - flow
 - Business process
 - can invoke and receive invocations of web services
 - can update the value of the variables

Problem approach

- **Objective**: to generate test cases that allow all transitions of the business process to be covered

- **Input variables**: variables received from the web services
- **Test case**: input variables + transitions of business process
Problem approach

TCSS-LS State Graph

- Objective: all the transitions to have at least one element in their set S_k

Search process
Treatment of the unfixed number of values of an input variable

- Web service invocation inside a loop → the input variable can take an unknown number of values
- When a partner needs more values:
 - TCSS-LS searches new diverse values among the solutions of the set S_k of the transition in evaluation
 - The vector of the input variable is increased
- When the business process finishes:
 - TCSS-LS drops the values that have not been used
 - The vector of the input variable is decreased
- Generation of new solutions
 - Solutions to combine have vectors of input variables with different size

Case studies

- **Examples**
 - Loan Approval
 - Shipping Service
- **Comparative**
 - TCSS-LS
 - Random
- **Experiments**
 - Stop conditions: 100% transition coverage or 200000 test cases
 - Input variables:
 - Type: integer
 - Range: 16 bits
Case studies: results

<table>
<thead>
<tr>
<th>Number of Test Cases</th>
<th>Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan Approval</td>
<td></td>
</tr>
<tr>
<td>Shipping Service</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- **Conclusions:**
 - Business process modelled as a state graph
 - TCSS-LS handles a set S_k in each transitions of the graph
 - Subgoals
 - TCSS-LS provides mechanisms to handle the unfixed number of values of the input variables
 - TCSS-LS can be applied to the test case generation of BPEL business processes

- **Future works:**
 - To use other adequacy criteria
 - To handle the concurrent execution of activities
 - the experimentation with real-life specifications
A first approach to test case generation for BPEL compositions of web services using Scatter Search

Search-Based Software Testing
April 1, 2009, Denver

Raquel Blanco, José García-Fanjul, Javier Tuya
[rblanco, jgfanjul, tuya]@uniovi.es

This work is supported by the Ministry of Science and Innovation (Spain). National Program for Research, Development and Innovation. Projects Test4SOA (TIN2007-67843-C06-01) and RePRIS (TIN2007-30391-E)