An efficient channel estimation scheme using Walsh pilots in bi-directional wireless OFDM relay systems with analog network coding

Author(s)
Koshimizu, Yuta; Okamoto, Eiji

Citation
IEICE Transactions on Communications, E96-B(8): 2119-2130

Issue Date
2013-08-01

URL
http://repo.lib.nitech.ac.jp/handle/123456789/19395

Rights
Copyright © 2013 IEICE http://search.ieice.org/index.html

Type
Journal Article

Textversion
publisher

・Nameko Institute of Technology Repository is a system to collect, archive and offer electronically the academic information produced by Nagoya Institute of Technology.
・The copyright and related rights of the article are held by authors or publishers. The copyright owners' consents must be required to use it over the curtailment of copyrights.
・Textversion "Author" means the article is author's version. Author version may have some difference in layouts and wordings from publisher version.
An Efficient Channel Estimation Scheme Using Walsh Pilots in Bi-directional Wireless OFDM Relay Systems with Analog Network Coding

Yuta KOSHIMIZU(a) and Eiji OKAMOTO†, Members

SUMMARY In this paper, we propose an efficient channel estimation scheme in bi-directional wireless orthogonal frequency division multiplexing (OFDM) relay systems applying analog network coding (ANC). In the relay systems applying ANC, channel separation is needed to estimate each of the bi-directional channels simultaneously from the combined received signal. In the conventional channel estimation schemes, relatively higher-ratio pilots are needed to obtain accurate channels. In contrast, we propose a channel estimation scheme with sparse pilots, while maintaining high accuracy for channel estimation. In the proposed scheme, Walsh codes are inserted as the pilot symbols at both end nodes, and the individual channels are obtained by correlation processing from the combined signals. The improved bit error rate (BER) and throughput performances of the proposed scheme are shown through computer simulations.

key words: channel estimation, OFDM, analog network coding, Walsh code

1. Introduction

A transmission technique in which the transmit and receive nodes communicate with each other through the relay nodes is known as a relay system. Relay systems produce many benefits in flexible network formation and the expansion of communication areas. However, in bi-directional relay systems, throughput degradation occurs owing to the requirement of many time slots to avoid interference in bi-directional transmission at the relay node. To address this problem, network coding (NC) techniques [1]–[4] have been proposed, which can be roughly divided into digital network coding (DNC) [1], [2] and analog network coding (ANC) [3], [4]. The Alice and Bob topology, in which two transmit/receive nodes communicate with each other through one relay node, as shown in Fig. 1(a), is considered in this study as a bi-directional relay system. In the Alice and Bob topology, bi-directional transmission without NC needs four time slots, as shown in Fig. 1(b), and DNC needs three time slots, as shown in Fig. 1(c), but ANC can terminate the transmission with only two time slots, as shown in Fig. 1(d). This means that the ANC scheme can double the throughput as compared with a non-NC scheme and increase the throughput 1.5 times as compared with the DNC scheme. The ANC scheme is particularly effective in wireless communication, as the frequency resources are limited. In wireless communications, because the channel state is changed, the channel estimation and equalization for all links at each time slot are needed. However, in the ANC scheme, the relay node receives the combined signals from both end nodes at Time Slot 1, as shown in Fig. 1(d). Thus, channel separation is needed to estimate each of the channels. Some channel separation and estimation schemes in the bi-directional relay with ANC have been proposed in [5], [6]. In both [5] and [6], interference in the superimposed signal is avoided by using phase-shifted pilots between both end nodes and by orthogonalizing the channels. In [5], channel estimation is carried out at each time slot, whereas in [6], channel estimation is jointly carried out at Time Slot 2 in Fig. 1(d). In contrast to [5], channel feedback from the relay node is not necessary in [6]. It is concluded that the throughput performance can be improved by omitting the channel feedback from the relay to the end nodes while the degradation of channel estimation accuracy is restricted. However, in [5], [6], one entire orthogonal frequency division multiplexing (OFDM) frame is needed as the pilot to estimate the channel, as shown in Fig. 2(a), which is called “block type” hereafter. This frame structure decreases the rate efficiency. To address this problem, we have proposed channel estimation schemes with sparse pilots, as shown in Fig. 2(b) [7], [8]. The proposed schemes use Walsh codes as pilots [9], [10], and the channels are separated by correlation pro-
cessing based on Walsh code orthogonality at the receiver. Correlation processing of the proposed schemes is obtained by the extension of conventional correlation processing [10] and is more robust to time-selective fading. The scheme of [7] estimates channels at each time slot, whereas the scheme of [8] estimates channels only at Time Slot 2. We have confirmed in [8] that throughput improvement is achieved by the extension of conventional correlation processing [10] estimates channels only at Time Slot 2. We have confirmed in [8] that throughput improvement is achieved by the extension of conventional correlation processing [10]. However, in [7], [8], channel coding was not considered. Usually, channel coding is indispensable in improving the performance of wireless communication systems. Therefore, in this paper, we propose an efficient channel estimation scheme using sparse Walsh pilots in bi-directional ANC-based wireless OFDM relay systems while considering channel coding and show the improved performances.

The remainder of this paper is organized as follows. The bi-directional network model is described in Sect. 2. The classification of channel estimation and the proposed schemes are introduced in Sect. 3. Additionally, the two-dimensional fast Fourier transform (FFT)-based interpolation scheme is introduced in Sect. 3. In Sect. 4, numerical results are shown, and the conclusions are drawn in Sect. 5.

2. System Model

The system model considered in this paper is a bi-directional two-time slot wireless OFDM relay system with ANC, as shown in Fig. 1(d). Nodes $T_1$ and $T_2$ communicate with each other through relay node $R$, as they cannot communicate directly. Each node equips one antenna, and the channel is half duplex. We assume a time and frequency selective fading channel as each node moves.

In Time Slot 1, nodes $T_1$ and $T_2$ send their data to relay node $R$. Let $S_i(k)$ ($k = 0, \ldots, N - 1$) be the frequency-domain transmit symbol of node $T_i$ ($i = 1, 2$) after the first modulation at subcarrier $k$, where $N$ is the number of subcarriers. The $N$-symbol time sequence of OFDM is obtained by an $N$-point inverse fast Fourier transform (IFFT) of $S_i(k)$ at each $T_i$. After the addition of $N_{GI}$ symbol guard intervals (GI), the composed OFDM time sequence is transmitted to relay node $R$. The received symbol $R_{1,i}(k)$ at relay node $R$ after removal of the GI and FFT is described by

$$R_{1,i}(k) = \sum_{j=1}^{2} H_{1,i}(k) S_j(k) + N_{1,i}(k) (k = 0, \ldots, N - 1) \quad (1)$$

where $H_{1,i}(k)$ is the frequency-domain channel coefficient between node $T_i$ and relay $R$, and $N_{1,i}(k)$ is a zero-mean Gaussian noise in relay $R$ at Time Slot 1. The transmitter and receiver block diagram at Time Slot 1 is shown in Fig. 3(a). In this figure, Time Slot 1 can be regarded as a multiple-input single-output (MISO) transmission.

In Time Slot 2, the relay node $R$ normalizes the received signal $R_{1,i}(k)$ to generate a forwarding signal $\hat{R}_{1,i}(k)$ as follows:

$$\hat{R}_{1,i}(k) = G R_{1,i}(k) (k = 0, \ldots, N - 1),$$

$$G = 1 / \sqrt{E(|R_{1,i}(k)|^2)} \quad (2)$$

where $G$ is the normalization gain factor, and $E[\cdot]$ is an expectation value, and thus, the average transmit power is normalized to 1. $\hat{R}_{1,i}(k)$ is transmitted to each node $T_i$ after the IFFT and GI insertion. As shown in Fig. 3(b), the received symbol $R_{2,i}(k)$ at node $T_i$ after GI removal and the FFT is described by

$$R_{2,i}(k) = H_{2,i}(k) \hat{R}_{1,i}(k) + N_{2,i}(k) (k = 0, \ldots, N - 1) \quad (3)$$

where $H_{2,i}(k)$ and $N_{2,i}(k)$ are the channel coefficient between relay $R$ and node $T_i$ and zero-mean Gaussian noise at node $T_i$, respectively. Time Slot 2 can be regarded as two parallel single-input single-output (SISO) transmissions. The received signal $R_{2,i}(k)$ contains the transmit data of both nodes $T_1$ and $T_2$, and thus, each node has to subtract its own transmit data before decoding. This subtraction is given by

$$\hat{S}_j(k) = R_{2,i}(k) / G - H_{1,i}(k) H_{2,i}(k) S_j(k) (k = 0, \ldots, N - 1) (i = 1, 2) \quad (4)$$

Then, the transmit data of the opposite node $\hat{S}_j(k)$ is obtained by equalization of $\hat{R}_{2,i}(k)$ as follows:
\[
\hat{S}_j(k) = \frac{\hat{R}_j(k)}{H_{1,j}(k)H_{2,j}(k)} \quad (k=0, \ldots, N-1) \quad (j=2, 1)
\] (5)

Here, Eq. (5) is the zero-forcing (ZF) equalization, and \( j \) is calculated by

\[
j = (3 - i) = \begin{cases} 
  1 & \text{if } i = 2 \\
  2 & \text{if } i = 1
\end{cases}
\] (6)

After the calculation of Eq. (5) at nodes \( T_1 \) and \( T_2 \), the bi-directional relay transmission is terminated.

From Eqs. (4)–(6), in the bi-directional relay systems with ANC, node \( T_i \) at Time Slot 2 needs combined channel coefficient \( H_{1,i}(k) \) and \( H_{2,i}(k) \) for self-data subtraction and equalization. The channel estimation schemes for these channel coefficients are proposed in Sect. 3.

### 3. Channel Estimation

#### 3.1 Two Architectures of Channel Estimation Classified by Estimation Node Location

The channel estimation (CE) schemes in bi-directional OFDM relay systems with ANC are classified into two types by the estimation node location [5], [6].

In the first scheme, relay \( R \) estimates the channel coefficients \( H_{1,1}(k) \) and \( H_{1,2}(k) \) in Time Slot 1, and node \( T_i \) estimates the channel coefficient \( H_{2,i}(k) \) in Time Slot 2. In this scheme, channel separation is required at relay \( R \), and the channel feedback from relay \( R \) to \( T_i \) is also required. When the channel coefficients are fed back, node \( T_i \) knows \( H_{1,1}(k) \), \( H_{1,2}(k) \), and \( H_{2,i}(k) \), and it calculates the combined coefficient \( H_{1,i}(k)H_{2,i}(k) \) for self-data subtraction given by Eq. (4) and \( H_{1,3-i}(k)H_{2,i}(k) \) for equalization given by Eq. (5). This scheme requires channel feedback and is labeled as “CE with feedback” hereafter. The drawback of this scheme is throughput degradation due to feedback.

In the second scheme, node \( T_i \) at Time Slot 2 estimates the combined channel coefficients \( H_{1,1}(k)H_{2,i}(k) \) for self-data subtraction and \( H_{1,3-i}(k)H_{2,i}(k) \) for equalization. In contrast to the feedback scheme, channel separation originating from the overlapped reception in Time Slot 1 shown in Fig. 3(a) is needed at node \( T_i \). However, channel feedback can be omitted. Thus, we label this scheme as the channel estimation scheme without feedback (CE without feedback). The drawback of this scheme is that it leads to the degradation of channel estimation accuracy as the pilots at node \( T_i \) in Time Slot 2 contain Gaussian noise equivalent to two time slots.

#### 3.2 Three Architectures of Channel Estimation Classified by Pilot-Symbol Assignment

Channel separation is needed in both CE with feedback and CE without feedback. It is achieved by the pilot symbol assignment such that two channels are orthogonally divided. In this study, we classify the pilot frame structure into three types.

The first pilot frame is shown in Fig. 4(a), where the pilots are inserted as one entire OFDM frame. This frame structure is called “block type.” The CE with feedback adopting a block-type frame structure is proposed in [5], and the CE without feedback adopting this type is proposed in [6]. Both schemes separate the channel coefficients from the overlapped signals and achieve high-accuracy channel esti-
mation. However, the block-type frame needs a relatively higher ratio of pilots.

The second pilot frame is shown in Fig. 4(b), where pilot symbols and null are alternately assigned [11], and this structure is called “null type” hereafter. The received pilot symbols at the relay node can be orthogonal because the null insertion and channel separation are not needed. As compared with the block-type frame, the null type can reduce the pilot ratio. However, because the interval of pilots for each node doubles because of the null insertion, relatively dense pilots will be needed to enhance the channel accuracy.

The third pilot frame, called “sparse type,” is shown in Fig. 4(c). Sparse pilots in the time and frequency directions are assigned at the same pattern, and some separation methods are used at the relay or end nodes. This type can reduce the pilot ratio as compared with that shown in Fig. 4(a) and can also obtain a short pilot interval as compared with that shown in Fig. 4(b), so that the throughput performance is improved. In this paper, the sparse-type frame is taken into consideration.

3.3 Proposed Channel Estimation Scheme with Feedback

The signal processing of each time slot is based on the scheme of [5]. In what follows, the proposed channel estimation scheme is described.

3.3.1 Channel Estimation in Time Slot 1

In the proposed scheme, Walsh codes are used as pilot symbols to achieve channel estimation with the sparse-type frame. We use a 2-by-2 Walsh code, as shown below, as the pilots:

$$W_2 = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$ (7)

where column 1 is assigned to node $T_1$, and column 2 is assigned to node $T_2$. Walsh pilot $P_{1,i}(k,n)$ of node $T_i$ is described by

$$P_{1,i}(k,n) = w_{x,i}, \ x = \text{mod}(n/N_t, 2) + 1 \quad (k = 0, N_f, 2N_f, \cdots), \ (n = 0, N_t, 2N_t, \cdots)$$ (8)

where $k$ and $n$ are the frequency and time indices, respectively, $\text{mod}(a,b)$ is the remainder of $a$ divided by $b$, and $N_f$ and $N_t$ are the period of the Walsh pilot symbol in the frequency and the time domains, respectively. The frame structure using Walsh pilots based on Eq. (8) is shown in Fig. 5. These Walsh pilots enable the orthogonal separation of channel coefficients $T_1$ and $T_2$ after correlation processing at relay node $R$.

First, we explain the correlation processing in [10] as conventional correlation processing. The received symbol $R_{1,r}(k,n)$ at relay node $R$ can be written as

$$R_{1,r}(k,n) = \sum_{i=1}^{2} H_{1,i}(k,n) P_{1,i}(k,n) + N_{1,r}(k,n) \quad (k = 0, N_f, 2N_f, \cdots), \ (n = 0, N_t, 2N_t, \cdots)$$ (9)

where the subcarriers of Walsh pilots on the pilot frame are only considered. The received signals $R_{1,r}(k,n)$ are overlapped signals from node $T_1$ and node $T_2$, and the relay node $R$ separates the channel between node $T_i$ and $R$ described by $H_{1,i}(k,n)$ from $R_{1,r}(k,n)$ by correlation processing based on Walsh code orthogonality, which is given by

$$H_{1,i}^{\text{con}}(k,n) = \frac{1}{2} \sum_{l=1}^{0} R_{1,l}(k,n + lN_f) P_{1,l}(k,n + lN_f) \quad (k = 0, N_f, 2N_f, \cdots), \ (n = 0, N_t, 2N_t, \cdots)$$ (10)

Here, we confirm the estimation of $H_{1,i}^{\text{con}}(k,n)$ from $R_{1,r}(k,n)$ using Eq. (10) when $\text{mod}(n/N_t, 2) = 0$ as an example. Equation (10) is expanded as follows

$$H_{1,1}^{\text{con}}(k,n) = \frac{1}{2} (H_{1,1}(k,n - N_t) + H_{1,1}(k,n))$$

$$+ \frac{1}{2} (-H_{1,2}(k,n - N_t) + H_{1,2}(k,n))$$

$$+ \frac{1}{2} (N_{1,r}(k,n - N_t) + N_{1,r}(k,n))$$

$$= H_{1,1}(k,n) + \Delta_1^{\text{con}} + \Delta_2^{\text{con}} + \Delta_3^{\text{con}}.$$ (11)

where the interference terms are given by

$$\Delta_1^{\text{con}} = \frac{1}{2} (-H_{1,1}(k,n - N_t) + H_{1,1}(k,n))$$

$$\Delta_2^{\text{con}} = \frac{1}{2} (-H_{1,2}(k,n - N_t) + H_{1,2}(k,n))$$

$$\Delta_3^{\text{con}} = \frac{1}{2} (N_{1,r}(k,n - N_t) + N_{1,r}(k,n))$$ (12)

In the conventional correlation processing, three interference terms occur along with objective channel coefficient $H_{1,1}(k,n)$. $\Delta_1^{\text{con}}$ and $\Delta_2^{\text{con}}$ are the interferences due to the time variance of the channel, and $\Delta_3^{\text{con}}$ is the Gaussian noise. Interferences $\Delta_1^{\text{con}}$ and $\Delta_2^{\text{con}}$ become asymptotically to zero when the channel coefficient $H_{1,1}(k,n)$ is static or the interval of the Walsh pilot symbol in the time direction $N_t$ is small. However, when the channel is dynamic, or $N_t$ is large, $\Delta_1^{\text{con}}$ and $\Delta_2^{\text{con}}$ become large and the channel estimation accuracy is degraded. In contrast, because the two independent terms in $\Delta_3^{\text{con}}$ are averaged, the Gaussian
noise is mitigated.

Next, we propose an improved correlation processing method. In the proposed correlation processing method, the channel coefficient \( \tilde{H}_{1,i}^{\text{pro}}(k,n) \) is estimated with more pilots to suppress the degradation of channel estimation as follows:

\[
\tilde{H}_{1,i}^{\text{pro}}(k,n) = \frac{1}{2} \left( \frac{1}{2} \sum_{l=0}^{L-1} R_{1,i}(k,n+lN_i)P_{1,i}(k,n+lN_i) \right)
\]

\[
(k=0, N_f, 2N_f, \ldots), \ (n=0, N_t, 2N_t, \ldots)
\]  

(13)

Here, we confirm the extraction of \( \tilde{H}_{1,i}^{\text{pro}}(k,n) \) from \( R_{1,i}(k,n) \) using Eq. (13) when mod\((n/N_t, 2) = 0 \) as an example. Equation (13) can be expanded as follows:

\[
\tilde{H}_{1,i}^{\text{pro}}(k,n) = \frac{1}{2} \left( \frac{1}{2} (H_{1,i}(k,n-N_t)+2H_{1,i}(k,n)+H_{1,i}(k,n+N_t)) \right)
\]

\[
+ \frac{1}{2} (H_{1,i}(k,n-N_t)+2H_{1,i}(k,n)-H_{1,i}(k,n+N_t))
\]

\[
+ \frac{1}{2} (H_{1,i}(k,n-N_t)+2H_{1,i}(k,n)+H_{1,i}(k,n+N_t))
\]

\[
= H_{1,i}(k,n) + A_{1}^{\text{w,pro}}, + A_{2}^{\text{w,pro}}, + A_{3}^{\text{w,pro}}.
\]  

(14)

where the interference terms are

\[
\begin{align*}
A_{1}^{\text{w,pro}} &= \frac{1}{2} (H_{1,i}(k,n-N_t)-2H_{1,i}(k,n)+H_{1,i}(k,n+N_t)) \\
A_{2}^{\text{w,pro}} &= \frac{1}{2} (H_{1,i}(k,n-N_t)+2H_{1,i}(k,n)-H_{1,i}(k,n+N_t)) \\
A_{3}^{\text{w,pro}} &= \frac{1}{3} (H_{1,i}(k,n-N_t)+2H_{1,i}(k,n)+H_{1,i}(k,n+N_t))
\end{align*}
\]  

(15)

In the proposed correlation processing, the interference terms occur along with objective channel coefficient \( H_{1,i}(k,n) \), the same as in Eq. (11). However, in the proposed correlation processing, \( A_{1}^{\text{w,pro}} \) and \( A_{2}^{\text{w,pro}} \) become nearly zero not only when the channel coefficient \( H_{1,i}(k,n) \) is static, or the pilot interval in the time direction \( (N_t) \) is small, but also when the channel coefficient \( H_{1,i}(k,n) \) changes linearly in the period of \([n-N_t, n+N_t]\). This means that the proposed correlation processing is robust against the time-selective fading. Furthermore, because three independent terms in \( A_{3}^{\text{w,pro}} \) are averaged, Gaussian noise is further mitigated.

### 3.3.2 Channel Estimation in Time Slot 2

The relay node \( R \) in Time Slot 2, which conducts two parallel SISO transmissions to both nodes \( T_i \), replaces the pilot symbols from Time Slot 1. Pilot symbols \( P_2(k,n) \) at the relay node \( R \) are given by

\[
P_2(k,n) = \text{pilot}(k,n)
\]

\[
(k = 0, N_f, 2N_f, \ldots), \ (n = 0, N_t, 2N_t, \ldots)
\]  

(16)

where \( \text{pilot}(k,n) \) is a pilot symbol such as 1, and \( N_f \) and \( N_t \) are the periods of the pilot symbol in the frequency and the time domains, respectively. The frame structure in Time Slot 2 is shown in Fig. 6. The received symbol \( R_{2,i}(k,n) \) at node \( T_i \) in the frequency domain is obtained by

\[
R_{2,i}(k,n) = H_{2,i}(k,n)P_2(k,n) + N_{2,i}(k,n)
\]

\[
(k = 0, N_f, 2N_f, \ldots), \ (n = 0, N_t, 2N_t, \ldots)
\]  

(17)

where only the subcarriers of the pilot symbols in the pilot frame are considered. At node \( T_i \), the estimated channel \( \tilde{H}_{2,i}(k,n) \) is obtained from the received signal \( R_{2,i}(k,n) \) as follows:

\[
\tilde{H}_{2,i}(k,n) = \frac{R_{2,i}(k,n)}{P_2(k,n)} = H_{2,i}(k,n) + N_{2,i}(k,n)
\]

\[
(k = 0, N_f, 2N_f, \ldots), \ (n = 0, N_t, 2N_t, \ldots)
\]  

(18)

Using these calculated channel coefficients at the pilots, the channel coefficients at data symbols are interpolated (described in Sect. 3.5). Finally, node \( T_i \) subtracts the self-data and equalizes using estimated channel \( \tilde{H}_{2,i}(k,n) \) and feedback channel \( \tilde{H}_{1,i}(k,n) \) from relay node \( R \), as described in Eqs. (4) and (5). Then, the transmitted data are obtained.

### 3.4 Proposed Channel Estimation Scheme without Feedback

In the channel estimation scheme without feedback, the relay node \( R \) in Time Slot 1 does not estimate the channels, and node \( T_i \) estimates the desired channels at once in Time Slot 2. The pilot frame structure at node \( T_i \) in Time Slot 1 is identical with Eq. (8), and the received symbol at the relay node \( R \) is identical with Eq. (9). In contrast to Sect. 3.3, the channel estimation scheme without feedback does not estimate channels in Time Slot 1, and Walsh pilots are simply broadcasted to node \( T_i \) after normalization with amplification factor \( G \). The received pilot symbol \( R_{2,i}(k,n) \) at node \( T_i \) in the frequency domain and Time Slot 2 is obtained by

\[
R_{2,i}(k,n) = GR_{1,i}(k,n)H_{2,i}(k,n) + N_{2,i}(k,n)
\]

\[
(k = 0, N_f, 2N_f, \ldots), \ (n = 0, N_t, 2N_t, \ldots)
\]  

(19)

Because the received symbol \( R_{2,i}(k,n) \) contains the channel coefficients of both nodes \( T_1 \) and \( T_2 \), node \( T_i \) separates and estimates the channels for self-data subtraction and equalization of Eqs. (4)–(6) by correlation processing.

Similar to Sect. 3.3.1, we first explain the correlation processing adopted in [10] as the conventional correlation processing. Node \( T_i \) calculates the channel coefficient \( \tilde{H}_{1,i}^{\text{con}}(k,n) \) for self-data subtraction and
channel coefficient $\hat{H}_{13-i}^{con.}(k, n)\hat{H}_{2,i}^{con.}(k, n)$ for equalization as follows:

$$\hat{H}_{1,i}^{con.}(k, n)\hat{H}_{2,i}^{con.}(k, n) = \frac{1}{2G} \sum_{i=1}^{G} R_{2,i}(k, n + iN_t)P_{1,i}(k, n + iN_t)$$

\[ (k = 0, N_f, 2N_f, \cdots), \ (n = 0, N_i, 2N_i, \cdots) \] \hspace{1cm} (20)

where $s = i$ for self-data subtraction, and $s = 3 - i$ for equalization. Here, we confirm the extraction of $\hat{H}_{1,i}^{con.}(k, n)\hat{H}_{2,i}^{con.}(k, n)$ from $R_{2,i}(k, n)$ using Eq. (20) when mod$(n/N_i, 2) = 0$, as an example. Equation (20) is expanded as follows:

$$\hat{H}_{1,i}^{con.}(k, n)\hat{H}_{2,i}^{con.}(k, n) = \frac{1}{2G} \sum_{i=1}^{G} R_{2,i}(k, n + iN_t)P_{1,i}(k, n + iN_t)$$

\[ = H_{1,i}(k, n)H_{2,i}(k, n) + \Delta_{1}^{\text{con.}} + \Delta_{2}^{\text{con.}} + \Delta_{3}^{\text{con.}} \] \hspace{1cm} (21)

where

$$\Delta_{1}^{\text{con.}} = \frac{1}{2G} (-H_{1,i}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$+ H_{1,i}(k, n)H_{2,i}(k, n))$$

$$\Delta_{2}^{\text{con.}} = \frac{1}{2G} (-H_{1,i}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$+ H_{1,i}(k, n)H_{2,i}(k, n))$$

$$\Delta_{3}^{\text{con.}} = \frac{1}{2G} \left( G_{N_1}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$- G_{N_1}(k, n)H_{2,i}(k, n - N_t) + N_{2,i}(k, n - N_t)$$

$$- G_{N_1}(k, n)H_{2,i}(k, n) + N_{2,i}(k, n) \right)$$

$\Delta_{1}^{\text{con.}}$ and $\Delta_{2}^{\text{con.}}$ are the interferences due to the time variance of the combined channel, and $\Delta_{3}^{\text{con.}}$ is the Gaussian noise as well as Sect. 3.3. However, the elements of $\Delta_{1}^{\text{con.}}$ and $\Delta_{2}^{\text{con.}}$ contain a channel coefficient $H_{2,i}(k, n)$ as compared to $\Delta_{1}^{\text{con.}}$ and $\Delta_{2}^{\text{con.}}$ in Eq. (12). In addition, $\Delta_{3}^{\text{con.}}$ has more elements than $\Delta_{3}^{\text{con.}}$. Interferences $\Delta_{1}^{\text{con.}}$ and $\Delta_{2}^{\text{con.}}$ become asymptotically to zero when the combined channel is static, or $N_i$ is small. However, when the channel is dynamic, or $N_i$ is large, $\Delta_{1}^{\text{con.}}$ and $\Delta_{2}^{\text{con.}}$ become large and degrade the channel estimation accuracy. However, because $\Delta_{3}^{\text{con.}}$ has more elements than $\Delta_{3}^{\text{con.}}$, $\Delta_{3}^{\text{con.}}$ is mitigated by the arithmetic average.

Next, we explain the proposed correlation processing. Node $T_i$ calculates the channel coefficient $\hat{H}_{1,i}^{pro.}(k, n)\hat{H}_{2,i}^{pro.}(k, n)$ for self-data subtraction and the channel coefficient $\hat{H}_{13-i}^{pro.}(k, n)\hat{H}_{2,i}^{pro.}(k, n)$ for equalization using more pilots to suppress the degradation as follows:

$$\hat{H}_{1,i}^{pro.}(k, n)\hat{H}_{2,i}^{pro.}(k, n) = \frac{1}{2G} \sum_{i=1}^{G} R_{2,i}(k, n + iN_t)P_{1,i}(k, n + iN_t)$$

\[ + \frac{1}{2G} \sum_{i=0}^{G} R_{2,i}(k, n + iN_t)P_{1,i}(k, n + iN_t) \] \hspace{1cm} (23)

\[ (k = 0, N_f, 2N_f, \cdots), \ (n = 0, N_i, 2N_i, \cdots) \]

where $s = i$ for self-data subtraction, and $s = 3 - i$ for equalization. Here, as an example, we confirm the extraction of $\hat{H}_{1,i}^{pro.}(k, n)\hat{H}_{2,i}^{pro.}(k, n)$ from $R_{2,i}(k, n)$ using Eq. (23) when mod$(n/N_i, 2) = 0$. Equation (23) is expanded as follows:

$$\hat{H}_{1,i}^{pro.}(k, n)\hat{H}_{2,i}^{pro.}(k, n) = \frac{1}{2G} \left( \sum_{i=0}^{G} R_{2,i}(k, n + iN_t)P_{1,i}(k, n + iN_t) \right)$$

$$\left( k = 0, N_f, 2N_f, \cdots \right), \left( n = 0, N_i, 2N_i, \cdots \right)$$

$$= H_{1,i}(k, n)H_{2,i}(k, n) + \Delta_{1}^{\text{pro.}} + \Delta_{2}^{\text{pro.}} + \Delta_{3}^{\text{pro.}}$$ \hspace{1cm} (24)

where

$$\Delta_{1}^{\text{pro.}} = \frac{1}{2G} \left( H_{1,i}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$- 2H_{1,i}(k, n)H_{2,i}(k, n)$$

$$+ H_{1,i}(k, n + N_t)H_{2,i}(k, n + N_t))$$

$$\Delta_{2}^{\text{pro.}} = \frac{1}{2G} \left( H_{1,i}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$- 2H_{1,i}(k, n)H_{2,i}(k, n)$$

$$+ H_{1,i}(k, n + N_t)H_{2,i}(k, n + N_t)\right)$$

$$\Delta_{3}^{\text{pro.}} = \frac{1}{2G} \left( 2G_{N_1}(k, n - N_t)H_{2,i}(k, n - N_t)$$

$$+ 2G_{N_1}(k, n)H_{2,i}(k, n) + 2N_{2,i}(k, n)$$

$$+ G_{N_1}(k, n + N_t)H_{2,i}(k, n + N_t)$$

$$+ N_{2,i}(k, n + N_t) \right)$$

\hspace{1cm} (25)

Similar to Sect. 3.3.1, in the proposed correlation processing, the interference is more mitigated than in the conventional processing. Furthermore, because the number of elements of $\Delta_{3}^{\text{pro.}}$ is greater than $\Delta_{3}^{\text{con.}}$, the Gaussian noise is further mitigated.

3.5 Pilot Interpolation using Two-Dimensional FFT

In Sects. 3.3 and 3.4, we proposed the channel estimation scheme in the pilot subcarriers. In the fading channel, an accurate interpolation should be applied to obtain the channel coefficients in all data subcarriers. In this paper, because we adopt the pilot frame in which pilots are assigned sparsely in the frequency and the time domains, two-dimensional interpolation should be applied. To achieve the channel estimation for all subcarriers, we adopt channel interpolation using a two-dimensional FFT [12], called a 2D-FFT scheme. In the 2D-FFT scheme, accurate interpolations in the frequency and time domains are achieved only by domain conversion by 2D-FFT and zero sequence insertion. Here, the 2D-FFT scheme is briefly reviewed.

For example, we consider the interpolation of the channel coefficients of Eq. (13). First, the discrete channels of $\hat{H}_{1,i}^{pro.}(k, n)$ are collected as $\hat{H}(k, n)$, given by

$$\hat{H}(k, n) = \hat{H}_{1,i}^{pro.}(N_p k, N_p n)$$

\[ (k = 0, 1, \cdots, N_p - 1), \ (n = 0, 1, \cdots, 2N_p - 1) \] \hspace{1cm} (26)

where $N_p$ and $N_p$ are the number of reference pilot symbols in the time and the frequency domains, respectively. Next, the window function $W(n)$ is multiplied by $\hat{H}(k, n)$ in the time domain to mitigate the alias effect of the FFT as

$$G(k, n) = \hat{H}(k, n)W(n) \ (n = 0, 1, \cdots, 2N_p - 1)$$ \hspace{1cm} (27)

As a window function, the Blackman function is used in this paper as follows:
\[
W(n) = 0.423 - 0.498 \cos \left( \frac{\pi n}{N_{pf}} \right) + 0.0792 \cos \left( \frac{3\pi n}{N_{pf}} \right) \\
(n = 0, 1, \cdots, 2N_{pf} - 1)
\]

Then, \(G(k, n)\) is transformed to the transposed domain [13] by 2D-FFT [13], [14], which is described by

\[
g(m, l) = \sum_{k=0}^{N_p - 1} \left\{ \sum_{n=0}^{N_f - 1} G(k, n) \exp \left( -j2\pi (m - N_p)n/N_f \right) \right\} \\
\cdot \exp \left( -j2\pi ml/N_f \right) \\
(m = -N_p/2, -N_p/2 + 1, \cdots, N_p/2 - 1), \\
(l = -N_f, -N_f + 1, \cdots, N_f - 1)
\]

(29)

where \(m, l\) is the transformed function of \(G(k, n)\) by 2D-FFT, and \(m\) and \(l\) are symbol indices after transformation corresponding to \(k\) and \(n\), respectively. Then, the interpolated function \(g_m(m', l')\) in the transpose domain is generated by the insertion of zero sequences outside of \(g(m, l)\), as shown in Eq. (30). This operation corresponds to the interpolation between pilot symbols in the \((k, n)\)-domain.

\[
g_m'(m', l') = \begin{cases} 
\frac{N_p}{N_f}N_{pf}g(m'(l') - \frac{N_p}{N_f}N_f) & \frac{N_p}{N_f} \leq m' \leq \frac{N_p}{N_f} - 1, \\
-N_f \leq l' \leq N_f - 1 & 0; others \\
\end{cases} \\
\]

(30)

where \(m'\) and \(l'\) are the symbol indices after interpolation, corresponding to \(m\) and \(l\), respectively. The interpolated channel \(G(k', n')\) can be obtained by transforming the transpose-domain function \(g_m'(m', l')\) into the frequency-time domain by 2D-FFT, which is described by

\[
G(k', n') = \frac{1}{N_pN_{pf}} \\
\sum_{m' = -N_p/2}^{N_p/2} \sum_{l' = -N_f}^{N_f} g_m'(m', l') \exp \left( j2\pi (m' - N_p)n/N_f \right) \\
\cdot \exp \left( -j2\pi m'l'/N_f \right) \\
(k' = 0, 1, \cdots, N_fN_{pf} - 1), \\
(n' = 0, 1, \cdots, 2N_fN_{pf} - 1)
\]

(31)

where \(k'\) and \(n'\) are the symbol indices after transformation, corresponding to the frequency and the time domains as well as \(k\) and \(n\), respectively.

Finally, after dividing the time-domain window function and eliminating the degraded part of both ends due to the alias effect, the estimated channel coefficients \(\hat{H}(k', n')\) can be obtained, which are given by

\[
\hat{H}(k', n' + N_fN_{pf}/2) = \frac{G(k', n' + N_fN_{pf}/2)}{W'(n' + N_fN_{pf}/2)} \\
(k' = 0, 1, \cdots, N_fN_{pf} - 1), \\
(n' = 0, 1, \cdots, N_fN_{pf} - 1)
\]

(32)

\[
W'(n) = 0.423 - 0.498 \cos \left( \frac{\pi n}{N_fN_{pf}} \right) + 0.0792 \cos \left( \frac{3\pi n}{N_fN_{pf}} \right) \\
(n = 0, 1, \cdots, 2N_fN_{pf} - 1)
\]

(33)

Note that \(N_t, N_f, N_{pf},\) and \(N_{pf}\) should be powers of two to utilize the 2D-FFT.

### 3.6 Complexity Evaluation

The calculation complexities of block-, null-, and sparse-type frames are compared. The number of complex multiplications per frame is counted as the calculation complexity. Tables 1 and 2 show the number of calculations of each scheme with and without feedback, respectively. Here, a two-dimensional FFT is adopted for channel interpolation in all schemes, and the channel estimation based on the proposed correlation is used in the sparse-type frame. Coefficients \(A\) and \(B\) in the tables are defined in Eqs. (34) and (35), where \(A > B\). It is found in Table 1 that the complexity of channel estimation is increased in the block-type frame because the domain transfer by FFT is needed for channel detection. However, the channel interpolation is only in the time domain, and the complexity of that part is reduced. In Table 2, it is found that the calculation complexity is decreased in all types because the estimation is not carried out at the relay node and end nodes jointly conduct channel estimation.

\[
A = \frac{N}{N_fN_{pf}N_pN_{pf}} \\
\left( 2N_{pf}N_{pf} + N_pN_{pf} \log_2 N_{pf} + N_{pf}N_{pf} \log_2 2N_{pf} + N_{pf}N_{pf} \log_2 2N_{pf} \right) \\
\left( +N_{pf}N_{pf} \right) \exp \left( j2\pi (m' - N_p)n/N_f \right) \\
B = \frac{N}{N_fN_{pf}} \left( 2N_{pf} + N_{pf} \log_2 2N_{pf} + N_{pf} \log_2 2N_{pf} + N_{pf} \log_2 2N_{pf} \right)
\]

(34)

(35)

### 4. Numerical Results

In this section, we evaluate the performance of the proposed scheme by computer simulation. The bit error rate (BER) and throughput performances of the channel estimation scheme with/without feedback using block-, null-, or sparse-type frames are evaluated. In the case of a sparse-type frame, the performances with the conventional and the proposed correlation processing are also evaluated.
4.1 Performance of Channel Estimation Scheme with Feedback

The pilot intervals are derived from the system requirements. In this study, we assume the Long Term Evolution (LTE) standard, where the carrier frequency is 3.5 GHz, and the bandwidth is 1.4 MHz. When the maximum velocity of the terminal is 300 km/h, and the maximum multipath delay time is $8T_s$, the optimal pilot intervals become $(N_f^{opt}, N_t^{opt}) = (4, 8)$ from the two-dimensional sampling theorem [15]. Here, $T_s$ is one sample period of the OFDM frame. In what follows, these parameters are used.

4.1.1 Performance Comparison versus $E_b/N_0$

First, the BER and throughput performances versus $E_b/N_0$ of the channel estimation scheme with feedback are calculated. Table 3 shows the simulation conditions. The calculation complexity for the conditions in Table 3 is listed in Table 4. The total complexity of the sparse-type frame is the largest and is approximately 24% and 4% higher than that of the block and null types, respectively. A non-systematic convolutional (NSC) code with code rate $R = 1/2$ and constraint length $K = 3$ is adopted for channel coding at the transmitter, and the hard-decision Viterbi algorithm is applied for decoding at the receiver. Furthermore, a random bit interleaver is inserted after the channel encoder output for performance improvement. In Table 3, Walsh con. and Walsh pro. indicate the sparse-type frame using conventional correlation processing and the proposed correlation processing, respectively. Figures 7 and 8 illustrate the BER and throughput performances, respectively, when the normalized Doppler frequency is $f_dT_s = 10^{-4}$ (which corresponds to approximately a 59-km/h node velocity) where $f_d$ is the Doppler frequency. Here, throughput $\eta$ is defined as follows:

### Table 3 Simulation conditions.

<table>
<thead>
<tr>
<th>Frame type</th>
<th>Block</th>
<th>Null</th>
<th>Walsh con.</th>
<th>Walsh pro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission scheme</td>
<td>OFDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of subcarriers</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet length</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[information bits/packet]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of GI</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>i.i.d. 9-path 3-dB decayed Rayleigh fading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized delay spread</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel coding</td>
<td>NSC code ($R=1/2, K=3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel decoding</td>
<td>Hard-decision Viterbi algorithm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code length [bits]</td>
<td>2048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleaver size [bits]</td>
<td>2048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel feedback</td>
<td>Perfect/None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time slot 1 pilot period</td>
<td>(1,8)</td>
<td>(2,8)</td>
<td>(4,8)</td>
<td>(4,8)</td>
</tr>
<tr>
<td>($N_f, N_t$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time slot 2 pilot period</td>
<td>(1,8)</td>
<td>(2,8)</td>
<td>(4,8)</td>
<td>(4,8)</td>
</tr>
<tr>
<td>($N_f', N_t'$) in (26)</td>
<td>(64,4)</td>
<td>(16,4)</td>
<td>(16,4)</td>
<td>(16,4)</td>
</tr>
<tr>
<td>Relay scheme</td>
<td>Amplify-and-forward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equalization</td>
<td>Zero-forcing criterion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 4 Calculation complexity of CE for the conditions of Table 3.

<table>
<thead>
<tr>
<th></th>
<th>Block</th>
<th>Null</th>
<th>Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel estimation</td>
<td>with feedback</td>
<td>704</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>without feedback</td>
<td>640</td>
<td>32</td>
</tr>
<tr>
<td>Channel interpolation</td>
<td>with feedback</td>
<td>1464</td>
<td>2550</td>
</tr>
<tr>
<td></td>
<td>without feedback</td>
<td>928</td>
<td>1696</td>
</tr>
<tr>
<td>Total</td>
<td>with feedback</td>
<td>2168</td>
<td>2582</td>
</tr>
<tr>
<td></td>
<td>without feedback</td>
<td>1568</td>
<td>1728</td>
</tr>
</tbody>
</table>

![Fig. 7](image-url) BER performance versus $E_b/N_0$ in feedback system at $f_dT_s = 10^{-4}$.

![Fig. 8](image-url) Throughput performance versus $E_b/N_0$ in feedback system at $f_dT_s = 10^{-4}$.
where $M$ is the modulation level ($M = 2$), $F$ is the number of OFDM frames for channel feedback, and PER is the packet error rate. In Figs. 7 and 8, ideal indicates the performance with perfect channel state information (CSI). It is assumed that the average $E_b/N_0$ is the same at both nodes $T_1$ and $T_2$ and that the estimated CSI in Time Slot 1 at the relay node $R$ is perfectly fed back to node $T_i$ using one OFDM frame ($F = 1$) [6]. In the figures, the average performance of $T_1$ and $T_2$ are plotted.

From the results of Fig. 7, we can see that the proposed scheme has an improved BER performance as compared to conventional correlation processing because the proposed scheme can suppress the interference of time-selective fading. In addition, it is confirmed that the BER of the proposed scheme is not degraded as compared with the block and null types, even though the pilot ratio is lower at $E_b/N_0 = 40$ dB. On the other hand, the BER performance of the proposed scheme is slightly degraded at $E_b/N_0 > 30$ dB because of the time-variant interference terms in correlation processing.

This advantage is confirmed by the throughput performance shown in Fig. 8. The throughput of the proposed Walsh scheme is approximately 12% and 4% better than that of the block- and null-type schemes, respectively, at $E_b/N_0 = 40$ dB. As compared with the conventional Walsh scheme that has the same pilot ratio, an improvement of approximately 51% is obtained.

4.1.2 Performance Comparison versus $f_dT_s$

We evaluate the BER and throughput performances of the channel estimation scheme with feedback versus $f_dT_s$. The simulation conditions are the same as those listed in Table 3, and Figs. 9 and 10 show the results at $E_b/N_0 = 30$ dB.

In Fig. 9, all the BER performances are similar at $f_dT_s = 10^{-5}$ (5.9-km/h node velocity), where the time variance of the channel is relatively slow. However, according to the Doppler frequency increase, the BER of the conventional Walsh scheme is degraded from $f_dT_s = 2 \times 10^{-5}$ (12-km/h node velocity) as interferences $\Delta_{f,\text{con}}$ and $\Delta_{f,\text{con}}$ become large in the correlation processing in Eqs. (11) and (12). On the other hand, the proposed scheme performs well until $f_dT_s = 10^{-4}$ (59-km/h node velocity) because of the robust correlation processing of Eq. (13). As compared to the dense pilot symbol schemes, the BER performance of the proposed scheme is not robust for $f_dT_s$. When comparing the throughput performance, similar characteristics are obtained. Note that the BER is decreased once in proportion to $f_dT_s$ until $f_dT_s = 3 \times 10^{-4}$ (178-km/h node velocity) because the interleaver effectively works and enhances the channel coding performance in this region. That is, in the small $f_dT_s$ region, a long burst error occurs, and the error correcting code does not effectively work even if the interleaver is used. The error is mitigated when $f_dT_s$ is increased.

As shown in Fig. 10, the proposed scheme has the best performance until $f_dT_s \leq 1.5 \times 10^{-4}$ (less than 89-km/h node velocity), and the throughput of the proposed scheme at $f_dT_s = 10^{-4}$ (59-km/h node velocity) is approximately 11%, 3%, and 70% better than the block, null, and conventional Walsh schemes, respectively.

4.2 Performance of Channel Estimation Scheme without Feedback

The maximum Doppler frequency and the maximum delay time of the joint channel double for CE without feedback because the relay is simply forwarding the signals and the joint channel becomes a multiplication of both channels in the frequency domain, equivalent to the convolution of them in the time domain. Therefore, the optimal pilot intervals decrease by half in both the time and the frequency domains from Table 3, as shown in Table 5, and we use this coefficient in the following section.
Table 5  Pilot symbol interval for simulation of non-feedback system.

<table>
<thead>
<tr>
<th>Time Slot 1 pilot period (N₀/Nₜ)</th>
<th>Block</th>
<th>Null</th>
<th>Walsh con.</th>
<th>Walsh pro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,4)</td>
<td>(1,4)</td>
<td>(2,4)</td>
<td>(2,4)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11  BER performance versus \(E_b/N_0\) in non-feedback system at \(f_dT_s = 10^{-4}\).

4.2.1 Performance Comparison versus \(E_b/N_0\)

In this subsection, we evaluate the BER and throughput performance versus \(E_b/N_0\) of the channel estimation scheme without feedback. The simulation conditions are the same as those listed in Table 3, except for the pilot period, as listed in Table 5. The calculation complexity is also shown in Table 4, which is derived by substituting the parameters of Tables 3 and 5 into Table 2. Similar to the feedback scheme, the complexity of the sparse type is the largest and is approximately 24% and 13% higher than that of the block- and null-type schemes, respectively. However, because this scheme can omit the signal processing at the relay node, and the estimation is jointly performed at the end nodes, the complexity is decreased by approximately 28%–30% from the feedback scheme. Figures 11 and 12 show the BER and throughput performances versus \(E_b/N_0\) at \(f_dT_s = 10^{-4}\).

From the results of Fig. 11, we can see that the proposed scheme has the best performance below \(E_b/N_0 = 35\) dB. This is because the arithmetic mean effect of Gaussian noise is emphasized for both Time Slots 1 and 2, as shown in \(\Delta^{w,pro}_o\) of Eq. (25), and this \(\Delta^{w,pro}_3\) is mitigated. However, the BER is degraded after \(E_b/N_0 = 35\) dB because \(\Delta^{w,pro}_1\) and \(\Delta^{w,pro}_2\) become larger than other schemes owing to strong fading selectivity.

Figure 12 shows the throughput performance versus \(E_b/N_0\). At \(E_b/N_0 = 40\) dB, the performance of the proposed scheme is approximately 16%, 17%, and 45% improved for the block, null, and conventional Walsh schemes, respectively, because of the effective channel estimation. Moreover, when compared with Fig. 8, it is found that the performance of the proposed scheme without feedback is approximately 3% better than that with feedback. Because the quantization error and feedback error that occurs in practical cases degrade the estimation performance, it can be said that the estimation scheme without feedback is more effective.

4.2.2 Performance Comparison versus \(f_dT_s\)

Next, the performance versus Doppler frequency is calculated. The simulation conditions are the same as those listed in Sect. 4.2.1. Figures 13 and 14 show the BER and throughput performances versus \(f_dT_s\) at \(E_b/N_0 = 30\) dB, respectively. As shown in Fig. 13, the best BER is obtained in the proposed scheme at \(f_dT_s \leq 10^{-4}\) (less than 59-km/h node velocity) because of the same reason why this is true for \(\Delta^{w,pro}_3\) mitigation. However, the BER of the proposed scheme is rapidly degraded at \(f_dT_s > 10^{-4}\) (more than 59-km/h node velocity), owing to the interference increase.

From the results of Fig. 14, we can see similar characteristics in Fig. 10. The proposed scheme has the best performance below \(f_dT_s \leq 2 \times 10^{-4}\) (less than 118-km/h node velocity). At \(f_dT_s = 10^{-4}\) (59-km/h node velocity), the proposed scheme improves the throughput by 19%, 22%, and 56% for the block, null, and conventional Walsh schemes, respectively. As compared to the feedback scheme of Fig. 10, the proposed scheme improves the throughput by 2% at \(f_dT_s = 10^{-4}\).
Fig. 13  BER performance versus $f_d T_s$ in non-feedback system at $E_b/N_0 = 30$ dB.

Fig. 14  Throughput performance versus $f_d T_s$ in non-feedback system at $E_b/N_0 = 30$ dB.

4.3 Performance Comparison for Frequency-Selectivity of Channel

Finally, we evaluate the performance for the frequency selectivity of the channel using the configuration of Tables 3 and 5, except for the channel setting. The channel is assumed to be i.i.d. 9-path $\alpha$-dB decayed Rayleigh fading, and its normalized delay spread is calculated in Table 6. Figure 15 shows the throughput performance versus the normalized delay spread at $E_b/N_0 = 30$ dB and $f_d T_s = 10^{-4}$ (59-km/h node velocity). It is found that the proposed schemes have the best throughput among the four schemes without the ideal case. This is achieved by the rate efficiency of the sparse pilots and the accurate interpolation of the 2D-FFT. In addition, the performance is improved as the delay spread increases. In strong frequency-selective fading, the burst attenuation of the channel coefficients in the frequency domain occurs less, and the channel coding effectively works in those channels.

Table 6  Relationship between attenuation parameter $\alpha$ and normalized delay spread $\tau_{rms}/T_s$.

<table>
<thead>
<tr>
<th>$\alpha$ [dB]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{rms}/T_s$</td>
<td>2.58</td>
<td>2.33</td>
<td>1.82</td>
<td>1.36</td>
<td>1.04</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Fig. 15  Throughput performance versus delay spread at $E_b/N_0 = 30$ dB; (a) with feedback, (b) without feedback.

5. Conclusion

In this paper, we proposed a channel estimation scheme
for bi-directional relay systems with ANC. In the proposed scheme, the bi-directional overlapped channels can be separated by utilizing Walsh codes as pilot symbols at the transmitter, and the improved correlation processing in the receiver can generate an accurate and robust fading estimation in terms of the time- and frequency selectivity of fading. In addition, the proposed scheme can utilize the sparse pilot symbols and increase the rate efficiency. From the numerical results, it has been confirmed that the proposed channel estimation scheme shows better performance under relatively slow fading environments. In particular, the proposed scheme with and without feedback has the best performance at relatively slow fading environments. In particular, the proposed scheme without feedback can generate accurate channel estimation and good performance when \( f_d T_s \) is relatively small.

The configuration of a practical feedback link is an additional topic in this paper and will be studied in the future.

References