Introduction 000 00	Design 000	Measurements 00 0000	Discussions 000 00	

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tag

Mohammad Alhassoun

Michael Varner Prof. Gregory Durgin

The Propagation Group Georgia Institute of Technology

IEEE International Conference on RFID, 2018

(c) Mohammad Alhassoun; malhassoun@gatech.edu

The Propagation Group @ Georgia Tech

Introduction	Design			
• 00 00		00 000 0	000 00	
Motivation				

Problem Overview

Next-generation IoT sensors should

- Operate at high frequencies (mm-waves)
- Have high gain (reasonable communication distance)
- Be orientational independent
- Consume minimal power

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tags

Introduction	Design			
000 00		00 000 0	000 00	
Motivation				

Possible Solutions

Problems

- 1 High gain tags
- **2** Orientation-independent tags

Solutions

- Use antenna arrays
- **2** Use isotropic (or semi-isotropic) antennas

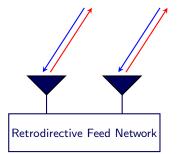
From antenna theory, you cannot do both!

Introduction	Design			Summary
000 00		00 000 0	000 00	
Motivation				

The *Best* Solution

- We cannot use active beamformers because power consumption
- Alternatively, we can use retrodirective arrays

Retrodirective arrays are the best RF-based solution to compensate for

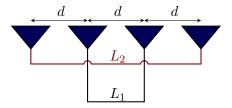

- 1 Narrow beamwidth of passive arrays
- **2** Short range of high-frequency tags

Introduction ○○○ ●○	Design 000	Measurements 00 000 0	Discussions 000 00	Summary
Retrodirective Arrays				

Retrodirective Arrays: Definition

- Retrodirective arrays send waves back to the direction of incidence.
- Ideally, no power loss and maximum gain (in optics, similar to corner reflectors)

Retrodirective arrays act as passive, adaptive beamformers


© Mohammad Alhassoun; malhassoun@gatech.edu

The Propagation Group @ Georgia Tech

Introduction ○○○ ○●	Design 000	Measurements 00 000 0	Discussions 000 00	Summary
Retrodirective Arrays				

Retrodirective Arrays: Example

- Van Atta arrays
- Connects each antenna pair by a transmission lines L₂ = L₁ + nλ_m

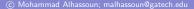
Problems with Van Atta array are:

- 1 Limited to OOK or at best BPSK
- You cannot incorporate two-terminal devices (e.g., tunnel diodes)

Introduction 000 00	Design ●00	Measurements 00 000 0	Discussions 000 00	Summary
Theory				

Ant.#1

 Γ_1


Proposal

- A rat-race coupler can be a retrodirective feed network.
- The two port scattering matrix is

$$\begin{bmatrix} S \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (\Gamma_1 + \Gamma_2)e^{-j\pi} & (\Gamma_1 - \Gamma_2) \\ (\Gamma_1 - \Gamma_2) & (\Gamma_1 + \Gamma_2)e^{-j\pi} \end{bmatrix}$$

Conditions

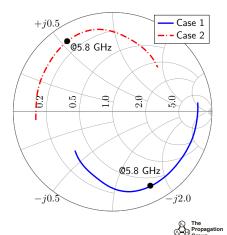
1
$$|\Gamma_1| = |\Gamma_2|$$

2 $\angle \Gamma_2 = \angle \Gamma_1 + \pi$

Ant.#2

The Propagation Group @ Georgia Tech

Introduction 000 00	Design 0●0	Measurements 00 000 0	Discussions 000 00	
Theory				


Examples of Terminations

• Port 1 is open
$$\Rightarrow \Gamma_1 = 1$$

Port 2 is short $\Rightarrow \Gamma_2 = -1$

2 Port 1 is short
$$\Rightarrow \Gamma_1 = -1$$

Port 2 is open $\Rightarrow \Gamma_2 = 1$

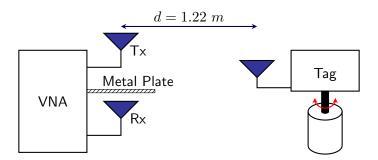
Observation

In both cases, the coupler is retrodirective; however, two (opposite) locations on Smith Chart.

Introduction 000 00	Design 00●	Measurements 00 000 0	Discussions 000 00	
Theory				

More to say

- Switching between retrodirective terminations changes only the phase
- Switching between a retrodirective and non-retrodirective state implements OOK
- No restrictions on the type of terminations


Now, it is time to test the RCS of the device

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tags

Introduction 000 00	Design 000	Measurements ●O ○○○ ○	Discussions 000 00	Summary
Campaign				

Set Up

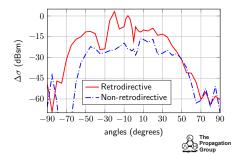
(c) Mohammad Alhassoun; malhassoun@gatech.edu

The Propagation Group @ Georgia Tech

Specifications

- **Location**: Rooftop of the building (open range)
- Power: 25 dBm (+6 dBi antenna gain)
- Frequency Span: (3.8 7.8) GHz (4 GHz BW)
- Angular Span: -90° to 90°
- Target Height: 1.73 cm
- Post-Processing Technique: Time Gating
- Tag designs:
 - Retrodirective (BPSK and OOK)
 - 2 Single-element (BPSK and OOK)

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tags

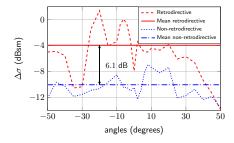

Introduction 000 00	Design 000	Measurements ○○ ●○○ ○	Discussions 000 00	Summary
BPSK				

BPSK Configuration and Results

Recall

A rat-race coupler is retrodirective if $|\Gamma_1|=|\Gamma_2|$ and $\angle\Gamma_2=\angle\Gamma_1+\pi$

- For retrodirective tag: State#1: $\Gamma_1 = 1$, $\Gamma_2 = -1$ State#2: $\Gamma_1 = -1$, $\Gamma_2 = 1$
- For single antenna tag: State#1: Open circuit State#2: Short circuit
- The measured differential RCS

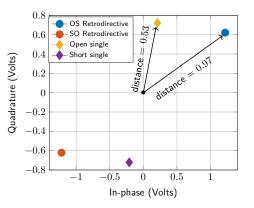


Introduction 000 00	Design 000	Measurements ○○ ○●○ ○	Discussions 000 00	Summary
BPSK				

BPSK: Global Performance

We expect 6 dB increase in the differential RCS

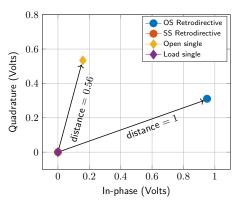
- What if we look at the global performance?
- Within the beamwidth of the (patch) antenna, how much increase on average?



Introduction 000 00	Design 000	Measurements ○○ ○○● ○	Discussions 000 00	Summary
BPSK				

BPSK: Constellations

- For retrodirective tag: State#1: $\Gamma_1 = 1$, $\Gamma_2 = -1$ State#2: $\Gamma_1 = -1$, $\Gamma_2 = 1$
- For single-antenna tag: State#1: Open circuit State#2: Short circuit



Introduction 000 00	Design 000	Measurements 00 000	Discussions 000 00	
ООК				

OOK: Constellations

- For retrodirective tag: State#1: $\Gamma_1 = 1$, $\Gamma_2 = -1$ State#2: $\Gamma_1 = -1$, $\Gamma_2 = -1$
- For single-antenna tag: State#1: Open circuit State#2: 50 Ω Load

Introduction 000 00	Design 000	Measurements 00 000 0	Discussions ●○○ ○○	
Retrodirectivity Ideality	Escor (RIE)			

Retrodirectivity Ideality Facor (RIF): Why?

- We want to measure the performance of the a retrodirective feed network
- Phase is the *most* important quantity
- Phase of the feed network must be compared with an ideal retrodirective network
- The ideal feed network is that of Van Atta arrays, a simple TEM Transmission line

Therefore, we introduced a new metric: The Retrodirectivity Ideality Facor (RIF)

Introduction 000 00	Design 000	Measurements 00 000 0	Discussions ○●○ ○○	
Retrodirectivity Idealit	v Facor (RIF)			

Retrodirectivity Ideality Facor (RIF): Definition

Definition

Maximum deviations between the samples of the measured phase and the samples of the *interpolated* equivalent linear phase.

$$\begin{split} \max\{RIF_j\}, \quad \forall j = 1, \dots, \# \text{of states} \\ RIF = 1 + \frac{\displaystyle\sum_{i=1}^{N} (\Phi_{i,21} - \hat{\Phi}_{i,21})^2}{\displaystyle\sum_{i=1}^{N} \hat{\Phi}_{i,21}^2} \end{split}$$

(c) Mohammad Alhassoun; malhassoun@gatech.edu

The Propagation Group @ Georgia Tech

Introduction 000 00	Design 000	Measurements 00 000 0	Discussions 00● 00	
Retrodirectivity Idealit	y Facor (RIF)			

Retrodirectivity Ideality Facor (RIF): Measured

Definition

Maximum deviations between the samples of the measured phase and the samples of the *interpolated* equivalent linear phase.

The definition is valid <u>only</u> within the bandwidth.
For BPSK,

 $BW \in (5.7 - 5.85) \text{ GHz}$ $\max\{1.0003, 1.0001\} = 1.0003$

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tags

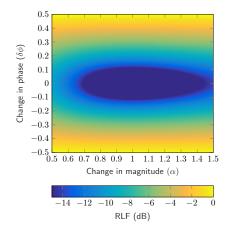
Introduction 000 00	Design 000	Measurements 00 000 0	Discussions ○○○ ●○	
Retrodirectivity Loss Fa	actor (RLF)			
Retrodirec	tivity Loss	Factor (RLF): N	Aotive	

Recall

A rat-race coupler is retrodirective if $|\Gamma_1|=|\Gamma_2|$ and $\angle\Gamma_2=\angle\Gamma_1+\pi$

- Two constraints: Magnitude and Phase; but, to which the design is more sensitive?
- Mathematically,

$$RLF = \left| \frac{1 + \alpha e^{j\pi(1+\delta\phi)}}{1 - \alpha e^{j\pi(1+\delta\phi)}} \right|^2$$



© Mohammad Alhassoun; malhassoun@gatech.edu

Retrodirectivity Loss Factor (RLF)

Retrodirectivity Loss Factor (RLF): Result

$$RLF = \left| \frac{1 + \alpha e^{j\pi(1+\delta\phi)}}{1 - \alpha e^{j\pi(1+\delta\phi)}} \right|^2$$

Phase sensitive

(c) Mohammad Alhassoun; malhassoun@gatech.edu

Introduction 000 00	Design 000	Measurements 00 000 0	Discussions 000 00	Summary

Summary

In this paper, we

- Designed a retrodirective feed network using a rat-race coupler
- Derived the retrodirectivity conditions for the coupler
- Showed the proposed feed network is capable implemented various modulation schemes.
- Developed two metrics to evaluate retrodirectivity
 - 1 Retrodirectivity Ideality Factor (RIF) {Recast}
 - 2 Retrodirectivity Loss Factor (RLF)

Design and Evaluation of a Multi-Modulation Retrodirective RFID Tags