ON EXACT CONVERGENCE RATE OF STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

DOUGU NAM

Reprinted from the Bulletin of the Korean Mathematical Society
Vol. 44, No. 1, February 2007

©2007 The Korean Mathematical Society
ON EXACT CONVERGENCE RATE OF STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

DOUGU NAM

Abstract. We propose a simple and intuitive method to derive the exact convergence rate of global L_2-norm error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and Müller-Gronbach (2004). We conclude that any strong numerical scheme of order $\gamma > 1/2$ has the same optimal convergence rate for this error. The method clearly reveals the structure of global L_2-norm error and is similarly applicable for evaluating the convergence rate of global uniform approximations.

1. Introduction

Let us consider a scalar diffusion process X_t satisfying the following stochastic differential equation

(1) $dX_t = a(t, X_t)dt + \sigma(t, X_t)dW_t$

with 1-dimensional standard Brownian motion W_t, $t \geq 0$ and the continuously differentiable coefficient functions a and b satisfying the conditions

(2) $|a(t, x)| + |\sigma(t, x)| \leq K(1 + |x|),$
(3) $|a(s, x) - a(t, x)| + |\sigma(s, x) - \sigma(t, x)| \leq K(1 + |x|)|s - t|^{1/2},$

for some constant $K > 0$.

For time discrete strong approximation of (1) on the unit interval $[0, 1]$, several different notions of errors were analyzed in the literature. The most commonly considered one was the mean square error (MSE for short) at a time point. By using stochastic Ito-Taylor expansion, we can construct Ito-Taylor approximation

(4) $Y_t = \sum_{\alpha \in \mathcal{A}_t} I_\alpha[f_\alpha(\tau_n, Y_{\tau_n})]_{\tau_n, t},$

Received February 21, 2006.
2000 Mathematics Subject Classification. 65C30.
Key words and phrases. strong approximation of SDE, global L_2-norm error.

©2007 The Korean Mathematical Society 125
where \(n_t \) is the maximum discretization point less than \(t \), \(\alpha \) is multi index, \(A_\gamma \) is some hierarchical index set for strong order \(\gamma \) and \(I_\alpha \) denotes multiple stochastic integral for the index \(\alpha \) - see [6] for detailed explanation of notations, and this process has the uniform mean square convergence order \(\gamma \), i.e.,

\[
\left[E \left(\sup_{0 \leq t \leq 1} |X_t - Y_t|^2 \right) \right]^{1/2} \leq K (1 + E|X_0|^2)^{\frac{\gamma}{2}} ,
\]

where \(\delta \) is the maximum step-size - see also [6]. But \(Y_t \) is not implementable in practice since the full information of \(W_t \) is not available. We can implement \(Y_t \) only on \(\{ \tau_k \}_{1 \leq k \leq n_t} \) because \(Y_{\tau_k} \) requires only finite numbers of information \(W_t \) on each subinterval \((\tau_k, \tau_{k+1}) \), \(k = 1, 2, \ldots, n \), i.e., some multiple stochastic integrals of \(W_t \). Usually, we use \(Y_t \), the linear interpolation of \(Y_t \) at the points \(\{ \tau_k \}_{1 \leq k \leq n_t} \) for numerical implementation. Therefore, the error analyses for \(Y_t \) are practically important. For the last decade, the global \(L_2 \)-norm error for \(\hat{Y}_t \) defined by

\[
\epsilon(X, \hat{Y}) = \left[\int_0^1 E(X_t - \hat{Y}_t)^2 dt \right]^{1/2}
\]

was analyzed intensively - see [1], [2], [3], [4], [8], and [5]. See also [7] for the global uniform error analysis. We denote \(\epsilon(Y) := \epsilon(X, Y) \).

In Proposition 1 of [4], the exact convergence rate of equidistant Platen-Wagner order 1.5 strong scheme \(\hat{X}_n^{equi} \) was evaluated w.r.t. the global \(L_2 \)-norm error (6):

\[
\lim_{n \to \infty} n^{1/2} \cdot \epsilon(\hat{X}_n^{equi}) = C^{equi} / \sqrt{6},
\]

where

\[
C^{equi} = \left[\int_0^1 E[\sigma^2(t, X_t)] dt \right]^{1/2},
\]

which was not better than Milstein scheme - see [3]. In [3] and [4], the Ito-Taylor approximation \(Y_t \) (4) was used in their error analyses, but we provide a much simpler proof for a generalized result. We use the linear interpolation of \(X_t \) instead of \(Y_t \) and prove that any strong order \(\gamma \) \((\gamma > 1/2)\) numerical scheme has the same convergence rate as (7) w.r.t. the error (6) asymptotically. We note that our result was lately reported in Theorem 2 of [5], but we show an independent derivation, the idea of which will also be useful in the analyses of other types of numerical errors, e.g., global uniform error [7].

2. Evaluation of the convergence rate

For \(T = [0, 1] \), consider the equidistant discretization \(0 = t_0 \leq t_1 \leq \cdots \leq t_n = 1 \), where \(t_i = i/n, \ i = 1, 2, \ldots, n \). The equation (1) can be rewritten as

\[
X_t = X_{t_m} + \int_{t_m}^t a(s, X_s) ds + \int_{t_m}^t \sigma(s, X_s) dW_s
\]
for \(t_m \leq t \leq t_{m+1} \). Let \(\hat{X} \) be the linear interpolation of \(X \) at the discretization nodes \(\{t_i\}_{1 \leq i \leq n} \), i.e.,

\[
\hat{X}_t = \frac{1}{t_{m+1} - t_m} \left[(t_{m+1} - t)X_{t_m} + (t - t_m)X_{t_{m+1}} \right]
\]

\[
= X_{t_m} + \frac{t - t_m}{t_{m+1} - t_m} \left[\int_{t_m}^{t_{m+1}} a(s, X_s)ds + \int_{t_m}^{t_{m+1}} \sigma(s, X_s)dW_s \right].
\]

We let

\[
A_m = \int_{t_m}^{t} a(s, X_s)ds, \quad A'_m = \int_{t_m}^{t_{m+1}} a(s, X_s)ds,
\]

\[
B_m = \int_{t_m}^{t} \sigma(s, X_s)dW_s, \quad B'_m = \int_{t_m}^{t_{m+1}} \sigma(s, X_s)dW_s,
\]

and denote \(A_m, B_m, A'_m, \) and \(B'_m \) the integrals with locally freezed integrands, i.e., we replace the integral time \(s \) to \(t_m \) for \(A_m, B_m, A'_m, \) and \(B'_m \).

Let \(K \) be an unspecified positive constant.

Lemma 1.

(a) \(\left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} \int_{t_m}^{t} E \left[\sigma(s, X_s) - \sigma(t_m, X_{t_m}) \right]^2 ds dt \right]^{1/2} \leq Kn^{-1} \)

(b) \(\left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} \int_{t_m}^{t} E \left[\sigma(s, X_s) - \sigma(t_m, X_{t_m}) \right]^2 ds dt \right]^{1/2} \leq Kn^{-3/4} \)

(c) \(\left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} E[|B_m| \cdot |B'_m|] dt \right]^{1/2} \leq Kn^{-3/4} \)

Proof. It is easy to prove (a) and (b) using the coefficient conditions (2) and (3). The left hand side of (c) becomes

\[
\left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} E[|B_m| \cdot |B'_m|] dt \right]^{1/2}
\]

\[
\leq \left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} E[(|B_m|^{1/2} - |B'_m|^{1/2})^2] dt \right]^{1/2}
\]

\[
+ \left[\sum_{m=1}^{n-1} \int_{t_m}^{t_{m+1}} E[(|B'_m|^{1/2} - |B_m|^{1/2})^2] dt \right]^{1/2} \leq Kn^{-3/4}.
\]

Note that \(E[B_m \cdot B'_m] = 0 \). The last inequality in the above line is also proved easily by using the inequality \(|\sqrt{a} - \sqrt{b}| \leq \sqrt{|a - b|}\) for \(a, b \in \mathbb{R} \), Hölder’s inequality, Ito’s isometry, and the coefficient conditions (2) and (3). \(\Box \)
Let us denote
\[\|f_m\|_{L^2} := \left[\sum_{m=0}^{n-1} \int_{t_m}^{t_{m+1}} E(f_m(t))^2 \, dt \right]^{1/2}. \]

The terms for the drift coefficients are easily estimated as follows:

Lemma 2.
\[
\|A_m\|_{L^2} \leq Kn^{-3/2} \\
\|A'_m\|_{L^2} \leq Kn^{-3/2}.
\]

We first estimate the error for the linear interpolation process \(\bar{X} \).

Lemma 3. Let \(\bar{X}^{(n)} \) be the interpolation process (9) defined on the equi-distant time points \(\{i/n\}_{1 \leq i \leq n} \). Then
\[
\lim_{n \to \infty} n^{1/2} \cdot e(\bar{X}^{(n)}) = C_{equi}/\sqrt{6}.
\]

Proof. Let \(C(t) := (t_{m+1} - t)/(t_{m+1} - t_m) \), and \(D(t) := (t - t_m)/(t_{m+1} - t_m) \).

Subtracting (9) from (8), we have
\[
|X_t - \bar{X}^{(n)}_t| = |C(t) \cdot A_m - D(t) \cdot A'_m + C(t) \cdot B_m - D(t) \cdot B'_m|,
\]
and since \(|C(t)| \leq 1 \), and \(|D(t)| \leq 1\), we have
\[
e(\bar{X}^{(n)}) \leq \left[\|C(t) \cdot B_m\|^2 + (D(t) \cdot B'_m)^2 \right]^{1/2} \cdot \|L^2
+ \|B_m - \bar{B}_m\|_{L^2} + \|B'_m - \bar{B}'_m\|_{L^2} + \|(B_m \cdot B'_m)^{1/2}\|_{L^2}
+ \|A_m\|_{L^2} + \|A'_m\|_{L^2},
\]
and
\[
e(\bar{X}^{(n)}) \geq \left[\|C(t) \cdot B_m\|^2 + (D(t) \cdot B'_m)^2 \right]^{1/2} \cdot \|L^2
- \|B_m - \bar{B}_m\|_{L^2} - \|B'_m - \bar{B}'_m\|_{L^2} - \|(B_m \cdot B'_m)^{1/2}\|_{L^2}
- \|A_m\|_{L^2} - \|A'_m\|_{L^2}.
\]

By applying Ito’s isometry, we obtain
\[
\int_{t_m}^{t_{m+1}} E[\{(C(t) \cdot B_m)^2 + (D(t) \cdot B'_m)^2\}] \, dt
= \frac{E[\sigma^2(t_m, X_{t_m})]}{(t_{m+1} - t_m)} \cdot \int_{t_m}^{t_{m+1}} (t_{m+1} - t)(t - t_m) \, dt
= \frac{1}{6} (t_{m+1} - t_m) E[\sigma^2(t_m, X_{t_m})],
\]
and
\[
\|\left[\left((C(t)\bar{B}_m)^2 + (D(t)\bar{B}'_m)^2\right)^{1/2}\right]\|_{L_2} = \frac{1}{\sqrt{6}} \left[\sum_{m=0}^{n-1} E[\sigma^2(t_m, X_{t_m})] \cdot n^{-1/2}\right]^{1/2} \cdot n^{-1/2}.
\]

Hence, we have
\[
\limsup_{n \to \infty} n^{1/2} \cdot e(\hat{Y}(n)) \leq C^{\text{equi}} / \sqrt{6},
\]
\[
\liminf_{n \to \infty} n^{1/2} \cdot e(\hat{Y}(n)) \geq C^{\text{equi}} / \sqrt{6},
\]
by Lemma 1 and Lemma 2.

Remark 1. Every numerical scheme aims to approximate \(\bar{X} \) on the discretization points. But, Lemma 3 addresses \(\bar{X} \) still has a positive error in the global \(L_2 \) approximation. The error \(e(\bar{X}) \) is the essential part of this \(L_2 \) approximations and the error caused by numerical scheme is negligible if we have the condition that \(\gamma > 1/2 \) for the uniform MSE, as one will see in the next main result.

Theorem 1. Let \(\hat{Y}(n) \) be a numerical scheme of strong order \(\gamma > 1/2 \) for uniform MSE defined on the time points \(\{i/n\}_{1 \leq i \leq n} \). Then
\[
\lim_{n \to \infty} n^{1/2} \cdot e(\hat{Y}(n)) = C^{\text{equi}} / \sqrt{6}.
\]

Remark 2. We only have the assumption on the strong order \(\gamma \) for \(\hat{Y}(n) \) for uniform MSE (on discretization points). It can be a stochastic Ito-Taylor numerical scheme for example. This means that if the numerical process converges to \(X_t \) fast enough at discretization points i.e., \(\gamma > 1/2 \), it converges to \(X_t \) as fast as \(\bar{X}_t \) globally. Observe that the global \(L^2 \) convergence order is always \(1/2 \) when \(\gamma > 1/2 \).

Proof. We have
\[
e(\hat{Y}(n)) \leq e(X, \bar{X}) + e(\bar{X}, \hat{Y}(n)),
\]
\[
e(\hat{Y}(n)) \geq e(X, \bar{X}) - e(\bar{X}, \hat{Y}(n)).
\]

Since
\[
e(X, \hat{Y}(n)) \leq \left[E\left(\sup_{t_k} |\bar{X}_{t_k} - \hat{Y}(n)|^2\right)\right]^{1/2} \leq Kn^{-\gamma},
\]
we have
\[
\limsup_{n \to \infty} n^{1/2} \cdot e(\hat{Y}(n)) \leq C^{\text{equi}} / \sqrt{6},
\]
\[
\liminf_{n \to \infty} n^{1/2} \cdot e(\hat{Y}(n)) \geq C^{\text{equi}} / \sqrt{6},
\]
by Lemma 3.
Remark 3. In a similar way, we can show that the optimal convergence rate for global uniform error [7] is invariant if the numerical scheme used has the MSE strong order \((\log n/n)^{1/2}\), i.e., Euler scheme also has the optimal performance asymptotically in this case.

3. Conclusion

We proposed to use the linear interpolation process, denoted by \(\bar{X}\), in evaluating the convergence rates of numerical schemes. In the literature ([2], [3], [4], [7], [5]), the Itô-Taylor approximation (4) has been used for evaluating the convergence rates with complicated proofs. Our method is simple and more intuitive than the previous approach such that one can clearly grasp the essential part of the numerical errors. We expect our method to provide a useful approach for numerical error analysis of stochastic processes.

Acknowledgements. This work was partially done during the author’s visit in Frankfurt Univ. am Main. The author was supported by National Institute for Mathematical Sciences. He wishes to thank Prof. P. E. Kloeden and Dr. N. Hofmann for their hospitality and helpful advice.

References

National Institute for Mathematical Sciences
Daejeon 305-340, Korea
E-mail address: dunam@nims.re.kr