Exploring knowledge contribution from an OCB perspective

Chia-Ping Yu a,*, Tsai-Hsin Chu b,1

a Tamkang University, Department of Information Management, Taipei, Taiwan, ROC
b National Dong Hwa University, Department of Information Management, Hualien, Taiwan, ROC

Received 4 November 2005; received in revised form 10 February 2007; accepted 13 March 2007
Available online 19 April 2007

Abstract

As participation in virtual community becomes popular, it is important to know how to encourage individuals to contribute actively and assist other members share their expertise. Through the lens of organizational citizenship behavior (OCB), we explored the factors that facilitate voluntary knowledge sharing in a virtual community. We examined OCB in online gaming communities in which various behaviors can contribute to the community (the team) or to individuals (team members). Our aim was to gain insight into ways of creating an environment that facilitated voluntary sharing of knowledge. Our findings suggested that effective leader–member exchange relationships, the attractiveness of the group to individuals, and affection similarity were important in establishing a virtual environment within which voluntary contributions could be promoted effectively. In addition, our study suggested that better quality leader–member exchange relationships and positive affection toward the virtual team enhanced OCB.

Keywords: Leader–member exchange; Organizational citizenship behavior; Knowledge sharing; Virtual community

1. Introduction

The concept of a virtual community is becoming important as it creates opportunities for collaboration and knowledge sharing among geographically distributed people. The useful support technologies includes various applications for discussion or conversation, task and goal-oriented communities built for cooperative achievements of goals, means of satisfying the need for fantasy and playing, etc. [49]. Virtual communities share common properties which allow people to communicate and express their feelings while they form personal relationship. Thus, Rheingold [38] used the term “virtual community” to connote the feelings of camaraderie, empathy and support that they observed among people online: interactions in virtual community involve sharing knowledge, seeking support, and building cohesiveness with others.

Some research has addressed a challenge that knowledge sharing in virtual context is far from spontaneously [6,10]. Therefore, it is necessary to determine how to obtain active contributions to the community from individual members. It has been stated that individuals who give up knowledge are often concerned that this devalues their contribution by benefiting all community members [8]. In addition, the nature of virtual interaction makes it challenging to share knowledge effectively in cyberspace. The virtual community is generally self-organizing, consisting of individuals who interact voluntarily; thus the community is large, loosely connected, and geographically distributed individuals who may not know each other nor expect to meet face-to-face. However, there is no
guarantee that individuals who use knowledge provided by others will ever return the favor; therefore, knowledge sharing has seldom occurred spontaneously [1,32].

Spontaneous assistance without assurance of reciprocation can be regarded as organizational citizenship behavior (OCB). According to Organ [30], it includes behavior that is “discretionary, not directly or explicitly recognized by the formal reward system and that in the aggregate promote the effective functioning of the organization.” In the traditional organization context, the degree of OCB has been shown to be correlated to group cohesiveness and similarity. However, in a virtual context these may be weaker. To gain a sense of “insider” in the virtual community, individuals seek for limited cues when acquiring information about their interests. In many cases, their relationships to others will occur through e-mail, fora, or video conference contacts. Feeling distant tends to reduce sharing, cohesiveness and friendship among group members.

Therefore, it is important to explore how voluntary online knowledge sharing can be facilitated in the virtual context. The online game community has been observed to exhibit information exchange among its members [39] and can provide a way to understand how to create an effective environment for sharing knowledge. Instead of seeking only individual goals, membership in a team feel a need for collaboration. In this context, behavior that contributes to the group or other individuals is performed spontaneously, helping others with few resources, knowing how one’s own behavior affects others, and providing help and support to new game players [33]. Therefore, the participants in online games maintain and share knowledge actively in developing effective strategies to achieve their goals in playing the game.

In our study, we quantified OCB to determine what made participants contribute actively and share knowledge in online game playing.

2. Organizational citizenship behavior

Organ and Konovsky [31] defined five types of citizenship behavior:

- **Altruism**: voluntary actions that help another person with a work-related problem;
- **Conscientiousness**: going well beyond the required levels of attendance, punctuality, housekeeping, conservation of resources, and matters of internal maintenance;
- **Civic virtue**: responsible, constructive involvement in the political process of an organization, including expressing opinions, attending meetings, and keeping abreast of issues that involve the organization;
- **Sportsmanship**: tolerating the inevitable inconveniences and impositions of work without complaining;
- **Courtesy**: gestures that help others avoid a problem, such as checking prior to committing to an action that will affect them (providing advance notice to people who need such information).

In a virtual context, sharing knowledge with others without expectation of return is altruistic behavior. When they share knowledge, they are acting conscientiously, as a team member (with civic virtue), tolerating the risk of no return (i.e. sportsmanship), and giving information to help others solving problems (i.e. courtesy). Thus contributing knowledge can be regarded as a typical OCB. Several authors have suggested that group cohesiveness and leadership are the major predictors of effective OCB [4,35,36]. Others have discussed the effects of personal traits, such as attitudes or dispositions, on affection similarity [47].

2.1. Cohesiveness

Cohesiveness maintains the groups [17,26]. It is believed to affect on the coordination of group members, enhancing the efficiency of the group as a whole. Widmeyer et al. [52] proposed that it is important to distinguish between cohesiveness at the individual and group levels. Individual cohesiveness reflects the desire of individuals to belong to a group, maybe because of interpersonal relationships and the attractiveness of the group task. Group cohesiveness reflects the attraction of a group the identity of which is embodied in the group members but is not attributable to any single individual.

The degree of cohesiveness can predict whether group members consider group interests to be their own, whether they cooperate with other members, or whether they assist others [27]. Research has suggested that there is more altruistic behavior in highly cohesive groups [18]. And their members have a greater desire to contribute, achieve the team goal, and participate in group activities [16].

Online gaming teams are informal task-oriented groups of voluntary participants. The lack of common background makes them treat others as strangers with no shared understanding. The impact of cohesiveness on building network ties could be strong enough to override distance and individual characteristics. With increasing interaction and interdependence, the team
members can mutual knowledge with others and build up a sense of being in-group. If there is therefore a high degree of cohesiveness, team members make friends with other members and share common interests. Thus our first hypothesis was:

H1. There is more OCB in a virtual community in which there is a high degree of cohesiveness.

We considered two dimensions of cohesiveness by generating the hypotheses:

H1a. There is more OCB in a virtual community in which members perceive greater individual cohesiveness.

H1b. There is more OCB in a virtual community in which members perceive greater group cohesiveness.

2.2. Affection similarity

Affection similarity is the tendency for persons who associate to have a variety of similar attributes [53]. In general, people prefer to interact with others who have attitudes and values that are similar to theirs [51]. Groups with a high degree of positive affection similarity should be more cooperative and should exhibit less conflict and trust [3].

Researchers have shown that affection similarity is related to OCB [19]. Group members are committed to groups in which they perceive a high level of affection similarity [20]. Group members then tend to remain in the group and agree with the goals and values of the group [7]. Individuals are then willing to engage in OCB to achieve the group goals.

The degree of affection similarity may be particularly important for OCB in online gaming teams, because members interact and develop friendships mainly through the use of words and symbols in a virtual environment [2]. According to the social identity model of deindividuation effect (SIDE) [23], a virtual context is a deindividualizing setting that leads members perceive themselves and others as a group. The visual anonymity in the online gaming teams provides a context in which individuals conform to an affection similarity group rather than a heterogeneous group. The similarity increases the sense of social presence, and then contributes to the salience of social identity [37]. This implies that members who are similar in affection are much more likely to interact. However, it is difficult for team members to form complete evaluations of others during online interactions in a CMC environment. Therefore, they may seek affection to deduce the similarity between themselves and others through their experiences in playing the game. This lead to our second hypothesis:

H2. There is more OCB in virtual community in which there is a high degree of affection similarity.

Affection similarity may result when the affect is positive (PA) or negative (NA). The first reflects pleasurable engagement, whereas the second reflects a general dimension of subjective distress. PA and NA are not exclusive; they are two sides of a bipolar scale. In fact, PA and NA are unipolar constructs. Previous studies have shown that PA and NA are almost independent, being different processes and related to different types of predictor and outcome variables. For example, Fippen et al. [13] concluded that PA lead to positive interaction, resulting in interdependence. However, the presence of an NA brought group members closer in facing a difficulty condition [14]. Thus, we considered the two dimensions of affection similarity separately with additional hypotheses:

H2a. There is more OCB in a virtual community in which there is more negative affection similarity.

H2b. There is more OCB in a virtual community in which there is more positive affection similarity.

2.3. Leader–member exchange

Leader–member exchange (LMX) is the social exchange between a leader and group members [40]. Emphasis on LMX may obscure important exchange-based issues, including economic exchanges. Based on social exchange theory, LMX theory predicts that the greater the perceived value of tangible and intangible commodities that can be exchanged, the higher the quality of the LMX relationship [42]. Commodities that are exchanged between a leader and a group member vary from material resources and information to emotional support.

Members in a strong LMX relationship become loyal to a leader and feel obligated to respond to any support. This, in turn, leads to more OCB [41]. Strong LMX relationships help maintain positive working relationships among group members, facilitate effective coordination, increase group cohesiveness, and increase citizenship behavior [22].

Skarlicki and Latham [46], Liden and Maslyn [24], and Jordan et al. [21] pointed out that LMX directly increased OCB, confirming the social exchange theory of Blau [5] and Seers et al. [43] that members tended to direct their reciprocal efforts to the source of the benefits that they have received. For example, if a leader...
takes time to listen to the concerns of members and provides a forum to provide explanations and information, members perceive that the leader is approachable and responsive to needs; they might be motivated to engage in OCB in response to the leader’s behavior.

Online gaming teams are always initiated and led by individuals who are masters of the game. As a master, the leader possesses resources (knowledge, skills, etc.) that are valuable to team members who want to compete successfully. Members with a good relationship with the team leader can expect to receive more support and resources than others. This in turn reinforces the motivation for these individuals to return the favor. We therefore proposed the following hypothesis:

H3. There is more OCB in a virtual community within which there are higher quality LMX relationships.

Previous research suggested that LMX can be strengthened by improving cohesiveness and affection similarity [34]. Members of a highly cohesive team will reject behavior that may threaten social connections with other members, thereby maintaining a strong connection within the group [11]. Thus team members maintain high quality LMX relationships and such relationships remain strong when team members recognize the qualifications of the team leaders. This leads to our fourth hypothesis:

H4. A high degree of cohesiveness in the virtual community is associated with stronger LMX relationships.

To consider the two dimensions of cohesiveness, we hypothesized:

H4a. A higher degree of individual cohesiveness in the virtual community is associated with stronger LMX relationships.

H4b. A higher degree of group cohesiveness in the virtual community is associated with stronger LMX relationships.

In addition, affection similarity among group members is a significant factor of the strength of the intragroup relationships [28]. Liden et al. [25] and Sparrowe and Liden [48] pointed out that the recognition of similarity between members and leaders promoted the relationship between them. Therefore, we hypothesized:

H5. A high degree of affection similarity in the virtual community is associated with stronger LMX relationships.

To consider two dimensions of affection similarity, we hypothesized:

H5a. A high degree of negative affection similarity in the virtual community is associated with stronger LMX relationships.

H5b. A high degree of positive affection similarity in the virtual community is associated with stronger LMX relationships.

In summary, LMX, cohesiveness, and affection similarity strongly affect the degree of OCB within groups, but whether this is true in virtual groups has not been addressed. We therefore used the conceptual framework shown in Fig. 1 as the basis for our investigation of the relationships in a virtual context.

3. Research design

We conducted an empirical online survey to examine our framework in the context of the virtual community. To include subjects who were members of one or more online gaming communities, we announced a link to the survey in the bulletin board system of an online game. Qualified subjects were invited to respond. Data were collected via a close-ended questionnaire. A five-point Likert scale was used, where 1 represented ‘totally disagree’ and 5 represented ‘totally agree’ for each item. Our data was analyzed first by confirmatory factor analysis for assessing validity of the constructs, and path analysis was then applied to test the proposed relations in our framework.

3.1. Subjects

In our sampling, the subjects reported their virtual community experiences when playing match and online games. Match game offered a platform to match groups of players: a typical example is Age of Empires. When playing a match game, the players freely seek others in forming a group to compete against other contending groups. As the goal of group is to destroy and defend the
participants’ groups, the members must exchange information and strategies. In an online game, the players take on a specific role and interact with others to locate more resource and dominate others in the virtual world. Most players join the online gaming community to exchange information and to gain benefit from the community.

Although the experience is different in performing these two types of games, members of these gaming communities share common properties:

- First, the members share a common goal (or task). That is, the online gaming community in our study consisted of task-oriented groups in cyberspace.
- Second, the initiation of the task-oriented team in an online gaming community was initiated by an active player who then serves as the leader of the team. The leader’s functional role was then to reduce conflict between members, implement solutions to work problems, provide support, coordinate the work, and develop cohesiveness.
- Third, in order to accomplish their goals, members of the virtual teams share information and experience, set strategies to solve problems and provide support to one another spontaneously or in response to other’s requests.

A total of 223 people responded to the questionnaire. Of these, 30 questionnaires were discarded because they were incomplete. The remaining 193 questionnaires were used for analysis. 88.1% of the subjects were male. Most were well educated: 60% were college students and 30% were students at polytechnics or vocational schools. Most of the subjects were experienced online gamers; 70% had been involved in online gaming for between one and four years. About 70% of these subjects played online games daily. Most (about 80%) played games online for at least 2 h per day. The detailed profile of subjects is shown in Table 1.

3.2. Measurements

The questionnaire consisted of four sections. The items of the questionnaire are shown in Appendix A.

3.2.1. Organizational citizenship behavior

To quantify OCB, we converted the items used in Farh et al. [12] to fit the online game context. Five variables were used to measure OCB: identification with the organization, altruism toward colleagues, conscientiousness, interpersonal harmony, and protection of the resources of the organization. Several rounds of pilot tests were applied to obtain a valid measurement instrument. Factor analysis with principal components and varimax rotation was applied to identify inappropriate items that could be removed to obtain a single factor with a KMO value of 0.85. Cronbach α for the resulting measurement tool was 0.83, indicating a sufficient level of reliability [29].

3.2.2. Leader–member exchange

We used the seven items developed by Graen and Uhl-Bien [15] to measure LMX. After conducting the pilot tests, we retained five measurement items for which the single factor KMO value was 0.72. Cronbach α of the resulting measurement tool was 0.73, indicating an accepted reliability.

3.2.3. Cohesiveness

We used the group environment questionnaire designed by Carron et al. [9] to quantify cohesiveness. They proposed four dimensions of measurement: group integration-social, group integration-task, individual attraction to the group-social, and individual attraction to the group-task. After the pilot test, we retained seven measurement items. Factor analysis revealed two main factors that we termed cohesiveness-I and cohesiveness-G to represent individual and group cohesiveness,
respectively. Cronbach \(\alpha \) values for cohesiveness-I and cohesiveness-G were 0.71 and 0.70, respectively, which indicated an acceptable level of reliability.

3.2.4. Affection similarity

We adopted the Watson et al.’s [50] Positive and Negative Affect Schedule (PANAS) questionnaire to quantify affection similarity. This had 20 items, each of which had two independent dimensions: PA and NA. Ten of the 20 measurement items were retained after a pilot test, including six NA and six PA items. Factor analysis revealed two main factors, which we termed similarity-PA and similarity-NA; Cronbach \(\alpha \) values for these factors were 0.84 and 0.75, respectively, indicating a sufficient level of reliability.

The reliability measurements are shown in Table 2, and the results of factor analysis are in Table 3. The mean value of each construct is given in Table 4.

4. Results

4.1. Predictors of OCB in online gaming communities

We initially addressed the predictors of OCB in the online gaming community by examining the effects of cohesiveness, affection similarity, and LMX on OCB. The results of path analysis are shown in Fig. 2.

Most of the independent variables had a significant effect on the degree of OCB in the online gaming community. LMX was the most important factor of
OCB ($\beta = 0.33$, $p < 0.001$), while similarity-PA, cohesiveness-I, and similarity-NA also had significant effects on OCB ($\beta = 0.21$, $p < 0.01$; $\beta = 0.18$, $p < 0.05$; $\beta = 0.15$, $p < 0.05$; respectively). These results suggest that participants are more likely to contribute to the team when there is a stronger LMX relationship, stronger individual commitment toward cohesiveness, and the perception of higher affection similarity. Therefore, hypotheses H1a, H2a, H2b, and H3 were supported. Interestingly, the effect of cohesiveness-G on OCB failed to reach statistical significance ($\beta = -0.05$, $p > 0.05$). Therefore, we rejected hypothesis H1b.

Williams and Anderson [54] extended the general definition of OCB by distinguishing between behaviors that benefit the organization in general, which they termed OCB-O, and those that immediately benefited specific individuals before benefiting the organization indirectly, which they termed OCB-I. The distinction is important because it permits a link between different levels of antecedents (personal or contextual) with different levels of targets in the organization; group performance might foster OCB-O behavior by promoting strategic thinking [44,45]. OCB-O behavior might lead individuals to invest extra efforts within a group by making innovative suggestions to improve the group and/or by volunteering for roles and tasks that are not obligatory. Similarly, the establishment of OCB-O behavior reduces formalized rules and enhances group cohesiveness. Therefore, to better understand OCB, we investigated the effects of five independent variables on OCB-O and OCB-I; the results are presented in Figs. 3 and 4, respectively.

Each of the independent variables had a significant effect on behaviors that contributed directly to the whole organization (i.e. OCB-O), except cohesiveness-G ($\beta = -0.02$, $p > 0.05$). LMX was the most important factor of OCB-O ($\beta = 0.30$, $p < 0.001$), which indicated that members in better relationships with the group leaders were more likely to expend efforts on behaviors that benefited the whole group. In addition, cohesiveness-I, similarity-NA, and similarity-PA correlated significantly with OCB-O ($\beta = 0.15$, $p < 0.05$; $\beta = 0.16$, $p < 0.05$; and $\beta = 0.19$, $p < 0.01$; respectively). These results suggested that if there is high degree of attraction towards the group and a high level of affection similarity perceived by the group members, individuals would be more likely to behave in a way to benefit the group. Fig. 3 shows the results of the path analysis of OCB-O.

LMX, similarity-PA, and cohesiveness-I were correlated significantly with behaviors that benefited other members before contributing indirectly to the whole group (i.e. OCB-I) ($\beta = 0.30$, $p < 0.001$; $\beta = 0.19$, $p < 0.01$; and $\beta = 0.18$, $p < 0.05$; respectively). Therefore, members who were in better relationships with the group leaders or with more positive affection toward the group, and/or who were more attracted to the group were more likely to contribute to the group by helping other members. Fig. 4 shows the results of the path analysis of OCB-I.

4.2. How are cohesiveness and affection similarity relevant to LMX?

Because LMX is the most important construct of predicting OCB in the online gaming community, our second investigation was concerned improving the quality of LMX relationships. Accordingly, we investigated the relationships among cohesiveness, similarity, and LMX and found that cohesiveness-G had a significant effect on LMX ($\beta = 0.28$, $p < 0.001$; see Fig. 4). Therefore, LMX relationships were probably stronger when the degree of group cohesiveness was perceived to be high. This result supported hypothesis H4b. By contrast, we rejected hypothesis H4a because cohesiveness-I did not have a significant effect on LMX.
It is interesting to note that similarity-NA was related significantly to LMX \((\beta = 0.18, p < 0.05)\). This suggested that members with a higher negative evaluation of the group were more likely to have better relationships with leaders, which supported hypothesis H5a. But because positive evaluation of the group (similarity-PA) did not affect LMX, we rejected hypothesis H5b.

The findings are summarized in Table 5. OCB in the online gaming community can be predicted by individual attraction to the virtual group (cohesiveness-I), affection similarity (similarity-PA and similarity-NA), and the quality of the LMX relationship. When we explored the behaviors that directly and indirectly contributed towards the group, most of the four constructs had a significant effect except for similarity-NA, which had a significant effect only on behaviors that contributed directly to the group (OCB-O).

5. Discussion

In our study, we addressed the question: what makes voluntary participants in the virtual context contribute to the community or to other participants who are strangers? From a managerial perspective, we assumed that leaders of virtual communities can control and facilitate the sharing of knowledge by providing an environment that is conducive to it. In this context, knowledge sharing is voluntary and can be viewed as OCB in the virtual community. Our study represented a preliminary exploration of the type of environment that promotes contribution of knowledge to a group.

Our findings confirmed the significance of the interpersonal factor at work. LMX is a form of social exchange where a leader expects other group members to perform various roles to accomplish the group goals. Group members expect to fulfill their needs by receiving resources. Therefore, exchanges between leaders and members maintain effective organization of group operations.

In the context of online gaming teams, it is crucial for members to obtain tangible and intangible resources to accomplish their personal goals. Those members who assessed having a high-quality relationship with their leader experienced higher levels of support. In the virtual gaming community, most resources are controlled by a team leader and team members try to follow the rules and achieve the goals that the leader creates. Thus, the leader can leverage resource allocation and thus receive support from members. When exchanges between leaders and team members occur effectively, members expect to receive additional resources from the leader by performing in ways that benefit either the whole team.

Our findings suggested that team members who engage in OCB may identify strongly with several team members, even though they might not have a positive attitude towards the team goal. Compared to traditional physical groups, our study showed that the attraction of social relationships was the primary motivation for team members to contribute.

Our results also showed that both positive and negative affection are correlated to the growing OCBs: the impact of positive affection to cooperation is important in the virtual gaming community.

Thus, we found that members of the virtual gaming community share valuable information to improve group performance. By engaging in OCB, members...
6. Implications

Our study provided a preliminary assessment of voluntary knowledge sharing from a managerial perspective. In addition, we extended OCB research from organizational to a virtual environment where interactions use technology that may inhibit the formation of relationships. However, it is important to note that OCB theory was based on a physical environment and thus may not be valid in a virtual environment.

With regards to the practical assessment of knowledge sharing, managers of virtual communities should create an environment within which voluntary contributions are promoted effectively. By improving LMX, leaders may secure exchange relationships by building mutual trust during the development of a relationship. Also leaders should provide sufficient resources to fulfill the needs of team members when they assist in achieving the goal of the team. Leaders can enhance the attractiveness of a group by improving social relationships among the members or by providing goals that are sufficiently challenging for participants.

7. Conclusion

Without shared background and social network, the members of an online community are less likely to create effective knowledge sharing in a virtual setting. OCB could be important in providing participants with more strategic control.

We explored how effective virtual environments are created to share knowledge via OCB. We considered the sharing of knowledge online as a form of OCB because the process involves automatic, discretionary, and altruistic behaviors that are not requested. The results of our study suggested that effective LMX relationships, the attraction of individual to the virtual group, and affection similarity among group members are all important in establishing a virtual environment within which voluntary contributions are promoted effectively.

We have demonstrated that it is critical to test for the OCB of a virtual community instead of simply assuming sharing spontaneously, OCB concerns shape the motivation to voluntarily engage in knowledge sharing. This organizational behavior is linked in important ways to people’s desire to receive feedback from a virtual community that creates, maintains, and enhances an effective knowledge sharing platform. The extent to which people use OCB as a means to invent new strategies, to exchange their own resources, or to engage in problem solving are issues central to the construction of a knowledge sharing community in virtual space.

Acknowledgements

The authors would like to thank two reviewers for their valuable comments, Dr. Sibley for his assistance in editing the paper, and Yen-Ling Chen for her assistance in collecting the data.

Appendix A

A.1. Organizational citizenship behavior (OCB)

OCB 1: I make every effort to safeguard the image of our community, and actively participate in any activities organized by my community.
OCB 2: I make every effort to demonstrate the strength of my community.
OCB 3: I put forward good suggestions voluntarily to the members of my community.
OCB 4: I participate in the activities of my community with a positive attitude.
OCB 5: Rather than evading assigned tasks, I willingly take on new or challenging tasks.
OCB 6: I help members to resolve conflicts and misunderstandings to maintain a harmonious community.
OCB 7: I am able to maintain good relations with my team members.
OCB 8: I communicate with my team members actively while carrying out communal tasks.

A.2. Leader–member exchange (LMX)

LMX 1: Is the leader able to understand your questions and needs in the context of the game?
LMX 2: Is the leader able to understand the nature of the role you play in the game?
LMX 3: I have enough confidence in the leader to support and defend his/her decisions.
LMX 4: Is your leader, irrespective of his/her level, willing to make considerable sacrifice for you?
LMX 5: Do you maintain good relations with the leader?
A.3. Cohesiveness (COH)

COH 1: I am not happy with the amount of playing time I get.
COH 2: I am unhappy with the level of my team’s desire to win.
COH 3: This team does not give me enough opportunities to improve my personal performance.
COH 4: I do not like the style of play in this team.
COH 5: Members of our team would rather go out on their own than get together as a group.
COH 6: Members of our team do not stick together outside the context of activities and games.
COH 7: Our team members have conflicting aspirations in terms of team performance.

A.4. Positive Affection/Negative Affection (PA/NA)

In the Affection column, rate your feelings about your community by recording a number from 1 to 5, 1 indicating total disagreement; 5 total agreement.

I feel my community is ...

PA1: Interesting.
PA 2: Exciting.
PA 3: Hospitable.
PA 4: Outstanding.
NA 1: Aggressive.
NA 2: Embarrassing.
NA 3: Depressing.
NA 4: Evil.
NA 5: Frightening.
NA 6: Fear.

References

[42] B. Schyns, Are group consensus in Leader–Member Exchange (LMX) and shared work values related to organization outcomes? Small Group Research 37 (1), 2006, pp. 20–35.

Chia-Ping Yu is an assistant professor in the Department of Information Management at the Tamkang University, Taiwan. She received her PhD in MIS from the National Sun Yat-sen University. Her research interests are virtual communities, organizational learning and knowledge management. Her works have appeared in JIIJ (International Journal of Innovation and Learning), UMIE (International Journal of Management in Education), Journal of Information Management, Academy of Information and Management Science Journal, Academy of Educational Leadership Journal, Academy of Managerial Communication Journal, Journal of e-Business, Journal of Cyber Culture and Information Society, and Journal of Human Resource Management. She was also the Editor of the Journal of Information Management—Concepts, Systems.

Tsai-Hsin Chu is an assistant professor of Department of Information Management in Business School at National Dong Hwa University. She received her PhD in National Sun Yat-sen University and had been a visiting researcher of Centre of Management Information and techpreneurship at National University of Singapore. Her research interests include knowledge management, technology mediated learning, decision support system, and computer mediated communication. She has published papers in major journals, including Journal of Organizational Computing & Electronic Commerce, Decision Support Systems, Journal of Computer Information Systems, Journal of Information Management and Academy of Managerial Communication Journal.