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Abstract: This paper presents the results from running five experiments with
the Chime Parallel Processing System. The Chime System is an implementation
of the CC++ programming language (parallel part) on a network of computers.
Chime offers ease of programming, shared memory, fault tolerance, load bal-
ancing and the ability to nest parallel computations. The system has perform-
ance comparable with most parallel processing environments. The experiments
include a performance experiment (to measure Chime overhead), a load balanc-
ing experiment (to show even balancing of work between slow and fast ma-
chines), a fault tolerance experiment (to show the effects of multiple machine
failures), a recursion experiment (to show how programs can use nesting and
recursion) and a fine-grain experiment (to show the viability of executions with
fine grain computations.

1. Introduction

This paper describes a series of experiments to test the implementation, features and
performance of a parallel processing system called Chime. The experiments include
runs of various scientific applications. Chime is a system developed at Arizona State
University [1, 2] for running parallel processing applications on a Network Of
Workstations (the NOW approach).

Chime is a full implementation of the parallel part of Compositional C++ (or
CC++) [3], running on Windows NT. CC++ is a language developed at Caltech and is
essentially two languages in one. It has two distinct subparts – a distributed program-
ming language designed for NOW environments and a parallel programming language
designed for shared memory multiprocessor environments. While shared memory
multiprocessors are very good platforms for parallel processing, they are significantly
costlier than systems composed of multiple separate computers. Parallel CC++ is an
exceptionally good language, but it was not designed to run on NOWs. Chime solves
this problem, by implementing parallel CC++ on the NOW architecture.

Chime uses a set of innovative techniques called “two-phase idempotent execution
strategy” [4], “distributed cactus stacks” [1], “eager scheduling”[4], “dependency
preserving execution” [2] and the well-known technique called “distributed shared
memory” [5] to implement parallel C++. In addition, it has the extra features of load



balancing, fault tolerance and high performance. Chime is the first (and of this writing,
the only) parallel processing system that provides the above features, coupled with
nested parallelism, recursive parallelism and synchronization (these are features of
parallel CC++). This paper described the implementation of Chime, in brief and pre-
sents details on the experiments with Chime.

2. Related Work

Shared memory parallel processing in distributed systems is limited to a handful of
Distributed Shared Memory (DSM) systems that provide quite similar functions
(Munin [6], Midway [7], Quarks [8], TreadMarks [9]). DSM systems care categorized
by the type of memory consistency they provide. DSM systems do not provide a uni-
form view of memory i.e. some global memory is shared and some are not. In addi-
tion, the parallel tasks execute in an isolated context; i.e. they do not have access to
variables defined in the parent's context. In addition, a parallel task cannot call a func-
tion that has an embedded parallel step (nesting of parallelism is not allowed).

The Calypso system [4, 17, 18] adds fault tolerance and load balancing to the DSM
concept, but suffers from the lack of nesting and synchronization (except barrier syn-
chronization). Chime is an extension to Calypso and absolves these shortcomings.

A plethora of programming systems for NOW based systems exist, that uses the
message-passing technique. Two well-known systems are PVM [10] and MPI [11].
Fault tolerance and load balancing has been addressed, in the context of parallel proc-
essing by many researchers, a few examples are Persistent Linda [12], MPVM [13],
Dynamic PVM [14] Piranha [15] and Dome [16]. The techniques used in most of
these systems are quite different from ours and often add significant overhead for the
facilities such as fault tolerance.

Most working implementations are built for the Unix platform (including Linux).
Some have Windows NT implementations, but they are buggy at best. In our experi-
ence, we have not been able to make any non-trivial applications work correctly with
these systems on the Windows platform. For this reason, we are unable to provide
comparative performance tests.

3. Chime Features

Shared memory multiprocessors are the best platform for writing parallel programs,
from a programmer’s point of view. These platforms support a variety of parallel
processing languages (including CC++) which provide programmer-friendly con-
structs for expressing shared data, parallelism, synchronization and so on. However
the cost and lack of scalability and upgradability of shared memory multiprocessor
machines make them a less than perfect platform. Distributed Shared Memory (DSM)
has been promoted as the solution that makes a network of computers look like a
shared memory machine. This approach is supposedly more natural than the message
passing method used in PVM and MPI. However, most programmers find this is not
the case. The shared memory in DSM systems does not have the same access and



sharing semantics as shared memory in shared memory multi-processors. For example,
only a designated part of the process address space is shared, linguistic notions of
global and local variables do not work intuitively, parallel functions cannot be nested
and so on.

As stated before, Chime provides a multiprocessor-like shared memory program-
ming model on network of workstations, along with automatic fault-tolerance and load
balancing. Some of the salient features of the Chime system are:
1. Complete implementation of the shared memory part of the CC++ language. Hence

programming with Chime is easy, elegant and highly readable.
2. Support for nested parallelism (i.e. nested barriers including recursion) and syn-

chronization. For example, a parallel task can spawn more parallel tasks and tasks
can synchronize amongst each other.

3. Consistent memory model, i.e. the global memory is shared and all descendants
share the local memory of a parent task (the descendants execute in parallel).

4. Machines may join the computation at any point in time (speeding up the computa-
tion) or leave or crash at any point (slowdowns will occur).

5. Faster machines do more work than slower machines, and the load of the machines
can be varied dynamically (load balancing).

In fact, there is very little overhead associated with these features, over the cost of
providing DSM. This is a documented feature (see section 6.1) that Chime shares with
its predecessor Calypso [4]. Chime runs on Windows NT and the released version can
be downloaded from http://milan.eas.asu.edu.

3.1 Chime Programming Example

Chime provides a programming interface that is identical to the parallel part of Com-
positional C++ (or CC++) language Consider the following parallel CC++ program:

#include <iostream.h>
#include "chime.h"
#define N 1024

int GlobalArray[N];
void AssignArray(int from, to){

if (from != to)
par {

AssignArray(from, (from+to)/2);
AssignArray((from+to)/2 + 1, to);

}
else GlobalArray[from] = 0;

}
int main(int argc, char *argv[]) {

AssignArray (0, N-1)
}

The above program defines a global (shared) array called GlobalArray, containing
1024 integers. Then it assigns the global array using a recursive parallel function
called AssignArray. The AssignArray function uses a "par" statement. The par state-
ment executes the list of statements within its scope in parallel, thus calling two in-



stances of AssignArray in parallel. Each instance calls two more instances, and this
recursion stops when 1024 leaf instances are running.

4. Chime Technologies

The implementation of Chime borrows some techniques used in an earlier system
called Calypso and adds a number of newer mechanisms. The primary mechanisms
used in Chime are:
Eager Scheduling: In Chime, the number of parallel threads running a parallel appli-

cation can change dynamically and is larger than the number of processors used.
Each processor runs a “worker” process, and one designated processor runs the
manager. A worker contacts the manager and picks up one thread and when it fin-
ishes, it requests the next thread. Threads are assigned from the pool of uncom-
pleted jobs. This technology provides load balancing (faster workers do more
work) and fault tolerance (failed workers do not tie up the system) using the same
technique.

Two Phase Idempotent Execution Strategy (TIES): Since there is the possibility of
multiple workers running the same thread, the execution of each thread must be
idempotent. The idempotence is achieved by coupling eager scheduling with an
atomic memory update facility implemented by Calypso DSM (see below).

Calypso DSM: This is a variant of the well-known RC-DSM (Release Consistent
Distributed Shared Memory) technique. RC-DSM is modified so that the return of
pages are postponed to the end of the thread, and the manager buffers all the re-
turned pages and updates them in an atomic fashion and then marks the thread as
completed. This ensures correct execution even when threads fail at arbitrary
points [17].

Dependency Preserving Execution: Threads can create threads; threads can synchro-
nize with other threads. This can cause unmanageable problems when multiple
workers are executing the same thread or when threads fail after creating new
threads (or fail after reaching a synch point). Dependency Preserving Execution
solves this problem. Each time a thread created nested threads, it informs the man-
ger of the new threads and the old thread mutates into a new thread itself. Similarly
at synchronization points, the manger is informed, and a mutation step is per-
formed. The complete description of this mechanism is beyond the scope of this
paper and is described in [2].

Distributed Cactus Stack: A data structure that replicates the application stack
amongst all machines to ensure correct nesting or parallel threads and scooping of
variable local to functions [1].

5. Experiments with Chime

We now describe a set of five experiments using various scientific applications to
determine its performance and behaviors on a range of features. The five experiments
shown below are the performance experiment, the load balancing experiment, the fault



tolerance experiment, the recursion
experiment and the fine grain execu-
tion experiment. Experiments were
conducted at different points in time,
at different locations by different peo-
ple, hence all the equipment used are
not the same (except that Intel ma-
chines with Windows NT 4.0, con-
nected by a 100Mbps Ethernet was
used for all experiments). The systems
used are stated along with the discus-
sion of each experiment.

5.1 Performance Experiment

The performance experiments used
several matrix multiply and ray-tracing
programs, and both yielded similar
results. We show the results of a ray-
tracing program below using Pentium Pro 200 processors. The first step is to write the
program in sequential C++ and measure its execution time. Then a parallel version is
written in CC++ and run with Chime on a variable number of processors (from 1 to 5)
and the speedups are calculated in respect to the sequential program. The results are
shown in Figure 1.

Note that the single processor execution under chime is about 9% poorer than the
sequential program and the execution speed scales with addition of processors – the
degradation in performance is at most 21%. This makes Chime competitive with most
parallel processing systems for NOWs even though Chime has significantly better
features. This experiment shows that the overhead of Chime is quite small, in spite of
its rich set of features. We have been unable to run (in spite of extensive attempts) any
complicated programs with Windows NT implementations of systems such as PVM
and MPI and hence cannot provide comparative performance numbers.

5.2 Load Balancing Experiment

The load balancing experiment involves the same ray-tracing program as above, but
using machines of different speeds to run the parallel application. In many parallel-
processing systems, the slowest machine(s) dictate performance; that is, fast machines
are held up for the slow machines to finish the work allocated to them. Chime, does it
differently. The application was executed on 4 slow machines (P-133, 64MB) and then
a fast machine (P-200, 64MB) replaced one slow machine. This caused an increase in
speed. Replacing more slow machines with fast machines kept the trend.

We calculate an “ideal” speedup of the program, as follows. Suppose a computation
runs for T seconds on n machines, M1, M2, …, Mn. Machine Mi has a performance
index of pi and is available for ti seconds. (Performance index is the relative speed of a
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machine normalized to some reference.)
Then the maximum theoretical speedup
that may be achieved is:

Ideal speedup
= number of equivalent machines

= ΣΣΣΣi=1:n(pi * t i ) / T
The performance index of a P-133 was

set to 1 and the P-200 was measured to be
1.96. Note that the load balancing experi-
ment shows that the actual speedup is close
to the ideal speedup (within 22%) and the
load is balanced well among slow and fast
machines.

5.3 Fault Tolerance Experiment

The “fault tolerance” experiment, using the
ray tracing program, shows the ability of
Chime to dynamically handle failures as
well as allowing new machines to join the
computation. For this test up to four P-200
machines were used. Of these machines,
one was a stable machine, and the rest
were transient machines. The transient
machines worked as follows:

Transient machine: After
120 seconds into the com-
putation, the transient ma-
chine joins the computa-
tion and then, after another
120 seconds, fails (without
warning, i.e. crashes).

Figure 3 shows the effect of transient
machines. The actual speedups and ideal
speedups were computed according to the
formula described earlier. Note that the
ideal speedup measure takes into account
the full power of the transient machines
during the time they are up whether they
are useful to the computation or not. The
experimental results show that the transient
machines do contribute to the computation.
Note that the transient machines end their
participation by crashing. Hence whatever
they were running at that point is lost. Such
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crashes do not affect the correct execution of the program under Chime.
In fact this experiment shows the real power of Chime. The system handles load

balancing and fault tolerance, with no additional overhead. The real speedups are
close to the ideal speedups. In cases where machines come and go, the failure toler-
ance features of Chime actually provide more performance than an equivalent, non-
fault-tolerant system.

5.4 Nesting and Recursion Experiment

The nesting and recursion experiment is a test of Chime’s ability to handle nested
parallelism, especially in the case the program is recursive. We use a variant of the
Fast Fourier Transform (FFT) algorithm for this experiment. This variant is called the
Iterative FFT and has a significant computational complexity and hence scope for
parallization. To calculate the Fourier Transform of an N-vector, we first compute the
Fourier transform of two halves of the vector and then combine the results. The exact
details of the FFT algorithm and its complexity analysis are omitted due to the space
constraints.

This recursive program is written by writing a subroutine called ComputeFFT( ).
This subroutine accepts the input vector size and the vector and then splits it into two
parts and calls itself recursively and does it twice. Each invocation of the recursive
call runs in parallel. Thus the program starts as one thread and then splits into two and
then splits to 4 and so on, till the leaf nodes compute the FFT of 2 elements. For a data
size of 32K (215) elements the recursion tree is 15 deep, the number of logical threads
generated, is about 32,000.

The following pseudo code illustrates the core of the parallel algorithm.

ComputeFFT ( n, vector [size 2n ]){
if (n==1) compute the FFT
else {

Divide vector into odd and even halves;
par { // ** parallel step **

ComputeFFT(n-1, odd-half-of-vector);
ComputeFFT(n-1, even-half-of-vector);

}
}

assimilate results;
return results to caller;

}

Note that the resulting parallel program is easy to write, readable and very elegant.
This is one of the main appeal of Chime. The above program is run on data sets rang-
ing from size 32K elements (215) to 265K (218) elements. The execution environ-
ment was three IBM Intellistation machines with Pentium-III 400 machines with
128MB of memory. The results are summarized below.



This experiment shows the ability of Chime to handle nesting and recursion, a feature
that makes writing parallel programs simple and is not available on any NOW plat-
form. Note the super linear speedup for the last two executions. This is due to the
availability of large memory buffers when using three machines. While one-machine
executions do page swapping, the buffering scheme built into Chime allows three
machines to buffer the data and avoid having to use the paging disk. This causes a
better than expected speedup, on some applications.

5.5 Fine Grain Execution Test

The fine grain test was run using two scientific applications, LU decomposition and
computing Eigenvalues. We present the results from the LU Decomposition program.
LU decomposition consists of transforming a matrix for a solution of a set of linear
equations. The matrix transform yields a matrix whose lower triangle consists of zero.
During forward elimination phase to reduce matrix A into L (Lower) and U (Upper)
triangular matrices, each worker node works on subset of rows below the current pivot
row to reduce them to row echelon form. The code that does this transformation is
shown below:

for (i = 1 to N) {// N is the size of the array
max = abs(a[i, i]); pivot = i;
for (j = (i+1) to N) {

if abs(a[j, i]) > max {
max = abs(a[j,i];
swap rows i and j;

}
}
// at this point a[i, i] is the largest
// element in the column I
parfor (p = 1 to maxworker) { // ** parallel step **

find start and end row from values of p and i;
for j = start to end {

use the value in a[i,i] and a[j,i]
to set the element a[j,i] to zero

}
// now all elements in column i from
// row i+1 down, is zero

}

As before, the code for the program is simple and readable and the structure of the
parallelism is obvious. The program creates a set of maxworker threads on each itera-
tion through the matrix. Depending on the value of N, these threads do varying

Execution Time (seconds)
Input Data Size

1 node 3 nodes

Percent speedup
on three nodes

215 17 6 183 %
216 30 8 275 %
217 57 13 338 %
218 108 20 440 %



amount of work, but the maximum work each thread does is about N simple arithmetic
statements. Hence the program dynamically creates a lot of threads, in a sequential
fashion and each thread is rather lightweight. Hence it is a test of Chime’s ability to do
fine-grain processing.

The above program was executed on three Pentium-133 machines with 64MB
memory. As shown in the following table, the time to run on three machines, under
Chime ranges between 30% and 150% faster. But the gap between single node and
three nodes has been gradually reducing as the matrix sizes are increasing. This may
be due to the fact that the communication overhead is more than the computational
power desired on the virtual nodes.

Execution Time (seconds)
Input Data Size

1 node 3 nodes

Percent speedup
on three nodes

100x100 46 19 142 %
200x200 94 45 109 %
300x300 156 89 75 %
400x400 242 172 41 %
500x500 349 272 28 %

6. Conclusions

Chime is a highly usable parallel processing platform for running computations of a
set of non-dedicated computers on a network. The programming method used in
Chime is the CC++ language and hence has all the desirable features of CC++. This
papers shows, through a set of experiments how the Chime system can be used for a
variety of different types of computations over a set of diverse scientific applications.
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