Decentralized Guaranteed Cost Control for Large-Scale T-S Fuzzy Systems

Shih-Wei Lin, Chung-Hsun Sun, and Chih-Hui Chiu

Abstract

This paper studies the guaranteed cost control issues for the large-scale systems which are composed of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. A cost function is considered as the performance index for the system. By Lyapunov stability criterion and the parallel distributed compensation (PDC), some sufficient conditions are derived such that the large-scale fuzzy system is not only asymptotically stable but also cost-guaranteed. Furthermore, the interactive relations among the fuzzy subsystems are employed to relax previous results. The same ideas are also extended to the large-scale fuzzy system with uncertainty. Finally, two examples illustrate the effectiveness of the proposed criteria.

Keywords: Guaranteed cost control, T-S fuzzy model, large-scale system, uncertainty.

1. Introduction

The so-called large-scale system is composed of a number of independent subsystems and a set of interconnections. The large-scale system is extensively applied in lots of fields, such as electric power system, computer networks, and urban traffic network. Hence, the stabilization issues of large-scale systems have been studied in lots of literature. [1-9].

During the last two decades, fuzzy systems have attracted great attention in academic research and industrial applications. Any nonlinear system can be represented by the famous Takagi-Sugeno (T-S) fuzzy model [10-11], and then the system can be systematically analyzed. The equivalent T-S fuzzy model is often effectively controlled by the parallel distributed compensation (PDC). There have been lots of studies explore the control problems by T-S fuzzy representations [12-17].

The large-scale systems represented by T-S fuzzy model are investigated recently [18-25]. Refs. [18-19] study the stability analysis of large-scale T-S fuzzy systems. By Lyapunov direct method and M-matrix, a decentralized control for large-scale T-S fuzzy systems is proposed in [20]. The paper [21] studies the model reference tracking problem by decentralized fuzzy control. To overcome the effect of modelling error of a multiple time-delay large-scale system, a robust fuzzy control design is proposed in [22]. In [20-24], the PDC law is utilized to control the large-scale T-S fuzzy systems. In [25], the non-PDC control law is proposed to stabilize the uncertain fuzzy time-delay interconnected system.

In control design, it is often desirable to be not only asymptotically stable but also an adequate performance guaranteed, which is the so-called guaranteed cost control [26-28]. Herein, the cost-guaranteed problem for the large-scale T-S fuzzy system is considered. Moreover, the performance constraint often accompanies conservative stability conditions. Therefore, we also adopt some scheme to relax the conservative criterion.

Kim and Lee [29] consider the interactive relations among all subsystems to relax the stability criterion for T-S fuzzy system. Liu and Zhang [30] apply a similar idea to obtain a more relaxed stability criterion for T-S fuzzy system. Ref. [31] utilizes this idea to derive a relaxed stability criterion for large-scale T-S fuzzy systems. Although the interactive relations among all subsystems are considered to obtain more relaxed results in aforementioned studies, there is still no study employs this concept to guaranteed cost control for large-scale T-S fuzzy systems.

This paper focuses on the relaxed decentralized guaranteed cost control for large-scale T-S fuzzy systems. Firstly, the performance constraint is performed by a cost function. Secondly, the interactive relations among all fuzzy subsystems are adopted in the derivative of decentralized guaranteed cost control. Then the relaxed cost-guaranteed stabilization criterion for the large-scale T-S fuzzy systems is proposed. Also, relaxed guaranteed cost problem for the large-scale fuzzy systems with uncertainties is discussed. Finally, an application example and a numerical example are illustrated to show the effectiveness of proposed theorems. The way to choose an appropriate cost function according to the performance requirement is illustrated by the simulation results.

2. Problem formulation

Consider the nonlinear large-scale system represented by T-S fuzzy model as follows. Each subsystem \(S_i \) is composed of a set of fuzzy If-Then rules.
where \(l = 1,2,\ldots, r_i; \quad i = 1,2,\ldots, \sigma; \) and \(r_i \) denotes the number of fuzzy rules in subsystem \(S_i \). The fuzzy sets of the rules \(S_i^l \) are denoted by \(H^l_{iq}(q = 1,2,\ldots,g) \). The premise variables in subsystem \(S_i \) are represented by \(z_i(t) = [z_{i1}(t), z_{i2}(t), \ldots, z_{ig}(t)] \) which may be equal to \(x_i(t) \) or a function of \(x_i(t) \). The system matrix and input matrix of the rule \(S_i^l \) are denoted by \(A_i^l \) and \(B_i^l \), respectively. Moreover, the state vector \(x_i(t) \in \mathbb{R}^{n_i} \), the input vector \(u_i(t) \in \mathbb{R}^{m_i} \), and the interconnection \(f_j^l \) with appropriate dimension between subsystem \(S_i \) and subsystem \(S_j \) in the rule \(l \) are all stated.

By the product fuzzy inference method and central-average defuzzifier, (1) is inferred as

\[
\hat{x}_i(t) = \sum_{l=1}^{r_i} \mu^l_i(z_i(t)) [A_i^l x_i(t) + B_i^l u_i(t) + \sum_{j=1}^{g} f_j^l x_j(t)]
\]

(2)

where

\[
\mu^l_i(z_i(t)) = \frac{\omega_i^l(z_i(t))}{\sum_{q=1}^{g} \omega_i^q(z_i(t))}
\]

\(H^l_{iq}(z_i(t)) \) is the grade of membership \(H^l_{iq} \) by \(z_i(t); \omega_i^l(z_i(t)) = 0, \) for \(l = 1,2,\ldots, r_i; \) and \(\sum_{l=1}^{r_i} \mu^l_i(z_i(t)) = 1, \) for \(i = 1,2,\ldots, \sigma. \) In the following, \(\mu^l_i(z_i(t)) \) is replaced by the abbreviation \(\mu^l_i. \)

The main purpose of this paper is to propose a criterion for the large-scale T-S fuzzy system (2) under which not only the system is stabilized by the fuzzy control but also the cost is guaranteed. Hence, we define a cost function \(J \) to present the performance.

\[
J = \int_0^\infty \{x^T(t)Qx(t)+u^T(t)Ru(t)\}dt
\]

(3)

where \(x(t) = [x_1^T(t), x_2^T(t), \ldots, x_{\sigma}^T(t)]^T \) and \(u(t) = [u_1^T(t), u_2^T(t), \ldots, u_{\sigma}^T(t)]^T \) are the overall state vector and the overall input vector respectively; \(Q = \text{diag}[Q_1, Q_2, \ldots, Q_{\sigma}] \) and \(R = \text{diag}[R_1, R_2, \ldots, R_{\sigma}] \) are given positive definite symmetric matrices with appropriated dimensions. Associate with the cost function (3), a definition for the guaranteed cost fuzzy control is given as follows.

Definition 1 [26]: Consider the T-S fuzzy system (2). If there exist a control \(u(t) \) and a scalar \(J_0 > 0 \) such that the closed-loop system is asymptotically stable and the value of the cost function (3) satisfies \(J \leq J_0 \), then \(J_0 \) is said to be a guaranteed cost and \(u(t) \) is said to be a guaranteed cost control law for the T-S fuzzy system (2).

Following Definition 1, then we could design a guaranteed cost PDC for the large-scale T-S fuzzy system in next section.

3. Guaranteed cost control design

Let the \(l \)-th rule of fuzzy PDC controller in the \(i \)-th subsystem be the following form

\[
u_i(t) = K^l_i x_i(t)
\]

where \(l = 1,2,\ldots, r_i; \) and \(i = 1,2,\ldots, \sigma. \) The PDC scheme shares the same membership functions of the fuzzy plant model. By the same inference engine and defuzzifier of (2), the weight of each PDC rule is the same as \(\mu^l_i \) of (2). The final output of the fuzzy controller \(C_i \) is

\[
u_i(t) = \frac{\sum_{l=1}^{r_i} \mu^l_i K^l_i x_i(t)}{\sum_{l=1}^{r_i} \mu^l_i}
\]

(5)

Combining (2) and (5) yields the closed-loop fuzzy system as follows.

\[
\begin{align*}
x_i(t) &= \sum_{l=1}^{r_i} \mu^l_i [A_i^l x_i(t) + B_i^l u_i(t) + \sum_{j=1}^{g} f_j^l x_j(t)] + \frac{\sum_{l=1}^{r_i} \mu^l_i K^l_i x_i(t)}{\sum_{l=1}^{r_i} \mu^l_i} \mu^l_i (z_i(t)) \\
\end{align*}
\]

(6)

where \(i = 1,2,\ldots, \sigma. \) Now, the following theorem is derived to achieve the main objective of this paper.

Theorem 1: Consider the system (6) and the cost function (3) with given positive definite matrices \(Q \) and \(R \). The PDC (5) not only can stabilize the large-scale fuzzy system (6) asymptotically but also ensure the cost function (3) satisfying \(J \leq J_0 \), if there exist matrices \(K^l_i, T^l_i \), and positive definite matrices \(P_i \), satisfying (7a), (7b), and (7c).

\[
\begin{align*}
S_i^l + \sum_{j=1}^{r_i} P_j f_j^l f_j^l^T P_j + \sigma - I + Q + K^l_i^T R K^l_i & \leq T_i^{ll} \\
S_i^{lm} + \sum_{j=1}^{r_i} P_j f_j^l f_j^l^T P_j + \sum_{j=1}^{r_i} \sum_{l=1}^{r_i} \mu^j_l f_j^l f_j^l^T P_j + 2\sigma I & \leq T_i^{lm} \\
+ 2Q + K^l_i^T R K^l_i + K^l_i^T R K^l_i & \leq T_i^{lm} + T_i^{ml} \\
T_i = & \begin{bmatrix} T_1^{l1} & T_1^{l2} & \cdots & T_1^{lr} \\
T_2^{l1} & T_2^{l2} & \cdots & T_2^{lr} \\
\vdots & \vdots & \ddots & \vdots \\
T_r^{l1} & T_r^{l2} & \cdots & T_r^{lr} \end{bmatrix} < 0 \\
\end{align*}
\]

(7a, 7b, 7c)

where \(l = 1,2,\ldots, r_i; \quad l < m \leq r_i; \quad i = 1,2,\ldots, \sigma; \)

\[
S_i^{lm} = (G_i^{lm})^T P_i + P_i (G_i^{lm})^T \\
G_i^{lm} = A_i^{lm} + B_i^{lm} K_i^{lm} \\
T_i^{lm} = T_i^{ml} \\
J_0 = x^T(0)Px(0)
\]

(8)

where \(P = \text{diag}[P_1, P_2, \ldots, P_{\sigma}] \).

Proof: Let the Lyapunov function candidate be

\[
V(x(t)) = \sum_{i=1}^{\sigma} V_i(x_i(t)) = \sum_{i=1}^{\sigma} x_i^T(t) P_i x_i(t)
\]

(9)

Taking the derivative of \(V_i \) along (6) yields
\[
V(x(t)) = \sum_{i=1}^{n} \left[x_i^T(t) P_i x_i(t) + x_i^T(t) P_i x_i(t) \right]
= \sum_{i=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{il}^m \left(x_i^T(t) \right) [(A_i + B_i K_i)^T] P_i + P_i (A_i + B_i K_i^m)] x_i(t)
+ P_i (A_i^T + B_i^T K_i^m)] x_i(t) + 2 \sum_{j=1}^{n} x_j^T(t) f_{ij}^T P_j x_j(t)
= \sum_{i=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{il}^m \left(x_i^T(t) \right) [(G_{il}^{lm})^T P_i + P_i (G_{il}^{lm})] x_i(t)
+ 2 \sum_{j=1}^{n} x_j^T(t) f_{ij}^T P_j x_j(t)
+ \sum_{j=1}^{n} \sum_{i=1=1}^{n} \mu_{ij}^m \left(x_i^T(t) \right) [S_{ij}^m + S_{ij}^m] x_i(t)
+ 2 \sum_{j=1}^{n} x_j^T(t) (f_{ij}^T + f_{ij}^T) P_j x_j(t)
\]

Substituting (7a) and (7b) into (10) yields
\[
V(x(t)) \leq \sum_{i=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{il}^m \left(x_i^T(t) \right) [(Q_i - K_i^T R_i K_i^m - \sum_{j=1}^{n} P_j f_{ij}^T P_j - 2 \sigma \cdot I + T_i^m)] x_i(t)
+ 2 \sum_{j=1}^{n} x_j^T(t) f_{ij}^T P_j x_j(t)
+ \sum_{i=1=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{ij}^m \left(x_i^T(t) \right) [-2 Q_i - K_i^T R_i K_i^m - K_i^{Tm} R_i K_i^m]
+ T_i^{lm} + T_i^{lm} - \sum_{j=1}^{n} P_j (f_{ij}^T + f_{ij}^T) P_j - 2 \sigma \cdot I + T_i^m)] x_i(t)
+ 2 \sum_{j=1}^{n} x_j^T(t) (f_{ij}^T + f_{ij}^T) P_j x_j(t)
\]

Since
\[- K_i^T R_i K_i^m - K_i^{Tm} R_i K_i^m \leq - K_i^T R_i K_i^m - K_i^{Tm} R_i K_i^m,\]
then we have
\[
V(x(t)) \leq \sum_{i=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{il}^m \left(x_i^T(t) \right) [-Q_i - K_i^T R_i K_i^m - \sum_{j=1}^{n} P_j f_{ij}^T P_j - 2 \sigma \cdot I + T_i^m] x_i(t)
+ T_i^m x_i(t) + 2 \sum_{j=1}^{n} x_j^T(t) f_{ij}^T P_j x_j(t)
+ \sum_{i=1=1}^{n} \sum_{m=1}^{n} \sum_{l=1}^{m} \mu_{ij}^m \left(x_i^T(t) \right) [-2 Q_i - K_i^T R_i K_i^m - K_i^{Tm} R_i K_i^m]
+ T_i^{lm} + T_i^{lm} - \sum_{j=1}^{n} P_j (f_{ij}^T + f_{ij}^T) P_j - 2 \sigma \cdot I + T_i^m] x_i(t)
+ 2 \sum_{j=1}^{n} x_j^T(t) (f_{ij}^T + f_{ij}^T) P_j x_j(t)
\]

Then (6) is asymptotically stable. Integrating (11) from 0 to \(\infty \), we have
\[
\int_0^\infty \{ x_i^T(t) Q x(t) + u_i^T(t) R u_i(t) \} dt < -V(x(\infty)) + x^T(0) P x(0)
\]
Because $V(x(t)) \geq 0$ and $\dot{V}(x(t)) < 0$, thus $\lim_{t \to \infty} V(x(t)) = 0$.

Therefore, the following inequality can be obtained.

\[\int_{0}^{\infty} x^T(t)Qx(t) + u^T(t)Ru(t)\, dt < x^T(0)Px(0) = J_0. \]

Q.E.D.

Remark 1: Notably, [29-31] have proved that the consideration of the interactive relations among all fuzzy subsystems can relax the stability criteria for T-S fuzzy systems. Hence, the interactive relations among all subsystems are considered in this study, which lies in (7c).

The off-diagonal elements matrices of (7c), that is T_{jm}^{li} and T_{im}^{ml} in (7b), do not have to be positive definite, which admit more freedom while solving (7b).

Remark 2: In Theorem 1, our main task is to find matrices K_i^l, T_{jm}^{li}, and P_i, satisfying (7a), (7b), and (7c). This problem will be solved efficiently by convex optimization method for LMIs.

Multiplying 1 on the left and right of (7a), (7b) and (7c) respectively, and using Schur complement, then (7a), (7b) and (7c) can be transformed into an LMI problem as (12a), (12b) and (12c) for seeking W_i, Z_i^l and T_{jm}^{li}. Thus the local state feedback gain is obtained from $K_i^l = ZW_i^{-1}$.

The PDC (4) not only can stabilize the large-scale fuzzy system with uncertainties (14) robustly but also ensure the cost function (3) satisfying $J < J_0$, if there exist matrices K_i^l, ~\bar{T}_{jm}^{li}, and positive definite matrices P_i, satisfying (16a), (16b) and (16c).

\[S_i^l + \Gamma_i^l + \sum_{j=1}^{r_i} P_i f_j^l y_j^T P_j + \sigma_1 I + Q_i + K_i^l r_i K_i^m \leq \tilde{T}_i^l \]

\[S_i^{m} + S_i^{m} + \sum_{j=1}^{r_i} P_i f_j^m y_j^T f_j^m y_j^T P_j + 2 \sigma_1 I + Q_i + K_i^l r_i K_i^m \leq \tilde{T}_i^{ml} \]

where $l = 1, 2, ..., \sigma$; $i = 1, 2, ..., r_i$; $l < m \leq r_i$; $G_i^m = A_i^l + B_i^l K_i^m$; $\gamma_i^m = (G_i^m)^T P_j + P_j (G_i^m)^T$; $\tilde{T}_i^{ml} = T_{jm}^{ml} I$; J_0 is defined as (8).

Proof: Choose the Lyapunov function candidate as (9) and taking the derivative of V_i along (15) yields

\[\dot{V}(x(t)) = \sum_{i=1}^{\sigma} \dot{V}_i(x_i(t)) = \sum_{i=1}^{\sigma} \dot{x}_i^T(t)P_i x_i(t) + x_i^T(t)P_i \dot{x}_i(t) \]

\[= \sum_{i=1}^{\sigma} \sum_{j=1}^{r_i} \sum_{l=1}^{r_i} \mu_i^l \mu_i^m \dot{x}_i^T(t) [(A_i^l + B_i^l K_i^m)^T P_j + P_j (A_i^l + B_i^l K_i^m)] x_i(t) \]

\[+ \sum_{j=1}^{r_i} \mu_i^l \mu_i^m \dot{x}_i^T(t) [(A_i^l + B_i^l K_i^m)^T P_j + P_j (A_i^l + B_i^l K_i^m)] x_i(t) \]

According to (14), we get

\[V(x(t)) = \sum_{i=1}^{\sigma} \sum_{j=1}^{r_i} \sum_{l=1}^{r_i} \mu_i^l \mu_i^m \dot{x}_i^T(t) [(A_i^l + B_i^l K_i^m)^T P_j + P_j (A_i^l + B_i^l K_i^m)] x_i(t) \]
\[+ \left(\bar{D}' \Theta' \left(A_1^l + \bar{E}_1^l K_{m1}'' \right) \right)^T P_i \]
\[+ P_i \left(\bar{D}' \Theta' \left(A_2^l + \bar{E}_2^l K_{m2}'' \right) \right) x_i(t) + 2 \sum_{j=1}^{\sigma} x_j^T(t) f_{ij}^T P_i x_i(t) \]
\[\leq \sum_{i=1}^{\sigma} \sum_{i=1}^{\sigma} \mu_i \mu_j \left[x_i^T(t) (A_i^l + B_i^l K_{m1}^n)^T P_i + P_i (A_j^l + B_j^l K_{m2}^n) \right] \]
\[+ P_i \bar{D}' \bar{D}'^T P_i + \left(\bar{E}_1^l + \bar{E}_2^l K_{m2}'' \right) \left(\bar{E}_1^l + \bar{E}_2^l K_{m2}'' \right) x_i(t) \]
\[+ 2 \sum_{j=1}^{\sigma} x_j^T(t) f_{ij}^T P_i x_i(t) \]
\[= \sum_{i=1}^{\sigma} \sum_{i=1}^{\sigma} \mu_i \mu_j \left[x_i^T(t) (A_i^l + B_i^l K_{m1}^n)^T P_i + P_i (A_j^l + B_j^l K_{m2}^n) \right] \]
\[+ \sum_{i=1}^{\sigma} \sum_{i=1}^{\sigma} \mu_i \mu_j \left[x_i^T(t) (A_i^l + B_i^l K_{m1}^n)^T P_i + P_i (A_j^l + B_j^l K_{m2}^n) \right] x_i(t) \]
\[+ 2 \sum_{j=1}^{\sigma} x_j^T(t) f_{ij}^T P_i x_i(t) \]

Remark 3: By the same procedures as Remark 2, (16a), (16b) and (16c) can be easily transformed into the following LMIs for seeking \(W_i \), \(Z_i \), and \(\hat{T}_{ij} \). Thus, the local state feedback gains are obtained from \(K_i = Z_i W_i^{-1} \), for \(i = 1, 2, ..., \sigma \) and \(i = 1, 2, ..., \sigma \).

\[\begin{bmatrix} \bar{F}_i^m \star \star \star \star \star \end{bmatrix} \]
\[W_i \quad -(\sigma \cdot I)^{-1} \quad 0 \quad 0 \quad 0 \]
\[W_i \quad 0 \quad -Q_i^{-1} \quad 0 \quad 0 \]
\[Z_i^T \quad 0 \quad 0 \quad -R_i^{-1} \quad 0 \]
\[\left[E_i^l W_i + E_i^l Z_i^T \right] \]
\[0 \quad 0 \quad 0 \quad -1 \]

(18b)

4. An Illustrative Example

Example 1: First, we consider a large-scale system composed of two-machine subsystems \(S_i \) as follows [1]
\[\dot{x}_{i1}(t) = x_{i2}(t) \]
\[S_j : \dot{x}_{i2}(t) = -D_i \frac{x_{i2}(t)}{M_i} + \frac{1}{M_i} x_{i2}(t) + \sum_{j=1}^{\sigma} E_i E_j Y_{ij} x_{j1}(t) \]
\[\times \left[\cos(\delta_{ij}^0 - \theta_{ij}) - \cos(x_{i1}(t) - x_{j1}(t) + \delta_{ij}^0 - \theta_{ij}) \right] \]
for \(i = 1, 2 \), where the absolute rotor angle and angular velocity of the machine in subsystem \(S_i \) are denoted by \(x_{i1}(t) \) and \(x_{i2}(t) \) respectively. The inertia coefficient \(M_i \), the damping coefficient \(D_i \), the internal voltage \(E_i \), and the modulus of the transfer admittance \(Y_{ij} \) between the machine in subsystem \(S_i \) and in subsystem \(S_j \) are all stated. Let the parameters of the two-machine large-scale system be as follows.

According to the derivation in [21], the subsystem \(S_i \) for the large-scale system (19) can be presented by the T-S fuzzy system model as follows.

Rule 1: If \(x_{i1}(t) \) is about \(-\pi/2 \) and \(x_{i2}(t) \) is about \(\pi/2 \),
\[\tilde{x}_i = A_i^l x_{i1}(t) + B_i^l u_i(t) + \sum_{j=1}^{\sigma} f_{ij}^l x_{j1}(t). \]

Rule 2: If \(x_{i1}(t) \) is about \(\pi/2 \) and \(x_{i2}(t) \) is about \(0 \),
\[\tilde{x}_i = A_i^l x_{i1}(t) + B_i^l u_i(t) + \sum_{j=1}^{\sigma} f_{ij}^l x_{j1}(t). \]

Rule 3: If \(x_{i1}(t) \) is about \(-\pi/2 \) and \(x_{i2}(t) \) is about \(\pi/2 \),
\[\tilde{x}_i = A_i^l x_{i1}(t) + B_i^l u_i(t) + \sum_{j=1}^{\sigma} f_{ij}^l x_{j1}(t). \]

Rule 4: If \(x_{i1}(t) \) is about \(0 \) and \(x_{i2}(t) \) is about \(-\pi/2 \),
\[\tilde{x}_i = A_i^l x_{i1}(t) + B_i^l u_i(t) + \sum_{j=1}^{\sigma} f_{ij}^l x_{j1}(t). \]

Rule 5: If \(x_{i1}(t) \) is about \(0 \) and \(x_{i2}(t) \) is about \(0 \),
\[\tilde{x}_i = A_i^l x_{i1}(t) + B_i^l u_i(t) + \sum_{j=1}^{\sigma} f_{ij}^l x_{j1}(t). \]

where \(W_i = P_i^{-1}, \quad Z_i = K_i W_i, \quad \bar{F}_i^m = A_i^l W_i + W_i A_i^l^T + B_i^l Z_i^m + Z_i^m B_i^l + \bar{D}_i \bar{D}_i^T + \sum_{j=1}^{\sigma} f_{ij}^l f_{ij}^T - \hat{T}_{ij}, \quad \hat{T}_{ij} = W_i \bar{F}_i^m W_i, \) and
the asterisk (*) stands for the transpose elements (matrices) in the symmetric positions of a matrix.
Rule 9: If $x_i(t)$ is about $\pi/2$ and $x_{i2}(t)$ is about $\pi/2$, then
$$\dot{x}_i = A_i^0 x_i(t) + B_i^0 u_j(t) + \sum_{j=1}^2 f_{ij}^0 x_j(t).$$

for $i = 1, 2$, where
$$A_i^0 = \begin{bmatrix} 0 & 1 \\ -0.7046 & -0.7767 \end{bmatrix}, B_i^0 = \begin{bmatrix} 0 \\ 0.9709 \end{bmatrix}, f_{ij}^0 = \begin{bmatrix} 0 \\ 0.5086 \end{bmatrix},$$
$$f_{ij}^0 = \begin{bmatrix} 0 \\ 1.5483 \end{bmatrix}.$$

$S. W. Lin et al.:$ Decentralized Guaranteed Cost Control for Large-Scale T-S Fuzzy Systems

$\sum_{i=1}^{12} f_{ij}^0 x_j(t)$. According to For the convenience of design, triangle-type membership matrices P_i and K_i^l for subsystem S_i and subsystem S_j as follows.

For subsystem S_1:
$$P_1 = \begin{bmatrix} 31.0584 & 16.6737 \\ 16.6737 & 11.7860 \end{bmatrix}, K_1^l = \begin{bmatrix} -48.3300 \\ -34.0208 \end{bmatrix},$$
$$K_1^0 = \begin{bmatrix} -52.7347 \\ -37.2090 \end{bmatrix}, K_1^9 = \begin{bmatrix} -51.9817 \\ -36.6687 \end{bmatrix},$$
$$K_1^8 = \begin{bmatrix} -48.4941 \\ -34.0134 \end{bmatrix}, K_1^7 = \begin{bmatrix} -48.3145 \\ -33.9963 \end{bmatrix},$$
$$K_1^6 = \begin{bmatrix} -52.2048 \\ -36.8360 \end{bmatrix}, K_1^5 = \begin{bmatrix} -49.6547 \\ -34.8271 \end{bmatrix},$$
$$K_1^4 = \begin{bmatrix} -49.4251 \\ -34.6906 \end{bmatrix}, K_1^3 = \begin{bmatrix} -48.6764 \\ -34.2519 \end{bmatrix}.$$

For subsystem S_2:
$$P_2 = \begin{bmatrix} 33.4126 & 17.7828 \\ 17.7828 & 11.7019 \end{bmatrix}, K_2^l = \begin{bmatrix} -44.0257 \\ -28.7854 \end{bmatrix},$$
$$K_2^0 = \begin{bmatrix} -45.3337 \\ -29.6797 \end{bmatrix}, K_2^9 = \begin{bmatrix} -45.3812 \\ -29.7473 \end{bmatrix},$$
$$K_2^8 = \begin{bmatrix} -45.7796 \\ -29.8802 \end{bmatrix}, K_2^7 = \begin{bmatrix} -43.8552 \\ -28.6711 \end{bmatrix},$$
$$K_2^6 = \begin{bmatrix} -44.6768 \\ -29.2801 \end{bmatrix}, K_2^5 = \begin{bmatrix} -45.7550 \\ -29.8664 \end{bmatrix},$$
$$K_2^4 = \begin{bmatrix} -46.0050 \\ -30.0292 \end{bmatrix}, K_2^3 = \begin{bmatrix} -44.1279 \\ -28.8961 \end{bmatrix}.$$

The complete simulation results with initial conditions $x_i(0) = [-1 1]^T$, and $x_{i2}(0) = [1 -1]^T$ are shown in Fig. 1. It is obvious that they are stabilized asymptotically and a guaranteed cost of the closed-loop system is $J_0 = 19.0459 (J = 12.172 < J_0)$.

![Fig. 1. The state responses of Example 1.](image1)

![Fig. 2. The controller signals of Example 1.](image2)
Example 2: Now, we consider a large-scale system with uncertainties ΔA_l and ΔB_l, which is similar to the example in [19]. The fuzzy rules of this uncertain T-S fuzzy large-scale model are as follows.

For subsystem S_l:

$$
S_l': \begin{cases}
\dot{x}_l(t) = (A_l + \Delta A_l)x_l(t) + (B_l + \Delta B_l)u_l(t) + \sum_{j=1}^{3} f_{ij}(t)x_j(t)
\end{cases}
$$

where $i = 1, 2, 3; \; l = 1, 2, \; x_l = [x_i \; x_{i1}]^T$;

$$[\Delta A_l \; \Delta B_l] = \overline{D_f} \theta_l(t)[\overline{E}_l \; \overline{E}_l^T];$$

and

$$
A_l = \begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix}; \quad D_l = \begin{bmatrix} -0.3 \\ 0.1 \end{bmatrix}; \quad B_l = \begin{bmatrix} 4 \\ -2 \end{bmatrix};
$$

$$\overline{E}_l = \begin{bmatrix} 0.6 \\ 0.5 \end{bmatrix}; \quad f_{i1} = \begin{bmatrix} -2 \\ 1.3 \end{bmatrix}; \quad f_{i2} = \begin{bmatrix} 0.25 \\ -1 \end{bmatrix};$$

$$P_l = \begin{bmatrix} 3 & 1 \\ 3 & -4 \end{bmatrix}; \quad \tilde{T}_l = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix};$$

For subsystem S_1:

$$
A_1 = \begin{bmatrix} 2 & -3 \\ 0.2 & -11 \end{bmatrix}; \quad D_1 = \begin{bmatrix} -0.3 \\ 0.1 \end{bmatrix}; \quad B_1 = \begin{bmatrix} 4 \\ -2 \end{bmatrix};
$$

$$\overline{E}_1 = \begin{bmatrix} 0.6 \\ 0.5 \end{bmatrix}; \quad f_{i1} = \begin{bmatrix} -2 \\ 1.3 \end{bmatrix}; \quad f_{i2} = \begin{bmatrix} 0.25 \\ -1 \end{bmatrix};$$

$$P_1 = \begin{bmatrix} 3 & 1 \\ 1 & -4 \end{bmatrix}; \quad \tilde{T}_1 = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix};$$

$P_2 = \begin{bmatrix} 72.4048 & 18.2267 \\ 18.2267 & 5.0207 \end{bmatrix}; \quad K_2 = \begin{bmatrix} -9.1476 & 2.8748 \\ -9.5384 & 2.8954 \end{bmatrix}; \quad \tilde{T}_2 = \begin{bmatrix} -233.8114 & -64.7081 \\ -64.7081 & 14.6034 \end{bmatrix};$$

The state responses with initial conditions $x_1(0) = x_2(0) = [x_1 \; x_{11}]^T$ are shown in Fig. 3. The controller signals are shown in Fig. 4. It is obvious that they are stabilized asymptotically and a guaranteed cost of the closed-loop system is $J_0 = 47.2571$ ($J = 12.172 < J_0$).

The simulation result shows that subsystem S_2 with larger control gain (Fig. 4) and most cost. Subsystem S_1 and S_3 are with similar small control gains and lower cost. To get a lower cost, we reduce R_2 of (3) to suppress the cost with respect to K^T_1 and K^T_2. Fig. 5 shows the controller signals of S_2 in different R_2. The comparison of different R_2 is shown in Table 1. It shows that reducing R_2 can obtain smaller controller and cost. The simulation results match the guaranteed cost control design law.
Table 2. It shows that increasing the weight of Q_2 will lead to larger control gains. And the larger control gains cause a shorter settling time. However, it should be noted that the interconnections of a large-scale system imply that every subsystem will affect each other. Hence, when we try to choose a proper cost function J, (i.e., Q and R) the interconnections should be concerned, too. Finally, referring to Table 1 and Table 2, we choose $Q_1 = Q_2 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$; $Q_3 = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$; $R_1 = R_2 = 0.5$ and $R_3 = 0.1$ for design this example. The simulation result is shown in Fig. 7.

![Fig. 3. The state responses of Example 2.](image)

![Fig. 4. The controller signals of Example 2.](image)

The simulation result (Fig. 3) shows that subsystem S_1 and S_3 are with similar responses. Subsystem S_2 is with worse state responses than other subsystems. While $R_2 = 0.1$, the response of x_{22} is much worse than x_{21}. Now, we try to improve the state responses of S_2 by choosing a suitable Q_2 of (3). The state responses of S_2 in different Q_2 are shown in Fig. 6. The comparison of choosing different Q_2 is presented in Table 2. It shows that increasing the weight of $Q_2(2, 2)$ will lead to larger control gains. And the larger control gains cause a shorter settling time. However, it should be noted that the interconnections of a large-scale system imply that every subsystem will affect each other. Hence, when we try to choose a proper cost function J, (i.e., Q and R) the interconnections should be concerned, too. Finally, referring to Table 1 and Table 2, we choose $Q_1 = Q_2 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$; $Q_3 = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$; $R_1 = R_2 = 0.5$ and $R_3 = 0.1$ for design this example. The simulation result is shown in Fig. 7.

![Fig. 5. The controller signals of S_2 in different R_2 (Example 2).](image)

Table 1. Comparison of different R_2 (Example 2).

| R_2 | K_1^2 & K_2^2 | J_0 | J |
|-------|----------|---------|------|------|
| 0.5 | $K_1^1 = [-97.055, -23.068]$ | 47.2571 | 12.172 |
| | $K_2^1 = [-135.34, -32.711]$ | | |
| 0.3 | $K_1^1 = [-60.466, -14.608]$ | 25.7116 | 5.9114 |
| | $K_2^1 = [-88.844, -22.29]$ | | |
| 0.1 | $K_1^1 = [-39.801, -9.0835]$ | 17.3552 | 3.0083 |
| | $K_2^1 = [-57.204, -14.081]$ | | |
| 0.05 | $K_1^1 = [-37.756, -8.6172]$ | 15.8845 | 2.6911 |
| | $K_2^1 = [-55.772, -13.892]$ | | |

5. Conclusions

This paper has considered the guaranteed cost control design problems for the large-scale T-S fuzzy systems. The PDC fuzzy controllers are designed under some sufficient conditions in Theorem 1 and Theorem 2 (with uncertainties) such that the whole closed-loop systems are asymptotically stable and the upper bound of cost function is satisfied. The interactive relations among the fuzzy subsystems are considered and therefore the relaxed criteria are provided. The positive definite matrices P_i and PDC gains K_i^* can be found by LMIs tools.
Finally, illustration examples have been given to show the effectiveness of the proposed methods.

![Example 2](image1)

![Example 2](image2)

![Example 2](image3)

Table 2. Comparison of different Q_2.

<table>
<thead>
<tr>
<th>Q_2</th>
<th>K_1^2 & K_2^2</th>
<th>t_e of x_{21} (2%)</th>
<th>t_e of x_{22} (2%)</th>
<th>J_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 0.3</td>
<td>$K_1^2 = [-37.741, -8.5023]$</td>
<td>0.2041 s</td>
<td>0.3700 s</td>
<td>16.8679</td>
</tr>
<tr>
<td>0.5 0.5</td>
<td>$K_1^2 = [-54.543, -13.31]$</td>
<td>0.202 s</td>
<td>0.364 s</td>
<td>17.3552</td>
</tr>
<tr>
<td>0.5 1.5</td>
<td>$K_1^2 = [-50.756, -12.379]$</td>
<td>0.194 s</td>
<td>0.3385 s</td>
<td>20.0098</td>
</tr>
<tr>
<td>0.5 3</td>
<td>$K_1^2 = [-90.879, -24.89]$</td>
<td>0.1785 s</td>
<td>0.2978 s</td>
<td>29.6715</td>
</tr>
<tr>
<td>0.5 5</td>
<td>$K_1^2 = [-242.29, -73.655]$</td>
<td>0.1643 s</td>
<td>0.265 s</td>
<td>66.4679</td>
</tr>
</tbody>
</table>

Fig. 6. The state responses of S_2 in different Q_2 (by Theorem 2).

Fig. 7. The state responses of Example 2.
Acknowledgment

This work was supported by the National Science Council of Taiwan under the Grant NSC 99-2221-E-032-065.

References

Shih-Wei Lin received the B.S. degree in electrical engineering from Tamkang University, Taipei, Taiwan, R.O.C., in 2000, and the Ph.D. degree in electrical engineering from National Central University, Taoyuan, Taiwan, R.O.C., in 2007. He is currently an Engineer with the Nuclear Fuels and Materials Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, R.O.C. His research interests include energy management of the direct methanol fuel cell (DMFC) system, and fuzzy control systems.

Chih-Hsung Sun received the B.S. and Ph.D. degrees in electrical engineering from National Central University, Taoyuan, Taiwan, R.O.C., in 1999 and 2006 respectively. He is currently an Assistant Professor with the Department of Mechanical and Electro-mechanical Engineering, Tamkang University, Taipei County, Taiwan, R.O.C.. His current research interests are in the area of fuzzy systems, pattern recognition, and image processing.

Chih-Hui Chiu was born in Taiwan, R.O.C.. He received B.S. degree in electrical engineering from the Tatung institute of technology, Taipei, Taiwan, in 1994, and the M.S. and Ph.D degrees in electrical engineering from the National Central University, Taiwan, in 1996 and 2000, respectively. He is currently an Assistant Professor of the Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taiwan. His research interests include fuzzy logic theory, intelligent control, robot, and control theory applications.