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Abstract

Chiral perturbation theory is extended to nonrelativistic systems with

spontaneously broken symmetry. In the effective Lagrangian, or-

der parameters associated with the generators of the group manifest

themselves as effective coupling constants of a topological term, which

is gauge invariant only up to a total derivative. In the case of the fer-

romagnet, a term connected with the Brouwer degree dominates the

derivative expansion. The general analysis includes antiferromagnetic

magnons and phonons, while the effective field theory of fluids or gases

is beyond the scope of the method.
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1 Introduction

The various low energy phenomena considered in the present paper are very well

explored, at a level which goes much beyond the general discussion given below. The

aim of the paper is not to contribute to the detailed physical understanding of the

many different systems known to exhibit spontaneous symmetry breakdown, but to

analyze their low energy structure from a unified point of view, relying on the method

of effective Lagrangians. This method is widely used in condensed matter physics [1],

but, as far as I know, a general analysis is not available. In particular, an effective

Lagrangian describing the behaviour of a ferromagnet at large wavelengths does not

appear to exist in the literature. The main result of the present work is an expression

for the general effective Lagrangian. As it turns out, the expression contains a term

of rather remarkable structure, which distinguishes ferromagnets from other systems.

The analysis is based on general considerations, applicable to any system, for

which the Goldstone modes represent the only excitations without an energy gap. It

amounts to an extension of the effective theories used in particle physics [2]–[6] to the

nonrelativistic domain. This extension is by no means trivial. The relativistic situ-

ation is considerably simpler, because Lorentz invariance imposes strong constraints

on the low energy structure of the theory and, e.g., prevents the charge densities from

picking up an expectation value in the ground state. These constraints do not apply

to condensed matter, where the center of mass distinguishes a preferred frame of

reference. Moreover, the lattice structure of a solid singles out preferred directions,

such that the effective Lagrangian is not invariant under rotations, either. In the

case of a cubic lattice, the anisotropy, however, only shows up in the higher orders

of the derivative expansion. As the following discussion mainly concerns the leading

contributions, I disregard from this complication and assume that, at large distances,

the correlation functions are invariant, both, under translations and rotations.

I consider a spontaneously broken exact symmetry in d = 3 + 1 dimensions

(spontaneous breakdown of symmetries only occurs for d > 2 — the low energy

behaviour of the two-dimensional nonlinear σ-model, e.g., cannot be analyzed in

1



terms of an effective Lagrangian [7]). The Hamiltonian is symmetric with respect to

a Lie group G with generators Qi,

[Qi, H ] = 0 , [Qi, Qj] = ifk
ijQk , (1)

but the ground state | 0 > is invariant only under a subgroup H ⊂ G. For Lorentz

invariant theories, the Goldstone theorem [8] states that the spontaneous symmetry

breakdown gives rise to dim(G) − dim(H) massless particles. In the nonrelativistic

regime, the occurrence of order parameters also implies that there are modes of

excitation, for which the frequency ω disappears when the wave vector ~k tends to

zero, but the number of independent such states and their dispersion law depend on

the properties of the system [1, 9].

The generators Qi of G are space integrals over the corresponding charge densities,

Qi =
∫

d3xJ0
i (x) . (2)

Identifying the zeroth component of the coordinate vector with the time, (x0 = t, no

factor of c), charge conservation takes the local form

∂µJ
µ
i (x) ≡ ∂0J

0
i (x) + ∂rJ

r
i (x) = 0 . (3)

The time-ordered correlation functions of the charge densities J0
i (x) and currents

Jr
i (x) play a central role in the analysis of the low energy structure: the construction

of the effective theory relies on the Ward identities, which express the symmetry

properties of the system in terms of these quantities. It is convenient to collect the

correlation functions in a generating functional Γ{f},

ei Γ{f} =
∞
∑

n=0

in

n!

∫

d4x1 . . . d4xn f i1
µ1

(x1) . . . f in
µn

(xn) <0 | T{Jµ1

i1
(x1) . . . Jµn

in
(xn)} |0>

(4)

where | 0 > denotes the ground state of the system and f i
µ(x) is an external field,

which plays the role of an auxiliary variable. The generating functional describes

the transitions which occur if the system is perturbed by an external field, H →
H − ∫

d3xf i
µJµ

i . The quantity ei Γ{f} is the probability amplitude for the system to

remain in the ground state for t → +∞, if it was there at t → −∞.
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If the theory does not contain anomalies, the Ward identities are equivalent to the

statement that the generating functional is invariant under gauge transformations of

the external field,

δf i
µ(x) = Dµg

i(x) ≡ ∂µg
i(x) + f i

jkf
j
µ(x)gk(x) → δΓ{f} = 0 . (5)

The gauge functions g1(x), g2(x), . . . are arbitrary infinitesimal quantities. They may

be viewed as coordinates of a space-time dependent group element g(x) ∈ G in the

infinitesimal neighbourhood of unity.

The low energy analysis concerns the behaviour of the correlation functions at

distances large compared to the intrinsic scales of the theory. In particular, the

distances under consideration are assumed to be large compared to the lattice spacing

a — the effective theory does not resolve the microscopic structure of the system,

i.e., refers to the continuum limit. In the language of the generating functional, the

effective theory concerns slowly varying external fields, such that ∂f/∂x ≪ f/a.

The Fourier transforms of the various correlation functions contain singularities

at low energies and momenta, due to the propagation of Goldstone excitations.

The singularities arise from processes involving the emission of Goldstone bosons,

which travel over a long distance before being absorbed. In particular, one-particle-

reducible contributions generate poles, while the simultaneous exchange of several

Goldstone modes produces cuts.

2 Effective Lagrangian

The following discussion exclusively deals with the contributions due to the Gold-

stone excitations. As witnessed by superconductivity or by the Higgs sector of the

Standard Model, the presence of additional degrees of freedom without energy gap

may change the low energy structure, even qualitatively: gauge fields may eat the

Goldstone bosons up. In the following, it is assumed that, at low frequencies and

large wavelengths, the spectrum exclusively contains Goldstone excitations. More

precisely, the discussion relies on the PCAC hypothesis, according to which the poles
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generated by the Goldstone bosons dominate the low energy behaviour of the corre-

lation functions.

As is well-known, the singularities due to the exchange of Goldstone bosons may

be described in terms of an effective field theory [2, 3]. I refer to the variables of the

effective theory as ”pion” fields, using the symbol πa(x) (in the applications to be

discussed below, the ”pions” represent magnons or phonons). Unlike the number of

Goldstone particles, which depends on the form of the dispersion law, the number of

fields needed to describe them is universal: the effective theory involves dim(G) −
dim(H) real fields. If the dispersion law is of the form ω(~k) = v |~k | + O(k2), as it

is the case for Lorentz invariant theories, the number of independent one-particle-

states of momentum ~k is the same as the number of fields. For a dispersion law of

the type ω(~k) = γ~k 2 + O(k4), on the other hand, the number of states is given by

1
2
{dim(G) − dim(H)}. The difference is related to the order of the corresponding

wave equations. In the first case, the wave equation is of second order in the time

derivatives. The Fourier decomposition then contains both, positive and negative

frequencies and a real field suffices to describe a particle. In the second case, the

wave equation takes the form of the Schrödinger equation, such that only positive

frequencies occur and a complex field is needed per particle.

In the language of the effective field theory, the one-particle-reducible contribu-

tions responsible for the poles are represented by the tree graphs. The pole terms

arise from pion field propagators, whose form is specified by the kinetic part of the

effective Lagrangian, i.e., by the part which is quadratic in the pion field. The inter-

action terms of the effective Lagrangian are in one-to-one correspondence with the

amplitudes for emission, absorption and scattering. In addition to the purely pio-

nic vertices, describing the interaction of the Goldstone bosons among themselves,

the Lagrangian also contains vertices involving the external field, which describe the

transitions generated by the perturbation f i
µJ

µ
i . The matrix element <0 |f i

µJ
µ
i |π>,

e.g., which represents the probability amplitude for the external field to excite one

of the Goldstone states, is represented in the effective Lagrangian through a term
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linear in the fields f i
µ(x), πa(x).

The low energy analysis relies on an expansion of the vertices in powers of the

momenta. In the language of the effective field theory, this corresponds to a derivative

expansion of the Lagrangian, Leff = Leff(π, ∂µπ, ∂µ∂νπ, . . . ; f, ∂µf, . . .). The generic

term occurring therein contains P pion fields, E external fields and, altogether, D

derivatives, some acting on πa(x), some on f i
µ(x). It is convenient to count the

external field on the same footing as the derivatives, f i
µ ∝ ∂µ, but to distinguish

between the time and space components of these quantities. The derivative expansion

then consists of a double series of the form

Leff =
∑

s, t

L(s, t)
eff . (6)

The term L(0,0)
eff exclusively contains the pion field and does not involve derivatives,

L(0,1)
eff collects the purely pionic vertices with one time derivative, as well as those

involving one factor of f i
0, but no derivatives, etc. Note that the number of Goldstone

bosons entering the vertices is not specified — the various terms occurring in the

derivative expansion represent functions of the pion field.

The tree graphs yield the leading term in the low energy expansion of the gener-

ating functional, loops only generating corrections of nonleading order [5]. The tree

graphs of a quantum field theory represent the corresponding classical field theory.

More precisely, the tree graph contributions to the generating functional are given

by the classical action,

Γ{f}
tree

= Seff{π, f} , Seff{π, f} ≡
∫

d4xLeff(π, ∂π, . . . ; f, ∂f, . . .) . (7)

The action is to be evaluated at the extremum, where the pion field obeys the classical

equation of motion
δSeff{π, f}

δπa(x)
= 0 . (8)

The Ward identities are obeyed if and only if the generating functional is gauge

invariant. For this to be the case at leading order of the low energy expansion, the
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value of the classical action at the extremum must be gauge invariant,

Dµ

δSeff{π, f}
δf i

µ(x)
= 0 . (9)

The pion field thus simultaneously obeys the two differential equations (8) and (9).

While the first one is the standard equation of motion, the second incorporates the

Ward identities connected with the hidden symmetry and very strongly constrains

the form of the Lagrangian. In fact, this constraint determines the leading terms

of the derivative expansion up to a few constants, which play the role of effective

coupling constants (a detailed analysis of the same two differential equations for the

case of a Lorentz invariant effective theory is given in ref. [10]).

3 Leading Orders of Derivative Expansion

For the framework to be internally consistent, the form of the two differential equa-

tions (8) and (9) must be compatible with the derivative expansion. The leading term

occurring in that expansion, L(0,0)
eff , does not contain derivatives of the pion field. To

leading order, the ”equation of motion” then reduces to a purely algebraic condition

on this field, ∂L(0,0)
eff (π)/∂πa = 0. It is evident that the loop expansion does not

make sense if the kinetic term only occurs among the higher order corrections: if this

were so, the pions would not propagate at all, the ”propagator” taking the form of a

δ-function. Indeed, it is well-known that the hidden symmetry not only protects the

Goldstone bosons from acquiring mass, but also suppresses their mutual interactions

at low energies. Current conservation implies that all of the vertices disappear if the

momenta become small, such that purely pionic vertices without derivatives do not

occur, L(0,0)
eff = 0.

The derivative expansion of the effective Lagrangian thus starts with L(0,1)
eff . In-
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variance under space rotations permits two contributions of this order:1

L(0,1)
eff = ca(π)π̇a + ei(π)f i

0 . (10)

The space derivatives of the pion field only show up at the next order of the expansion,

where the general form of the Lagrangian consistent with rotation symmetry reads

L(2,0)
eff = −1

2
gab(π) ∂rπ

a∂rπ
b + hai(π)f i

r∂rπ
a − 1

2
kik(π)f i

sf
k
s

L(0,2)
eff = 1

2
ḡab(π) π̇aπ̇b − h̄ai(π)f i

0 π̇a + 1
2
k̄ik(π)f i

0f
k
0 . (11)

Note that terms involving second derivatives of the pion field or first derivatives of

the external field may be removed by adding a suitable term of the form ∂µωµ, which

does not contribute to the action.

The term L(0,1)
eff does not occur in Lorentz invariant effective theories — it repre-

sents the main novelty in the extension of these to nonrelativistic systems (in addition,

Lorentz invariance implies that the functions ḡab(π), h̄ai(π), k̄ik(π) coincide with the

corresponding unbarred quantities, up to a factor of c2). The value of ei(π) at π = 0

yields a term in the effective Lagrangian, which is linear in the external field and

hence determines the one-point-function,

<0 |J0
i (x) |0>= ei(0) . (12)

For nonabelian symmetries, the charge densities transform in a nontrivial manner

under G, such that their expectation values represent order parameters. The ground

state of a ferromagnet, e.g., singles out a direction of the magnetization, given by

the expectation value of the spin density. The corresponding ”charges” generate

the group G=O(3) of spin rotations. The direction of the magnetization need not

be correlated with the orientation of the lattice. For the Heisenberg model, e.g.,

the spin rotations play the role of an internal symmetry; at long wavelengths, the

Green functions of this model are indeed invariant under euclidean transformations

1Notation: i, j, k = 1, . . . , dim(G) label the generators of the group, a, b, c = 1, . . . , dim(G)−
dim(H) denote the components of the effective field and r, s, t = 1, 2, 3 refer to the spacial coordi-

nates. Repeated indices are summed over.
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of three-dimensional space, as it is assumed here. The case of the antiferromagnet

shows, however, that the expectation values of the charge densities are not necessarily

different from zero. The constants ei(0) represent coupling constants of the effective

Lagrangian; symmetry alone does not tell what values these constants take.

4 Symmetry properties of the Lagrangian

As discussed above, the pion field must simultaneously obey the equation of motion

(8) and the Ward identity (9). In general, the leading term in the derivative expansion

of the equation of motion is of first order in the time derivative, while the space

derivatives only enter at second order, through a term from L(2,0)
eff , proportional to

△π. The equation of motion thus takes the form of a Schrödinger equation, leading

to a dispersion law of the type ω ∝ ~k2. It is convenient to organize the bookkeeping

accordingly, counting energies like two powers of momenta. The terms L(0,1)
eff and L(2,0)

eff

then represent expressions of the same order k2, while the remainder of the derivative

expansion is of order k3 or higher. The Ward identity is of the same form as the

equation of motion, also relating π̇ to △π. The two equations are consistent with one

another only if they are linearly dependent. Solving the equation of motion for π̇ and

inserting the result in the Ward identity, one obtains a relation which only involves the

pion field, its spacial derivatives and the external field. Since these are independent

from one another, the condition is obeyed only if the coefficients occurring therein

are equal to zero. This subjects the functions ca(π), ei(π), gab(π), hai(π), kik(π), which

specify the vertices of the effective Lagrangian, to the following conditions:

(a) dih
a
j − djh

a
i = fk

ijh
a
k ,

(b) ∇ahbi + ∇bhai = 0 ,

(c) kik = gabhaihbk ,

(d) diej = fk
ijek ,

(e) hb
i (∂bca − ∂acb) = ∂aei . (13)
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To simplify these formulae, I have used the following notation: The matrix gab(π)

plays the role of a metric on the manifold of pion field variables. Indices are lowered

and raised with this metric and its inverse, gab(π), e.g., ha
i = gabhbi. The symbol

∇a is the corresponding covariant derivative, formed with the Christoffel symbol,

∇ahbi = ∂ahbi − Γc
abhci and di stands for the differential operator di = ha

i(π)∂a. Note

that the above relations exclusively involve derivatives with respect to the pion field

variables, which represent the arguments of the functions occurring in the effective

Lagrangian, ∂a ≡ ∂/∂πa.

The first three relations are identical with those relevant in the relativistic case,

where ca(π) = ei(π) = 0. They state that the metric gab(π) describes a symmetric

space with isometry group G. The functions ha
i(π) represent the corresponding Killing

vectors, which specify the shift in the pion field generated by infinitesimal group

motions,

δπa = ha
i(π) gi . (14)

The geometry of the groups G and H fixes the functions ha
i(π), except for the choice

of field variables. The symmetry also very strongly constrains the form of the metric.

In particular, if the Goldstone bosons transform irreducibly under H, the metric is

fixed up to an effective coupling constant F : denoting the intrinsic metric of the

quotient space G/H by ĝab(π), the metric relevant for the effective Lagrangian is

given by gab(π) = F 2 ĝab(π). A detailed discussion of these statements is given in ref.

[10], where it is also shown that the conditions (a), (b) and (c) insure invariance of

L(2,0)
eff under a simultaneous gauge transformation of the fields f i

µ(x) and πa(x). For

the case of an abelian symmetry, the coordinates may be chosen such that, both the

Killing vectors and the metric are constants, ha
i(π) = ha

i(0), gab(π) = gab(0).

The new couplings ei(π) and ca(π) only occur in the conditions (d) and (e). The

first one of these states that, under the transformation (14) of the pion field, the vector

ei(π) transforms according to the adjoint representation Di
j(g) = δi

j + f i
jkg

k + . . . of

G. Since the action of the group is transitive on G/H, this property fully determines

the function ei(π) in terms of its values for π = 0, i.e., in terms of the magnetization.
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The relation (e) then specifies the rotation of ca(π) and thus fixes the function itself

up to a gradient. The reason why ca(π) is not fully determined is that one may modify

the Lagrangian by a total derivative without changing the generating functional: the

operation ca(π) → ca(π) + ∂aω(π) is equivalent to Leff → Leff + ∂
∂t

ω(π). Except for

this ambiguity, which is without physical significance, the effective coupling constants

of the new vertices are fully determined by the order parameters <0 |J0
i |0>.

In the case of an abelian symmetry, fk
ij = 0, the relation (d) shows that ei(π) is

a constant and the condition (e) then implies that ca(π) is a pure gradient and may

thus be removed, ca(π) = 0. Accordingly, the term L(0,1)
eff takes the form ei(0)f i

0. Since

this expression does not involve the pion field, it leads a life of its own, exclusively

generating an expectation value for the charge densities. For abelian symmetries, the

equation of motion is, therefore of second order in the time derivative, such that the

dispersion law takes the form ω ∝ |~k |.
From a methodical point of view, the most remarkable property of the new cou-

plings is that the corresponding contribution to the effective Lagrangian in general

fails to be gauge invariant. Subjecting the fields f i
µ and πa to the infinitesimal gauge

transformations (5) and (14) and using the relations (d) and (e), one finds that the

effective Lagrangian picks up a total derivative:

δL(0,1)
eff = ∂

∂t
{gi [ca(π)ha

i(π) + ei(π)]} . (15)

Now, this may merely be due to a bad convention. If the expression in square

brackets is of the form ha
i(π)∂aω(π), it suffices to modify the Lagrangian by a total

derivative, to make it gauge invariant (Leff → Leff + ∂
∂t

ω(π)). So, if the function

ei(π) is of the form ei(π) = ha
i(π)ēa(π), with ēa = −(ca + ∂aω), there is no problem

with gauge invariance. The condition, in particular, requires the vector ei(0) to be

contained in the subspace spanned by the Killing vectors at π = 0.

Denote the Lie algebras of G and H by G and H, respectively and set G = H +

K. The Killing vectors span the subspace K. Hence, for the Lagrangian to be gauge

invariant, the vector ei(0) must be contained in this subspace.

The Lie algebra G transforms with the adjoint representation of G. The corre-
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sponding representation of the subgroup H maps the two subspaces H and K onto

themselves; in particular, K carries a representation of H. Since the order parame-

ters ei(0) are invariant under H, this representation must contain a one-dimensional

invariant subspace. Unless this is the case, the charge densities can receive nonzero

expectation values only if the Lagrangian violates gauge invariance. For the ferromag-

net, e.g., the magnetization ei(0) belongs to H rather than K — the corresponding

effective Lagrangian necessarily breaks gauge invariance.

5 Ferromagnet

I now discuss the case of the ferromagnet in some detail, i.e., consider the groups

G = O(3), H = O(2). The corresponding structure constants are given by f i
jk = εijk;

there are three conserved currents, i = 1, 2, 3, and two pion fields, a = 1, 2. In the

Heisenberg model, e.g., the magnetic moment of the lattice sites may be represented

as µ~sn, where ~sn is the spin of the site. In the notation used here, the interaction with

a constant magnetic field, µ
∑

n ~sn · ~H , corresponds to the term
∫

d3xf i
0J

0
i . The spin

rotations are generated by the total angular momentum, such that
∑

n ~sn =
∫

d3x~J0.

Accordingly, the time components of the external field are related to the magnetic

field by f i
0 = µH i.

It is convenient to use a covariant representation for the pion field, replacing

the two variables π1, π2 by a three-dimensional unit vector ~U = (U1, U2, U3), which

transforms with the vector representation of O(3). The nonlinear transformation law

(14) then takes the linear form δU i = εijkU
jgk. In this notation, the term L(2,0)

eff is

proportional to the square of the covariant derivative of ~U ,

L(2,0)
eff = −1

2
F 2DrU

iDrU
i , DrU

i = ∂rU
i + εijkf

j
r U

k , (16)

As mentioned above, symmetry determines the form of this part of the Lagrangian,

up to one effective coupling constant, F . The corresponding explicit expressions for

the metric and for the Killing vectors are gab = F 2∂aU
i∂bU

i, hai = F 2εijk∂aU
jUk.

The analogous representation of the function ei(π) immediately follows from the
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completeness of the spherical harmonics on the two-sphere: there is only one set of

three functions of the pion field transforming according to the vector representation of

O(3). Hence the vectors ei(π) and U i(π) are proportional to one another, ei = Σ U i.

The constant of proportionality Σ is the magnitude of the magnetization.

The expression for the function ca(π) is more complicated. Using the completeness

relation for the Killing vectors,
∑

i haihbi = F 2gab, the condition (e) may be rewritten

in the form

∂acb − ∂bca = −Σ εijk ∂aU
i ∂bU

j Uk . (17)

The right hand side is reminiscent of a topological invariant: up to a factor of 4πΣ,

the integral over the sphere is the Brouwer degree of the map ~U(π).

The differential equation (17) may be integrated with the technique used in the

construction of the Wess-Zumino term. Consider a point π on the sphere and join it

smoothly to π = 0, along the path σa[π, λ], 0 ≤ λ ≤ 1, with σa[π, 0] = 0, σa[π, 1] =

πa. Define the function ca(π) as the integral

ca(π) = Σ
∫ 1

0
dλ εijk ∂aU

i ∂λU
j Uk , (18)

with U i = U i(σ[π, λ]). The vectors ∂a
~U and ∂λ

~U , which denote the derivatives with

respect to πa at constant λ and vice versa, are orthogonal to ~U . Since the tangent

plane only contains two linearly independent directions, the quantity εijk ∂aU
i ∂bU

j ∂λU
k

is equal to zero. Using this property, one readily checks that the function defined in

(18) indeed obeys the differential equation (17). As noted above, any other solution

differs from this one by an irrelevant gradient.

Together with the contribution involving the external field, the Lagrangian thus

becomes

L(0,1)
eff = Σ

∫ 1

0
dλ εijk ∂0U

i ∂λU
j Uk + Σf i

0 U i . (19)

The form of the path σ[π, λ] affects the result only through a total derivative. For the

particular choice U i(σ[π, λ]) = λU i(π), i = 1, 2, the derivatives of the interpolating

field may be expressed in terms of those of U i(π) and the integral may then be
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performed explicitly, with the result

L(0,1)
eff = Σ (1 + U3)−1(∂0U

1U2 − ∂0U
2U1) + Σf i

0 U i . (20)

Visibly, the expression violates gauge invariance.

The corresponding equation of motion is obtained by evaluating the change in

the action generated by a deformation of the pion field. Using the representation

(19) for L(0,1)
eff , the calculation yields

Σ εijkU
jU̇k + Σf i

0 + F 2∆U i = α U i , (21)

where ∆ = DrDr is the covariant Laplacian and α is a Lagrange multiplier, arising

from the constraint δ~U · ~U = 0. The result may be rewritten in the vectorial form

Σ ~̇U + Σ ~f0×~U + F 2∆~U×~U = 0 . (22)

Indeed, this equation is known to describe the spin waves of a ferromagnet — it

is referred to as the Landau-Lifshitz equation [1, 11]. The above discussion merely

identifies a known model within the present framework: the Landau-Lifshitz equation

is the equation of motion associated with the leading terms in the derivative expansion

of the general effective Lagrangian, for G = O(3), H = O(2). The Lagrangian contains

a term related to the Brouwer degree of the map U i(π); the corresponding effective

coupling constant is the expectation value of the charge density.

The dispersion law of the spin waves may be worked out by considering the

fluctuations of the field in the vicinity of the ground state ~U0 = const. Taking the

magnetization to point along the third axis, ~U0 = (0, 0, 1), the linearized equation of

motion only involves the particular combination

fa = fa
0 + γ εab3∂rf

b
r , γ ≡ F 2

Σ
(23)

of external fields. Collecting the two transverse components of ~U in a complex field

u = U1 + iU2, the equation of motion reduces to

− iu̇ − γ△u = f , (24)
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with f = f 1 + if 2. So, the dispersion law of the magnons takes the form

ω(~k) = γ~k 2 + O(k4) , (25)

where γ is fixed by the two effective coupling constants F and Σ, according to (23).

A constant magnetic field, f i
0 = µH(0, 0, 1), explicitly breaks the symmetry and

generates a magnon ”mass term”, Σf i
0U

i = ΣµH(1 − 1
2
u⋆u + . . .), much like the

quark masses explicitly break the chiral symmetry of QCD, providing the pions with

mass. In the present case, the perturbation merely lifts the energy of all lattice sites

by µH , such that the dispersion law remains the same, except for an overall shift,

ω(~k) = γ~k 2 + µH .

6 Correlation functions of a ferromagnet

The same coupling constants also determine the low energy behaviour of the corre-

lation functions of the charge densities and currents. The corresponding two-point-

functions are given by the part of the generating functional which is quadratic in the

external field. At leading order of the low energy expansion, the generating func-

tional is the classical action of L(0,1)
eff +L(2,0)

eff , evaluated at the solution of the equation

of motion. Since the functional collects the time-ordered correlation functions, Feyn-

man boundary conditions are relevant: the solution U i(x) is to contain only positive

(negative) frequencies as t → +∞ (−∞). For the combination u = U1 + iU2, the

solution is given by

u(x) =
∫

d4y G(x − y)f(y) , (26)

G(x) =
∫

d3k dω

(2π)4

ei~k~x−iωt

γ~k 2 − ω − iǫ
= i θ(t)

∫

d3k

(2π)3
ei~k~x−iγ~k 2t .

Note that the Feynman solution is complex: the expression for the combination

ū = U1 − iU2 does not coincide with the complex conjugate of the solution u, but is

determined by the complex conjugate of f , according to ū(x) =
∫

d4y G(y − x)f ⋆(y).

The resulting expression for the pion field is of the form

Ua(x) =
∫

d4y Gab(x − y) f b(y) , (27)
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where Gab(x) is the relevant Feynman propagator,

Gab(x) = Gba(−x) = 1
2
δab{G(x) + G(−x)} + 1

2
iεab3{G(x) − G(−x)} . (28)

Note that Gab(x) describes the propagation of a single particle — although the effec-

tive theory contains two pion fields, there is only one magnon of a given momentum.

The propagator may be written in the form

Gab(x) = εaε
⋆
b G(x) + εbε

⋆
a G(−x) , εa = 1√

2
(1,−i) , (29)

which explicitly shows the degeneracy of the propagation matrix.

Inserting the solution (27) in the expression for the action, one finally obtains

Γ{f} =
∫

d4x Σ f 3
0 − 1

2
F 2

∫

d4x fa
s fa

s + 1
2
Σ

∫

d4xd4y fa(x) Gab(x − y) f b(y) + . . . (30)

with fa = fa
0 + γ εab3∂rf

b
r . The term linear in f 3

0 represents the one-point function,

< 0 | J0
i | 0 >= δ3

i Σ. The coefficient of the contribution which is quadratic in fa
0

is the leading term in the low energy expansion for the correlation function of the

transverse charge densities,

<0 |T{J0
a(x)J0

b (0)}|0>= (−i)Σ Gab(x) + . . . (31)

The Fourier transform thereof contains a pole, whose residue represents the square

of the transition matrix element < 0 | J0
a | π(~k) > between the ground state and a

magnon of momentum ~k. Using the nonrelativistic normalization

<π(~k′) |π(~k)>= (2π)3δ3(~k′ − ~k) , (32)

the result for the matrix element reads

<0 |J0
a |π(~k)>= εa

√
Σ . (33)

Euclidean invariance requires the corresponding matrix element of the currents to

be proportional to the vector ~k. Current conservation then shows that the coefficient

of proportionality is given by

<0 |Js
a |π(~k)>= ksεa γ

√
Σ = ksεa F 2/

√
Σ . (34)
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The corresponding expression for the correlation function of the currents is obtained

by extracting the part of the generating functional which is quadratic in fa
r (x). The

result reads

<0 |T{Jr
a(x)Js

b (0)}|0>= iF 2γ ∂r∂sGab(x) + iF 2δrsδabδ
4(x) + . . . (35)

The contact contribution ∝ δ4(x) is required by the Ward identities; it arises from

the second term on the right hand side of (30).

With the above explicit form of the effective Lagrangian, it is a matter of straight-

forward calculation to work out magnon-magnon scattering amplitudes and to es-

tablish a low energy theorem analogous to Weinberg’s prediction for the scattering

lengths of ππ scattering [2]. Likewise, the expansion of the magnetization in powers

of the temperature may be evaluated by repeating the analogous calculation for the

quark condensate [12], where the expansion has been worked out to order T 6. In

that work, the explicit symmetry breaking due to the quark masses is taken into

account, indicating that the same methods also allow one to study the perturbations

generated by a weak, constant magnetic field.

Both the physics of magnon scattering and the structure of the low temperature

expansion for the magnetization is well understood since the pioneering work of

Dyson [13]. What a reanalysis of the same phenomena by means of an effective

Lagrangian may add is a better understanding of the fact that many of the low

energy properties of the system are immediate consequences of the hidden symmetry,

while the microscopic structure of the system only manifests itself in the numerical

values of a few effective coupling constants. Also, the method may prove to be more

efficient, allowing one to carry the low energy expansion to higher orders. Work

on applications of the effective Lagrangian constructed in the present paper is in

progress [14].
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7 Antiferromagnet

Symmetry does not prevent the charge densities from picking up an expectation value,

but does not insure this to happen, either. The antiferromagnet is a well-known

system where the expectation value of the spin density vanishes. The corresponding

effective field theory is discussed extensively in the recent literature [15]. The work

goes beyond the leading terms of the low energy expansion and also includes an

analysis of the anisotropies generated by the lattice. The present section does not

add anything to what is known about antiferromagnetic systems. I merely wish to

identify these within the general framework of effective field theory and to compare

their low energy structure with the one of the ferromagnet.

In the language of the effective Lagrangian, antiferromagnets represent the spe-

cial case where the effective coupling constants ei(0) happen to be zero. As discussed

above, the conditions (d) and (e) then imply that the functions ei(π) and ca(π) vanish

altogether, such that the derivative expansion of the effective Lagrangian only starts

at second order, with the contributions listed in (11). The form of the functions

gab(π), ha
i(π), kik(π), ḡab(π), h̄a

i(π), k̄ik(π) occurring therein may be worked out along

the same lines as before. In the absence of the term L(0,1)
eff , the standard power count-

ing used in particle physics, which treats energies and momenta as quantities of the

same algebraic order, is more appropriate than the one introduced above. The com-

parison of the two differential equations (8), (9) then again leads to a set of conditions,

which these functions need to satisfy for the effective Lagrangian to give rise to a

gauge invariant generating functional. In fact, the conditions for gab(π), ha
i(π), kik(π)

are identical with those found previously: these quantities are subject to the condi-

tions (a), (b) and (c) of equation (13). Moreover, the barred quantities must obey

precisely the same constraints. The solution of these conditions was discussed in

section 4. As mentioned there, the resulting expression for the effective Lagrangian

is gauge invariant — a topological term only arises if the charge densities do pick up

an expectation value.

I again specialize to the groups G = O(3), H = O(2), where the expectation values
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of the charge densities are given by ei(0) = δ3
i Σ; the present discussion thus concerns

the special case Σ = 0. As mentioned above, the functions gab(π), ha
i(π), kik(π) are

also fixed up to a constant. Since the barred quantities obey identical constraints,

the same is true for these. The Lagrangian thus contains two copies of the same

expression,

L(2)
eff = 1

2
F 2

1 D0U
iD0U

i − 1
2
F 2

2 DsU
iDsU

i , DµU i = ∂µU i + εijkf
j
µUk . (36)

At leading order in the derivative expansion, the Lagrangian involves two effective

coupling constants, F1 and F2. Except for the number of components of the vector ~U

and for the magnitude of the constants F1 and F2, the effective Lagrangian is the same

as for QCD with two quark flavours or for the Higgs sector of the standard model.

There, the two coupling constants are related by the velocity of light, F2 = cF1.

This shows that, for the antiferromagnetic systems under discussion here, euclidean

invariance implies Lorentz invariance, except that (i) the velocity of light is to be

replaced by v ≡ F2/F1 and (ii) the statement only holds at leading order of the low

energy expansion. In particular, the dispersion law corresponds to a massless particle

moving with velocity v,

ω(~k) = v|~k|+ O(k2) . (37)

The known results of the low energy analysis for the strong interactions may be

taken over as they are, merely replacing the velocity of light by v and adapting the

number of components of ~U . There are now two magnons, because the equation of

motion for the effective field ~U happens to be of second order with respect to time.

In the nonrelativistic normalization of the states used in the preceding sections, the

transition matrix elements of the charge and current densities are given by

<0 |J0
a |πb(~k)>= i δb

a |~k |F2 /
√

2ω , <0 |Jr
a |πb(~k)>= i δb

a krvF2 /
√

2ω . (38)

In the case of the antiferromagnet, the transition elements of charge density and

current are of the same order in the momentum and tend to zero for ~k → 0, while in

the ferromagnetic case, they are of different magnitude, the charge density generating

transitions even at infinite wavelength.
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8 Phonons in solids

Historically, the phenomena associated with the propagation of sound were among

the very first to be analyzed in terms of an effective field theory. For a solid, the

relevant effective fields are the components of the vector ~ξ(x) = (ξ1(x), ξ2(x), ξ3(x)),

which specifies the displacement of the material from the position in the ground state.

The corresponding equation of motion follows from the conservation of momentum,

∂µθ
µr(x) = ∂0θ

0r(x) + ∂sθ
sr(x) = 0 . (39)

The quantity θ0r is the momentum per unit volume, while θrs is the stress tensor

describing the momentum flow per unit area and time. To first order in the amplitude

of the deformation, the momentum density is proportional to the mass density ρ of

the solid and to the velocity field,

θ0r = ρ ξ̇r . (40)

For simplicity, I consider a cubic lattice. Symmetry under reflections then implies

that, to first order in the derivative expansion, the stress tensor is invariant under

rotations,

θrs = −µ ξrs − K δrs ~∂ ·~ξ , ξrs ≡ ∂rξ
s + ∂sξ

r − 2
3
δrs ~∂ ·~ξ . (41)

The constants µ and K are referred to as torsion and compression modules, respec-

tively [16].

The conservation law (39) shows that, at large wavelengths, the sound waves of

a solid obey the wave equation

ρ ~̈ξ − µ △~ξ − (K + 1
3
µ) ~∂ (~∂ ·~ξ ) = 0 . (42)

The corresponding dispersion law is of the form ω(~k) = v | ~k | + O(k2). For trans-

verse vibrations (~ξ ⊥ ~k), the velocity of sound is determined by the torsion module,

v⊥ =
√

µ/ρ, while longitudinal waves propagate with v‖ =
√

(K + 4
3
µ)/ρ.

The energy density also admits an expansion in powers of the effective field and

its derivatives. The leading contribution arises from the rest energy of the material
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and is of first order in ~ξ, while the energy of the wave itself only shows up at second

order. The leading term is readily obtained from the energy conservation law

∂0θ
00 + ∂rθ

r0 = 0 . (43)

In view of the symmetry θµν = θνµ, this yields

θ00 = −ρ (~∂ ·~ξ ) . (44)

In the notation used here, the energy density is given by c2θ00, such that the unde-

formed solid corresponds to θ00 = ρ. The expression (44) represents the change in

the density generated by the deformation, ρ → ρ(1−~∂·~ξ ). Note that the contribution

from the ground state itself is dropped, in θ00 as well as in θrs.

The sound waves may be viewed as Goldstone excitations of spontaneously broken

space-time symmetry: G is the Poincaré group and H is the group of time transla-

tions (in the nonrelativistic domain of interest here, G may equally well be identified

with the Galilei group). The elements of the quotient G/H are parametrized by a

rotation matrix R, a velocity ~v and a space translation ~a; the corresponding genera-

tors are the angular momentum ~J , the boost ~K and the momentum ~P , respectively.

For spontaneously broken internal symmetries, the effective theory involves as many

pion fields as there are coordinates in G/H. Accordingly, one might expect that

the effective field theory requires a matrix field R(x) as well as two vector fields

~v(x),~a(x). The standard analysis sketched above, however, only involves a single

vector field, ~ξ(x). Indeed, the fields R(x) and ~v(x) are redundant: the transforma-

tion law ~x → R~x + ~vt + ~a shows that space-time dependent translations also cover

boosts and rotations. The local form of the symmetry group G is the set of general

coordinate transformations; infinitesimally, these are described by space-time depen-

dent translations, xµ → xµ + aµ(x). The spontaneously broken part thereof consists

of the translations in space. The state exp i~a(x) · ~P | 0 > represents a deformed

ground state, the point ~x being shifted into ~x + ~a(x). Hence the field ~a(x) coincides

with the effective field ~ξ(x) introduced above. One may thus view the phonons of a

solid as Goldstone bosons associated with spontaneously broken translation invari-

ance: at long wavelength, |~k |→ 0, the frequency of the sound waves tends to zero,
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because there is no restoring force for displacements of the solid as a whole. The fact

that the solid also breaks invariance under rotations and boosts does not give rise to

additional Goldstone bosons.

The wave equation (42) is the equation of motion of the Lagrangian

Leff = 1
2
ρ ξ̇rξ̇r − 1

4
µ ξrsξrs − 1

2
K(~∂ ·~ξ )2 , (45)

which is of the same structure as the effective Lagrangian relevant for the spin waves

of an antiferromagnet. The mass density plays the role of the effective coupling

constant F 2
1 , while µ and K are the analogues of F 2

2 . In the present case (i) the

relevant symmetry group G is the abelian group formed by the space-translations

rather than the group O(3) considered in the preceding section and (ii) the symmetry

is now fully broken, such that there are three Goldstone bosons rather than two —

the subgroup H only contains the unit element.

9 Local form of the translation group

As noted above, the relevant part of the space-time symmetry which characterizes a

solid is the group G of space-translations, spontaneously broken to H = {e}. The

generators of G are the three components of the total momentum. Accordingly, the

charge densities J0
i coincide with the components θ0i of the energy-momentum tensor,

while the currents Jr
i are represented by θri. Their correlation functions may again

be obtained by exposing the system to an external field. In the present case, where

the sources of interest are the components of θµν(x), the relevant external field is the

gravitational field gµν(x). The Ward identities obeyed by the correlation functions

of the energy-momentum tensor are equivalent to the statement that the generating

functional is invariant under general coordinate transformations.

The change in the Lagrangian due to the external field may be worked out as

follows. Denote the metric of Minkowski space by ηµν and set gµν(x) = ηµν + fµν(x).

Since the energy-momentum tensor is the variational derivative of the action with re-

spect to the metric, the modification of the Lagrangian is given by L−1
2
fµνθ

µν+O(f 2).
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The effective Lagrangian picks up the analogous term linear in fµν , involving the

above representations of the energy-momentum tensor within the effective theory. In

the presence of an external gravitational field, the effective Lagrangian thus becomes

Leff = 1
2
ρ ξ̇rξ̇r − 1

4
µ ξrsξrs − 1

2
K(~∂ ·~ξ )2 (46)

+ 1
2
f00 ρ ~∂ ·~ξ − f0r ρ ξ̇r + 1

2
frs µ ξrs + 1

2
frr K ~∂ ·~ξ + . . .

The conservation laws insure that the corresponding action is invariant under the

transformation

fµν → fµν + ∂µaν + ∂νaµ (47)

of the gravitational field — the linearized form of a general coordinate transformation

on Minkowski space amounts to an abelian gauge transformation. If the field ~ξ(x)

solves the wave equation for fµν(x), then the solution belonging to the transformed

gravitational field is given by ~ξ(x) + ~a(x). Under a gauge transformation of the

external field, the effective field thus transforms according to

~ξ → ~ξ + ~a . (48)

Although the time component a0 of the coordinate transformation changes the La-

grangian by a total derivative, it does not affect the solution at all. The essential part

of the symmetry is contained in the spacial components ~a, which represent the gauge

transformations associated with the symmetry group G. Under these, the quantities

ξ̇r − f0r and ∂rξ
s + ∂sξ

r − frs are gauge invariant. Completing the squares in (46),

one thus arrives at a gauge invariant effective Lagrangian,

Leff = 1
2
ρ D0ξ

rD0ξ
r − 1

4
µ ΞrsΞrs − 1

2
K(Drξ

r)2 + 1
2
f00 ρ Drξ

r + . . . (49)

D0ξ
r = ξ̇r − f0r , Drξ

r = ∂rξ
r − 1

2
frr , Ξrs = ξrs − frs + 1

3
δrsftt .

We could just as well have applied the machinery of the preceding sections to

the case of the translation group. Introducing external fields couplied to the charge

densities θ0i and currents θri and imposing gauge invariance, the result would have

been the same (except for the additional term involving the external field f00, which
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is not related to the charge densities and currents of the group G). The point is that

the Lagrangian describing the phonons of a solid emerges from the above general

discussion as the special case which corresponds to the abelian symmetry of the

translation group. In particular, sound waves illustrate the remark made in section 4,

according to which the Goldstone bosons generated by the spontaneous breakdown

of an abelian group obey a dispersion law of the form ω ∝| ~k |. The transition

matrix elements of the charge densities and currents between the ground state and

a Goldstone boson may also be calculated in the same manner as before, with the

result

<0 |θ00 |π(~k)> = −i
√

ρ ~k·~ε/
√

2ω (50)

<0 |θ0r |π(~k)> = −i
√

ρ ω εr/
√

2ω

<0 |θrs |π(~k)> = −i
√

ρ {v2
⊥(krεs + ksεr − 2δrs~k ·~ε) + v2

‖δ
rs~k ·~ε}/

√
2ω ,

where ~ε is the polarization vector of the phonon.

Despite these evident similarities with the spontaneously broken internal symme-

tries discussed in the preceding sections, the fact that the translation group acts on

space-time gives rise to some peculiarities. I add two remarks regarding the difference

between phonons and Goldstone bosons of an internal symmetry.

The first point concerns the transformation properties of the generators under

space rotations. While the charges considered in the preceding sections were as-

sumed to be invariant, the generators of the translations transform with the vector

representation of the rotation group. Euclidean invariance then prevents the charge

densities from acquiring expectation values, <0 |θ0r |0>= 0, while those of the cur-

rents may be different from zero, <0 |θrs |0>= δrsp (p is the pressure in the ground

state). Apart from this modification, the general discussion of section 4, however,

applies. As pointed out there, the order parameters associated with the charges of

an abelian group lead a life of their own and do not manifest themselves in the dy-

namics of the Goldstone bosons. Indeed, in the above equations, the contribution to

the energy-momentum tensor from the ground state were simply dropped.

The second remark is more significant. The form of the Ward identities is con-
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trolled by the local version of the symmetry group. The local form of the translation

group is the set of general coordinate transformations and is not abelian — it reduces

to the set of abelian gauge transformations (47) only at the linearized level. The in-

trinsic difference between the global and the local structure of the group shows up

in the commutation rules: while the generators P r of the translation group commute

among themselves, they do not commute with the corresponding charge densities

and currents, but obey a commutation rule of the form [P r, θµν(x)] = ih̄∂rθ
µν(x).

The phenomenon is related to the fact that an abelian group admits different local

versions. For the deformations of a solid, the one which matters is the group of

coordinate transformations, while for the groups associated with the U(1)-charges of

particle physics, the local form relevant for the Ward identities is the set of abelian

gauge transformations. The full effective Lagrangian describing the deformations of

a solid is gauge invariant under the transformation (47) only at the linearized level

considered above. When imposing the symmetry on the higher order terms, the ex-

pansion of the coordinate transformation is needed to higher accuracy, such that the

transformation laws of the fields fµν and ξr then involve additional terms.

10 Phonons in fluids and gases

Finally, I briefly comment on sound waves in fluids or gases. Since the correspond-

ing ground state is invariant under rotations as well as translations, the generators

~J and ~P now belong to the subgroup H. The spontaneously broken part of the

space-time symmetry, G/H, is generated by the boost operators ~K. Accordingly,

the effective field is the field associated with space-time dependent boosts, ~v = ~v(x).

To lowest order in this field, the leading terms in the derivative expansion of the

energy-momentum tensor now take the form

θ00 = ρ , θ0r = ρ vr , θrs = p δrs (51)

and the conservation laws for energy and momentum become

ρ̇ + ~∂ ·(ρ~v ) = 0 , (ρ~v )˙+ ~∂ p = 0 . (52)
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In general, the local configuration of the system depends on several variables, which,

in principle are independent of one another: in addition to the temperature, the

chemical potentials of the various particle species also need to be specified. To the

extent that the sound waves represent adiabatic deformations, the change in the

pressure is, however, determined by the one in the density, δp = κ δρ. The coefficient

of proportionality is the adiabatic compression module per unit mass, κ = (∂p/∂ρ)s

(a detailed discussion, in particular also of the adiabatic approximation, may be

found in ref. [16]). Eliminating ṗ in favour of ρ̇ and retaining only terms linear in

the velocity field, the time derivative of the momentum conservation law may be

rewritten as

~̈v − κ ~∂ (~∂ ·~v ) = 0 . (53)

The phonons thus obey a wave equation which is similar to the one valid in solids (~v ↔
~̇ξ). The term proportional to κ is the analogue of the one involving the compression

module, K = ρ κ. A torsion term, on the other hand, does not occur here: in fluids or

gases, torsion does not generate stress. A divergence free velocity field obeys ~̈v = 0,

indicating that transverse modes do not oscillate. According to equation (53), layers

perpendicular to the wave vector ~k glide along one another without transfer of energy

or momentum.

In reality, the energy contained in the transverse modes dissipates. The attenua-

tion rate is determined by the viscosity of the material, which manifests itself in the

stress tensor, at the next order of the derivative expansion [16],

θrs = δrs p − η{∂r~v
s + ∂s~v

r − 2
3
δrs ~∂ ·~v } − ζδrs~∂ ·~v . (54)

Instead of a wave equation, the transverse modes obey a diffusion equation,

ρ~̇v = η △~v . (55)

One may thus conclude that, in the case of fluids or gases, there is only one Gold-

stone particle. The two other degrees of freedom of the group G/H are dissipative

and do not propagate like particles with real momenta and energies. Instead, the
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corresponding ”dispersion law” corresponds to a pole in the complex plane, occurring

at ω(~k) = −i~k 2η/ρ.

For the effective Lagrangian method, this, unfortunately, is the end. In the pres-

ence of phenomenological dissipative forces, the equation of motion cannot be for-

mulated in terms of a Lagrangian. This does not mean that effective field theory is

unable to cope with the motion of fluids or gases — quite to the contrary, the Navier-

Stokes equations describe this motion perfectly well. They do represent an effective

field theory, for which the velocity field ~v(x) is the relevant dynamical variable. That

theory, however, cannot be represented in terms of an effective Lagrangian. The sys-

tematic expansion in powers of the derivatives provided by the effective Lagrangian

method is not available here. In this expansion, the contributions arising at higher

orders, from simultaneous exchange of several Goldstone bosons, are accounted for

by the loop graphs, i.e., by the quantum fluctuations of the effective field. If the

effective field theory does not admit a Lagrangian formulation, it is entirely unclear

how to set up the corresponding quantum theory. Presumably, in the presence of

phenomenological dissipative terms, it is impossible to extend the low energy analysis

beyond leading order.

11 Summary and conclusion

1. The paper deals with the effective field theory relevant for the low energy

analysis of spontaneously broken symmetries in the nonrelativistic domain. The

discussion applies to any system for which the only excitations without an energy

gap are the Goldstone modes.

2. The analysis is based on the Ward identities obeyed by the correlation functions

of the charge densities and currents. The discussion assumes that the Ward identities

are anomaly free and exploits the fact that the generating functional is then invariant

under gauge transformations, i.e., under a local form of the symmetry group.

3. The number of effective fields needed turns out to be universal. Denoting

the symmetry groups of the Hamiltonian and of the ground state by G and H,
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respectively, the number of effective fields required to describe the properties of the

system for large wavelengths is given by dim(G)−dim(H). While, for relativistically

invariant theories, the number of Goldstone particles coincides with the number of

effective fields, this is not in general the case for nonrelativistic systems, where the

above number only represents an upper bound.

4. Nonrelativistic kinematics does not prevent the generators of the group from

having expectation values in the ground state, representing order parameters of

the spontaneously broken symmetry. The main result of the present paper is the

statement that the phenomenon manifests itself through a term in the effective La-

grangian, which is of topological nature and does not occur in the effective field

theories relevant for particle physics. The relevant term, in particular, violates gauge

invariance of the effective Lagrangian.

5. The form of the leading contributions in the derivative expansion of the general

Lagrangian is discussed in detail. In the case of G = O(3), H = O(2), the two

Goldstone fields may be described in terms of a three-component vector U i(x) of

unit length, U iU i = 1. The derivative expansion of the effective Lagrangian then

starts with

Leff = Σ
∫ 1

0
dλ εijk ∂0U

i ∂λU
j Uk + 1

2
F 2

1 ∂0U
i∂0U

i − 1
2
F 2

2 ∂rU
i∂rU

i + . . . (56)

The first term is the topological object mentioned above. The corresponding effective

coupling constant Σ is the order parameter associated with the charge densities.

In the case of a magnet, Σ is the magnetization of the ground state. The other

two effective coupling constants, F1, F2, are determined by the one-particle matrix

elements of the charge densities and currents.

6. The above expression for the effective Lagrangian implies that the dispersion

law of the Goldstone bosons is of the form

Σ ω + F 2
1 ω2 − F 2

2
~k 2 + . . . = 0 . (57)

(i) If the charge density acquires a nonzero expectation value — as it is the case with

the ferromagnet — the first term is different from zero. At low frequencies, it then
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dominates over the second, such that the dispersion law is quadratic in ~k,

ω(~k) = (F 2
2 /Σ)~k 2 + . . . Σ 6= 0 . (58)

The corresponding wave equation takes the form of a Schrödinger equation. The

wave function is complex and incorporates both of the two real Goldstone fields.

The spectrum only contains one Goldstone particle of a given momentum.

(ii) The antiferromagnet corresponds to the case where the charge density does not

acquire an expectation value. The dispersion law then takes the form

ω(~k) = (F2/F1) |~k |+ . . . Σ = 0 . (59)

In this case, the wave equation is of second order in the time derivative, such that

there are two Goldstone particles.

7. The phonons of a solid represent a peculiar case, as they are associated with

a spontaneously broken space symmetry, translation invariance. The relevant gauge

group is the set of coordinate transformations. Accordingly, the Ward identities for

the correlation functions of the energy-momentum tensor play a central role in the

corresponding effective theory.

8. While the effective Lagrangian method is perfectly suited for the low energy

analysis of the deformations of a solid, the method fails for fluids or gases. There, the

low energy behaviour of two of the three effective fields is dominated by dissipative

forces, which cannot be described in terms of a Lagrangian.

Acknowledgement

I thank U. Wiese for clarifying discussions at an early phase of this work and I am

indebted to J. Gasser, P. Hasenfratz, C. Hofmann, V. V. Lebedev, P. Minkowski, F.

Niedermayer, A. V. Smilga and U. Würgler for comments, encouragement and help

with the literature.

References

28



[1] P. W. Anderson, Basic notions of condensed matter physics (Benjamin, Menlo

Park, 1984);

H. Kleinert, Gauge fields in condensed matter (Worlds Scientific, Singapore,

1989).

[2] S. Weinberg, Phys. Rev. Lett. 18 (1967) 188, 507; Phys. Rev. 166 (1968) 1568;

R. Dashen, Phys. Rev. 183 (1969) 1245;

R. Dashen and M. Weinstein, Phys. Rev. 183 (1969) 1291.

[3] S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 (1969) 2239;

C. Callan, S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 (1969) 2247.

[4] L.-F. Li and H. Pagels, Phys. Rev. Lett. 26 (1971) 1204;

H. Pagels, Phys. Rep. C 16 (1975) 219.

[5] S. Weinberg, Physica A96 (1979) 327.

[6] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158 (1984) 142; Nucl. Phys. B

250 (1985) 465.

[7] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17 (1966) 1133.

[8] J. Goldstone, Nuovo Cim. 19 (1961) 154.

[9] A detailed discussion of the Goldstone theorem, in particular also in the context

of nonrelativistic broken symmetries is given in

G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, in Advances in particle

physics, Vol. 2, p. 567, ed. R. L. Cool and R. E. Marshak (Wiley, New York,

1968).

[10] H. Leutwyler, On the foundations of chiral perturbation theory, preprint Univer-

sität Bern, BUTP-93/24.

[11] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9, Statistical

Physics, Part 2, by E. M. Lifshitz and L. P. Pitajewski (Pergamon, London,

1981).

29



[12] P. Gerber and H. Leutwyler, Nucl. Phys. B 321 (1989) 387.

[13] F. J. Dyson, Phys. Rev. 102 (1956) 1217, 1230.

[14] C. Hofmann, PhD thesis, in preparation.

[15] H. Neuberger and T. Ziman, Phys. Rev. B 39 (1989) 2608;

P. Hasenfratz and F. Niedermayer, Phys. Lett. B 268 (1991) 231; Z. Phys. B

92 (1993) 91;

U. J. Wiese and H. P. Ying, Determination of the low energy parameters of the

2D Heisenberg antiferromagnet, preprint Universität Bern, BUTP-92/50.

[16] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7, Elasticity

Theory (Pergamon, London, 1959).

30


