
Iranian Journal of Fuzzy Systems Vol. 13, No. 6, (2016) pp. 89-110 89

UNIVERSAL APPROXIMATION OF INTERVAL-VALUED FUZZY

SYSTEMS BASED ON INTERVAL-VALUED IMPLICATIONS

D. LI AND Y. XIE

Abstract. It is firstly proved that the multi-input-single-output (MISO) fuzzy
systems based on interval-valued R- and S-implications can approximate any
continuous function defined on a compact set to arbitrary accuracy. A formula
to compute the lower upper bounds on the number of interval-valued fuzzy

sets needed to achieve a pre-specified approximation accuracy for an arbitrary
multivariate continuous function is then presented. In addition, a method to
design the interval-valued fuzzy systems based on R- and S-implications in
order to approximate a given continuous function with a required approxima-

tion accuracy is represented. Finally, two numerical examples are provided to
illustrate the proposed procedure.

1. Introduction

In order to strengthen the capability of modeling and manipulating inexact in-
formation in a logical manner, type-2 fuzzy sets were introduced by Zadeh [40,41].
Since type-2 fuzzy set owns more parameters than traditional fuzzy set, type-2
fuzzy systems (which are described with type-2 membership functions) can provide
us with more design degrees of freedom, and then they have relatively higher ro-
bustness than traditional fuzzy controllers. Therefore, type-2 fuzzy systems may
outperform traditional fuzzy controllers in uncertain environments [35]. Since in-
terval type-2 fuzzy logic systems were first designed by Liang and Mendel [23],
interval-valued fuzzy set theory has been successfully employed in different control
applications in recent years [14-20,24,36,42,43]. It is worth to mention that Castillo
and Melin provided a good over view on methods in design of interval type-2 fuzzy
controllers and interval type-2 fuzzy logic applications in intelligent control [1].
Dereli et al. represented a concise over view of different industrial applications of
type-2 fuzzy sets and systems [4]. In most of these applications, the main goal is
to design a type-2 fuzzy system to approximate a desired control or decision (often
experts).

Let R represent the set of all real numbers. As being special type-2 fuzzy system,
the interval-valued MISO fuzzy system can be regarded as a mapping input space
U(⊆ Rm) to output space V (⊆ R) as follows:

y = f(x) = D(I(F (x))), (1)
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where fuzzifier F is a mapping from a real-valued point x ∈ U(⊆ Rm) to an

interval-valued fuzzy set Ã′, I is fuzzy inference engine which maps an interval-

valued fuzzy set Ã′ in U into another interval-valued fuzzy set B̃′ in V (⊆ R), and

defuzzifier D is a mapping which maps interval-valued fuzzy set B̃′ in V to crisp
point y ∈ V . At present, Mamdani type and Takagi-Sugeno type of interval-valued
fuzzy systems were investigated By Ying [38,39]. He chosen interval-valued min or
product t-norm as implication operators in interval-valued Mamdani and Takagi-
Sugeno fuzzy systems. However, there is deficiency to interval-valued knowledge
representation and reasoning using min or product t-norm as implication operators
[32].

In addition, to make these interval-valued fuzzy systems more practical, we need
to tackle this drawback by omitting type reduction process or approximating the
output of the type-reduction process. To do so, many approaches have been pro-
posed [3,8,13,18,25]. However, to the best of our knowledge, there have been few
methods possessing accurate and rapid responses in practical applications.

In order to guarantee that the interval-valued fuzzy systems would be used to
solve any control and modeling problems, it is very necessary to investigate their
ability to uniformly approximate any continuous function. Considering a system of
many-valued logic capturing the tautologies of interval-valued residuated lattices is
regarded as an expansion of classical logic, it has been studied as multi-valued logic
systems [9]. Moreover, it has a strict logic foundation to approximately reasoning
using interval-valued R- and S-implications as implication operators [10]. There-
fore, we will extend the results in [21,22] and consider the approximation properties
of MISO fuzzy systems based on interval-valued R- and S-implications in this pa-
per. Having this in mind, the structure of this paper is as following. In Section
2, we give some definitions of basic notions and notations. In Section 3, the in-
terpretation of fuzzy rules and inference methods for interval-valued fuzzy systems
based on R- and S-implications are studied. Section 4 shows that the interval-
valued fuzzy systems based on R- and S-implications are universal approximators.
Section 5 presents sufficient condition for the interval-valued fuzzy systems based
on R- and S-implications as universal approximators. In Section 6, two examples
are provided to demonstrate how to design such an interval-valued fuzzy system in
order to approximate a given continuous function with a required approximation
accuracy.

2. Preliminaries

Let LI = {[x1, x2]|x1 ≤ x2, x1, x2 ∈ [0, 1]}. In the sequel, we will denote
x = [x1, x2] and the first and second projection mapping pr1 and pr2 on LI are
defined as pr1x = x1 and pr2x = x2 for any x ∈ LI . An ordering on LI as x ≤LI y
if x1 ≤ y1 and x2 ≤ y2 is called component-wise order or Kulisch-Miranker order.
It is easy to verify that the ordering just defined is a partially ordering on LI . We
define the set D = {[x, x]|x ∈ [0, 1]} for further usage. The largest and the smallest
elements of LI are denoted by 1LI = [1, 1] and 0LI = [0, 0], respectively. Notice that
for any non-empty A ⊆ LI it holds that supA = [sup{x1|x ∈ A}, sup{x2|x ∈ A}]
and inf A = [inf{x1|x ∈ A}, inf{x2|x ∈ A}] [5]. Therefore, it can be verified that
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Figure 1. Lower Membership Function Al and Upper

Membership Function Au of Ã

the algebraic structure (LI ,∨,∧, 0LI , 1LI ) is a complete, bounded and distributive
lattice.

Definition 2.1. [33] An interval-valued fuzzy set Ã is characterized by a mem-

bership function Ã(x) : X → LI . The set of all interval-valued fuzzy sets on X is
denoted by IV FS(X).

Definition 2.2. [34] For an Ã ∈ IV FS(X), let Ã(x) = [Al(x), Au(x)] with 0 ≤
Al(x) ≤ Au(x) ≤ 1. The two ordinary fuzzy sets Al : X → [0, 1] and Au : X → [0, 1]

are known as “the lower fuzzy set about Ã” and “the upper fuzzy set aboutÃ,
respectively.

It is not difficult to find that an interval-valued pseudo-trapezoidal fuzzy set Ã on

R can be represented by Ã = [Al, Au] = [(al, bl, cl, dl;hl
1, h

l
2), (au, bu, cu, du;hu

1 , h
u
2 )]

as shown in Figure 1, where Al(x) and Au(x) have the following forms:

Al(x) =


LAl(x), x ∈ [al, bl)

hl
2−hl

1

cl−bl
, x ∈ [bl, cl]

RAl(x), x ∈ (cl, dl]
0, otherwise

and Au(x) =


LAu(x), x ∈ [au, bu)

hu
2−hl

u

cu−bu , x ∈ [bu, cu]

RAu(x), x ∈ (cu, du]
0, otherwise

where LAl(x) and LAu(x) are nondecreasing upper semicontinuous functions. RAl(x)
and RAu(x) are nonincreasing upper semicontinuous functions. In particular, if

bl = cl and bu = cu, then Ã is called interval-valued pseudo-triangle-shaped fuzzy
set.

Definition 2.3. [11, 12] An interval-valued fuzzy set Ã is normal if sup{Ã(x)|x ∈
X} = 1LI .

Since an interval-valued pseudo-trapezoidal fuzzy set Ã can be represented by

Ã = (Al, Au), Ã is normal if there exists at least an x ∈ X such that Al(x) =
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Au(x) = 1. This implies the fact that an interval-valued pseudo-trapezoidal fuzzy

set Ã is normal if and only if hl
1 = hl

2 = hu
1 = hu

2 = 1.

Definition 2.4. For an Ã ∈ IV FS(X), the Support and Kernel of Ã, respectively

denoted as SuppÃ and KerÃ, are defined as:

SuppÃ = {x ∈ X|Ã(x) > 0IL}, KerÃ = {x ∈ X|Ã(x) = 1LI}.

As an extension of fuzzy partition in [26], we can define an interval-valued fuzzy
partition on X as follows.

Definition 2.5. Let {Ãk}nk=1 be a collection of interval-valued fuzzy sets on X.

We say {Ãk}nk=1 forms a complete interval-valued fuzzy partition on X if X ⊆
n
∪

k=1
SuppÃk.

Definition 2.6. An interval-valued fuzzy partition {Ãk}nk=1 is said to be consistent

if whenever for some k and some x ∈ X, Ãk(x) = 1LI then Ãj(x) = 0LI for

j ̸= k. Further, it is called a Ruspini Partition if
n∑
k

(Au
2k(x) + Al

2k+1(x)) = 1,

n∑
k

(Al
2k(x) + Au

2k+1(x)) = 1 for any x ∈ X.

Definition 2.7. [5] A function N : LI → LI is called an interval-valued fuzzy
negation if

N1: N (0LI ) = 1LI , N (1LI ) = 0LI ;
N2: N (y) ≤LI N (x) if x ≤LI y, ∀ x, y ∈ LI .
Furthermore, an interval-valued fuzzy negation N is strict if it satisfies the fol-

lowing properties:
N3: N is continuous;
N4: N (x) >LI N (y) if x <LI y.
An interval-valued fuzzy negation is strong if it is involutive, i.e.,
N5: N (N (x)) = x,∀ x ∈ LI .

Notice that (LI ,∨,∧,N , 0LI , 1LI ) is a bounded and distributive lattice and keeps
De Morgan identities when N is involutive.

Definition 2.8. [5] An associative, symmetric and isotonic operation T : LI×LI →
LI is called a t-norm on LI if it satisfies T (x, 1LI ) = x for any x ∈ LI .

Definition 2.9. [5] An associative, symmetric and isotonic operation S : LI×LI →
LI is called an s-norm on LI if it satisfies S(x, 0LI ) = x for any x ∈ LI . Especially,
we call S(x, y) = [S1(x1, x2), S2 (y1, y2)] as s-representable s-norm associated with
S1 and S2, where S1 and S2 are two s-norms on [0, 1] and S1 ≤ S2.

Definition 2.10. [2] An interval-valued fuzzy implication → is a mapping from
LI × LI to LI which is antitonic in its first and isotonic in its second component,
and which satisfies 0LI → 0LI = 1LI 0LI → 1LI = 1LI , 1LI → 1LI = 1LI ,
1LI → 0LI = 0LI .
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Moreover one demands any interval-valued fuzzy implication that must be an
extension of the fuzzy implication, that is, If [x, x] → [y, y] = [a, b], then a = b.

Definition 2.11. [2] For every x, y ∈ LI , an interval-valued R-implication is de-
fined by x →R y =

∨
{z ∈ LI |T (x, z) ≤LI y}, where T is a t-norm on LI .

We say that an interval-valued t-norm satisfies the residuation principle if and
only if T (x, y) ≤LI z ⇔ z ≤LI x →R y for any x, y, z ∈ LI .

Lemma 2.12. [5, 6, 7] Let T be an interval-valued t-norm. Then, T satisfies the
residuation principle if and only if

sup
z∈Z

T (x, z) = T (x, sup
z∈Z

z) (2)

for any x ∈ LI and any nonempty subset Z of LI .

Remark 2.13. In general from continuity it cannot be deduced that an interval-
valued t-norms satisfies the residuation principle. For example, T (x, y) = [(x1 +
y1 + x2 + y2 − x2y2 − 2) ∨ 0, (x2 + y2 − 1) ∨ 0] is continuous. However, T does not
satisfies the residuation principle [5].

Lemma 2.14. [6, 7] Let T be an interval-valued t-norm such that pr2T (x, [y2, y2]) =
pr2T (x, [0, y2]) for x ∈ D, y2 ∈ [0, 1]. Then, T satisfies the residuation principle
if and only if there exists two left-continuous t-norm T1 and T2 on [0,1] and a real
number a ∈ [0, 1] such that, for any x, y ∈ LI

T (x, y) = [T1(x1, y1),max (T2(a, T2(x2, y2)), T2(x1, y2), T2(y1, x2))] (3)

and for all x1, y1 ∈ [0, 1]{
T1(x1, y1) = T2(x1, y1), if T2(x1, y1) > T2(a, T2(x1, y1))

T1(x1, y1) ≤ T2(x1, y1), otherwise
. (4)

Lemma 2.15. Let interval-valued t-norm T satisfy the residuation principle and
pr2T (x, [y2, y2]) = pr2T (x, [0, y2]) for x ∈ D, y2 ∈ [0, 1]. Then interval-valued
R-implication →RT associated to T has the form

x →RT y = [IRT1
(x1, y1) ∧ IRT2

(x2, y2), IRT2
(x1, y2) ∧ IRT2

(x2, IRT2
(a, y2))], (5)

where IRT1
and IRT2

are the R-implication associated to the left-continuous t-norms
T1 and T2, respectively.

Proof. For any x, y, z ∈ LI , we have

T (x, y) ≤LI z ⇐⇒ T1(x1, y1) ≤ z1 and T2(a, T2(x2, y2)) ≤ z2

and T2(x1, y2) ≤ z2 and T2(y1, x2) ≤ z2

⇐⇒ y1 ≤ IRT1
(x1, z1) and y2 ≤ IRT2

(x2, IRT2
(a, z2))

⇐⇒ y2 ≤ IRT2
(x1, z2) and y1 ≤ IRT2

(x2, z2),

where IRT1
and IRT2

are the R-implication associated to the left-continuous t-norms
T1 and T2, respectively.
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Define the mapping →RT : LI × LI → LI as follows

x →RT y = [IRT1
(x1, y1) ∧ IRT2

(x2, y2), IRT2
(x1, y2) ∧ IRT2

(x2, IRT2
(a, y2))].

Then, it is clear to see that →RT is the residuum of T . �

As some special cases of Lemma 2.14, Equation (4) can be simplified as shown
in the following corollaries.

Corollary 2.16. Let TL be interval-valued  Lukasiewicz t-norm. The interval-valued
R-implication →RTL

associated to T is

x →RTL
y = [(1 − x1 + y1) ∧ (1 − x2 + y2) ∧ 1, (1 − x1 + y2) ∧ 1]. (6)

Definition 2.17. [33] An interval-valued S-implication is defined by x →S y =
S(N (x), y), where S is an s-norm and N an involutive negation on LI .

Definition 2.18. [2] An interval-valued S-implication is defined by x →S y =
S(N (x), y), where S is an s-norm and N an involutive negation on LI .

A fuzzy relation in X1 ×X2 × · · · ×Xn is a fuzzy subset of the product space.
Similarly, an interval-valued fuzzy relation in X1 × X2 × · · · × Xn is an interval-
valued fuzzy subset of the product space. We concentrate on binary interval-valued
fuzzy relations.

Definition 2.19. [2, 11, 33] Let R̃ and S̃ be two interval-valued fuzzy relations on

X × Y and Y × Z. Then the sup-t composition of R̃ and S̃ is defined as follows:

R̃ ◦T S̃(x, z) = max
y∈Y

T (R̃(x, y), S̃(y, z)). (7)

Remark 2.20. By equation (7), we can obtain the sup-t composition of an interval-

valued fuzzy set Ã and relation R̃ as (Ã◦T R̃)(y) = maxx∈X T (Ã(x), R̃(x, y)). This
is a smooth extension of Zadeh’s max-t composition rules (CRI).

3. Relational Interpretation of Fuzzy Rule

There is no doubt that fuzzy IF-THEN rules (short, fuzzy rules) are the central
concept in fuzzy inference engine. The fuzzy rule base of MISO interval-valued
fuzzy system consists of rules in the following forms [38,39]:

Rj : IF x1 is Ã1
j AND x2 is Ã2

j AND · · · AND xm is Ãm
j THEN y is B̃j , (8)

where xi(i = 1, 2, · · · ,m) and y are variables and Ãi
j(j = 1, 2, · · · , n) and B̃j are

specific linguistic expressions expressing properties of values of xi and y, respec-
tively. The statement between “IF” and “THEN” is called the antecedent of Rj

and the statement after “THEN” is called the consequent of Rj .
In this paper, the fuzzy rule is interpreted by a fuzzy relation on U × V derived

from Ã1
j × Ã2

j × · · · × Ãm
j and B̃j . We now construct an interval-valued fuzzy

relation R̃ from a given rule R. Considering the conjunctive normal form (CNF)
interpretation is well-known in fuzzy logic [28-30], we will utilize CNF interpretation

to construct the fuzzy relation R̃ in this paper.
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Let Ãj = Ã1
j × Ã2

j × · · · × Ãm
j and x = (x1, x2, · · · , xm). Then each fuzzy rule

Ri can be regarded as a fuzzy relation R̃j with a membership function R̃j(x, y) =

Ãj(x) → B̃j(y). Further, interval-valued t-norms are employed to evaluate the
ANDs in the fuzzy rules. For interval-valued fuzzy systems and a given input

Ã
′
, the inference approaches are presented as follows according to the generalized

modus ponens:

B̃′
1 =

m∨
j=1

(
Ã′ ◦T (Ãj → B̃j)

)
(9)

B̃′
2 =

m∧
j=1

(
Ã′ ◦T (Ãj → B̃j)

)
(10)

B̃′
3 = Ã′ ◦T

m∨
j=1

(
Ãj → B̃j

)
(11)

B̃′
4 = Ã′ ◦T

m∧
j=1

(
Ãj → B̃j

)
(12)

Remark 3.1. The second interpretation considers the rule (8) as a conditional
clause of natural language and then the rule is interpreted by the theory of linguistic
semantics [27-30]. And then there are many types of fuzzy inference mechanisms
have been proposed in the literature [31]. We restrict this study only to fuzzy
relation based inference mechanisms.

In order to ensure the rules cover all the possible situations that the interval-
valued fuzzy system may face, we need attach some additional conditions to the
interval-valued fuzzy rules.

Definition 3.2. A set of interval-valued fuzzy rules is complete if for any x ∈ U ,

there exists at least one rule in the fuzzy rule base, say Rj , such that Ãk
j (xj) ̸= 0LI .

Definition 3.3. A set of interval-valued fuzzy rules is consistent if there are no
rules with the same IF parts but different THEN parts.

Assumption: Ãi
j and B̃j are normal, continuous, complete and consistent interval-

valued pseudo-trapezoid-shaped (the discussion for that of interval-valued pseudo-
triangle-shaped fuzzy sets membership function is similar) which often form an
interval-valued Ruspini partition in the fuzzy rule base as a form (7), and the fuzzy
rules is complete, consistent.

In this paper, we always make this assumption on interval-valued fuzzy systems.
Remember that the fuzzyifier maps a crisp point x0 = (x0

1, x
0
2, · · · , x0

m) ∈ U into
an interval-valued fuzzy set in IV FS(U). The interval-valued singleton fuzzifier is
denoted as

Ã′(x) =

{
1LI , if x = x0

0LI , otherwise
. (13)

With the above input Ã′, it is easy to see that the algorithms (9)-(12) reduce to

B̃′
1 = B̃′

3 =

m∨
j=1

Ãj → B̃j (14)
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B̃′
2 = B̃′

4 =
m∧
j=1

Ãj → B̃j . (15)

Lemma 3.4. Assume that the number of interval-valued fuzzy rules in (8) are
greater than two. If the operator → is chosen as an interval-valued t-norm in

inference algorithms (9) and (11), then B̃′ ≡ 0LI .

Proof. Since the antecedent interval-valued fuzzy sets of interval-valued fuzzy rules
are complete and form an interval-valued Ruspini partition, there exists j such that

Ãj(x0) = 0LI for any input x0 ∈ U . Therefore, B̃′(y) =
m∧
j=1

T
(
Ãj(x0), B̃j(y)

)
=

0LI . �

Remark 3.5. If the operator → is chosen as an interval-valued t-norm in inference
algorithms (9)-(12), then the control is impossible for any processes. Thus, the
inference methods (10) and (12) should be used.

Lemma 3.6. Assume that the number of interval-valued fuzzy rules in (7) are
greater than two. If the operator → is chosen as an interval-valued implication in

inference algorithms (9) and (11), then B̃′ ≡ 1LI .

Proof. Since an interval-valued implication is isotonic in its second component, for
any x ∈ LI we have 0LI → x ≥ 0LI → 0LI = 1LI . Therefore, 0LI → x = 1LI

holds for any x ∈ LI if → is chosen as an interval-valued implication in inference

algorithms (9) and (11). Thus, B̃′ ≡ 1LI . �

Remark 3.7. i. If the operator → is chosen as an interval-valued implication, then
we should use inference methods (9) and (11) instead of (10) and (12).

ii. From the view of semantics of formal logic, fuzzy inference based on interval-
valued implications admit the truth-values of the rules are non-increasing about
the antecedents of the rules. In the actions of control, however, we always assume
that the corresponding rules shall not be fired or have little influence on the control
results if the truth-values of the antecedents of the rules are false or almost false.
In this case, it is reasonable to use the inference form (9) or (11) instead of (10) or
(12) in order to eliminate the effect of these rules.

Since Ãj is complete and consistent, we assume that there only Ãj1(x0), · · · , Ãjl(x0)
are not zero. Thus equation (15) can be rewritten as follows:

B̃′(y) =

l∧
i=1

(
Ãji(x0) → B̃ji(y)

)
. (16)

Since B̃j is consistent, for any y ∈ V , there are at most two elements, say B̃j and

B̃j+1 such that B̃j(y) ̸= 0LI , B̃j+1(y) ̸= 0LI . Therefore, Equation (16) can be
expressed as follows:

B̃′(y) =
∧
i∈I1

(
Ãji(x0) → B̃j(y)

)
∧

∧
i∈I2

(
Ãji(x0) → B̃j+1(y)

)
∧

∧
i∈I3

(
Ãji(x0) → 0LI

)
,

(17)
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where I1, I2 and I3 are finite subsets of {1, 2, . . . , l}.
As what mentioned above, for any singleton input x0, it is reasonable to re-

quire that, if the rules Rk1 , · · · , Rkl
are fired, then the membership functions

B̃k1(y), · · · , B̃kl
(y) of the consequent part of these rules have at most two adjacent

different elements, say B̃j and B̃j+1. In this case, we can simplify equation (17) as
follows:

B̃′(y) =
∧
i∈I1

(
Ãji(x0) → B̃j(y)

)
∧
∧
i∈I2

(
Ãji(x0) → B̃j+1(y)

)
. (18)

Since interval-valued implication is antitonic in its first variable and I1, I2 are fi-

nite subsets of {1, 2, . . . , l}, there exist j1 ∈ I1 and j2 ∈ I2 such that
∧

i∈I1

(
Ãji(x0)

→ B̃j(y)
)

=
∨

i∈I1
Ãji(x0) → B̃j(y) = Ãj1(x0) → B̃j(y) and

∧
i∈I2

(
Ãji(x0) →

B̃j(y)
)

=
∨

i∈I2
Ãji(x0) → B̃j(y) = Ãj2(x0) → B̃j(y), respectively. Without loss

of generality, we set j1 = j and j2 = j+1. Therefore, equation (18) can be rewritten
as follows:

B̃′(y) =
(
Ãj(x0) → B̃j(y)

)
∧
(
Ãj+1(x0) → B̃j+1(y)

)
. (19)

4. Approximation Capability of Fuzzy Systems Based on
Interval-valued R- and S-implications

Generally speaking, the centroid of average as a result of defuzzification is not
appropriate to the interval-valued fuzzy systems based on interval-valued implica-

tions. This reason is that the rule Rj should be invalid for the output if Ãj(x) = 0LI .

However, B̃′(y) in equation (8) (or (11)) is not zero on the support of B̃j (that is,

the set {y ∈ V |B̃j(y) > 0LI}) because the action of interval-valued implications.
this implies that some unrelated factors will be considered if centroid of average
defuzzifier is used. In order to obtain a good approximation capability, we thus will
use averaging of maximum defuzzifier.

Let Y = {y|B̃(y) = maxy∈V B̃(y)}, then the control output y0 is arbitrary one
chosen point of Y (such as the middle point of Y , etc.). Hence, for any input
x = x0, we can obtain a mapping y0 = f(x0), which is called the interval-valued
fuzzy system function in this paper. Generally speaking, the expression of the
interval-valued system function y = f(x) cannot be obtained directly. Therefore, we
only discuss the fuzzy systems based on interval-valued R-implications induced by
continuous interval-valued t-norms satisfying the residuation principle and several
specific interval-valued S-implications mentioned above for the rest of this paper.

Lemma 4.1. Let →R be an interval-valued R-implication generated by continuous
interval-valued t-norm satisfying the residuation principle and pr2T (x, [y2, y2]) =
pr2T (x, [0, y2]) for x ∈ D, y2 ∈ [0, 1]. Then, for any input x0 the system function
of interval-valued fuzzy systems based on →R is

y0 = f(x0) = (Bl
j)

−1(z1)(or (Bu
j )−1(z2)), (20)

where y0 satisfies the condition Bl
j(y0) +Bu

j+1(y0) = 1 (or Bu
j (y0) +Bl

j+1(y0) = 1).
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Proof. For any input x = x0, we have B̃′(y) =
(
Ãj(x0) → B̃j(y)

)
∧
(
Ãj+1(x0) →

B̃j+1(y)
)

. Therefore, B̃′(y) gets its maximum value when the following equation

hold:
Ãj(x0) → B̃j(y) = Ãj+1(x0) → B̃j+1(y). (21)

Let Y1 = {y ∈ V |Ãj(x0) ≤ B̃j(y) and Ãj+1(x0) ≤ B̃j+1(y)}. We consider the
following two cases:

i. Y1 ̸= ∅. This implies that Al
j(x0) + Au

j+1(x0) ≤ Bl
j(y) + Bu

j+1(y) = 1

and Au
j (x0) + Al

j+1(x0) ≤ Bu
j (y) + Bl

j+1(y) = 1. Therefore, there exist z1 and

z2 such that Al
j(x0) ≤ z1 ≤ 1 − Au

j+1(x0), Au
j (x0) ≤ z2 ≤ 1 − Al

j+1(x0), re-

spectively. And then z1 ≤ z2 holds. Let z = [z1, z2] = B̃j(y). Since Bl
j(y)

and Bu
j+1(y) are pseudo-trapeziod-shaped respectively, there exists one point y0 =

(Bl
j)

−1(z1)(or (Bu
j )−1(z2). Obviously, y0 ∈ Y1. And then it satisfies the condition

Bl
j(y0) + Bu

j+1(y0) = 1 (or Bu
j (y0) + Bl

j+1(y0) = 1).
ii. Y1 = ∅. Since continuous T satisfies the residuation principle, we have

T (Ãj(x0), Ãj(x0) → B̃j(y)) = B̃j(y), T (Ãj+1(x0), Ãj+1(x0) → B̃j+1(y)) = B̃j+1(y).
Further, we can obtain the following equation:

T (Ãj+1(x0), B̃j(y)) = T (Ãj(x0), B̃j+1(y)). (22)

By Lemma 2.13, there exists two continuous t-norm T1, T2 on [0, 1] and a real
number a ∈ [0, 1] such that the following equations hold:

T1(Al
j+1(x0), Bl

j(y)) = T1(Al
j(x0), Bl

j+1(y))

max(T2(a, T2(Au
j+1(x0), Bu

j (y))), T2(Al
j+1(x0), Bl

j(y)), T2(Au
j+1(x0), Bu

j (y)))

= max(T2(a, T2(Au
j (x0), Bu

j+1(y))), T2(Al
j(x0), Bl

j+1(y)), T2(Au
j (x0), Bu

j+1(y))) (23)

Let g1(z1, z2) = T1(Al
j+1(x0), z1) − T1(Al

j(x0), 1 − z2). Obviously, g1(z1, z2) is
continuous and non-decreasing for the first and second variables. It is no diffi-
cult to see that g1(0, 0) = T (Al

j+1(x0), 0) − T (Al
j(x0), 1) = −Al

j(x0) < 0 and

g1(1, 1) = T (Al
j+1(x0), 1) − T (Al

j(x0), 0) = Al
j+1(x0) > 0. Thus, there exists

(z01 , z
0
2) ∈ LI such that g1(z01 , z

0
2) = 0 by the intermediate value theorem. Similarly,

let g2(z1, z2) = max(T2(a, T2(Au
j+1(x0), z2)), T2(Al

j+1(x0), z2), T2(Au
j+1(x0), z2)) −

max(T2(a, T2(Au
j (x0), 1 − z1)), T2(Al

j(x0), 1 − z1), T2(Au
j (x0), 1 − z1)). It is easy to

find that g2(z1, z2) is continuous and non-decreasing for the first and second vari-
ables. Moreover, we have g2(0, 0) = max(T2(a, T2(Au

j+1(x0), 0)), T2(Al
j+1(x0), 0),

T2(Au
j+1(x0), 0)) − max(T2(a, T2(Au

j (x0), 1)), T2(Al
j(x0), 1), T2(Au

j (x0), 1)) = −Au
j

(x0) < 0 and g2(1, 1) = max(T2(a, T2(Au
j+1(x0), 1)), T2(Al

j+1(x0), 1), T2(Au
j+1(x0),

1)) − max(T2(a, T2(Au
j (x0), 0)), T2( Al

j(x0), 0), T2(Au
j (x0), 0)) = −Al

j+1(x0) > 0.

Therefore, there exists (z0
′

1 , z0
′

2 ) ∈ LI such that g2(z0
′

1 , z0
′

2 ) = 0 by the intermediate
value theorem. This implies that equation (23) can be rewritten as{

g1(z1, z2) = 0

g2(z1, z2) = 0
,

(24)
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where 0 ≤ z1 ≤ z2 ≤ 1. Select any (z1, z2) as a solution of equation (24). And then

set [z1, z2] = B̃j(y). Since Bl
j(y) and Bu

j+1(y) are pseudo-trapeziod-shaped respec-

tively, there exists one unique point y0 = (Bl
j)

−1(z1)(or (Bu
j )−1(z2)). Obviously,

y0 satisfies the condition Bl
j(y0) + Bu

j+1(y0) = 1 (or Bu
j (y0) + Bl

j+1(y0) = 1). �

As a special example, we now show the expression of interval-valued fuzzy sys-
tems based on interval-valued R-implications generated by  Lukasiewicz t-norm TL
according to Lemma 4.1.

Corollary 4.2. If →R is the interval-valued R-implication generated by  Lukasiewicz
t-norm TL, then the interval-valued fuzzy system has the following form:

y0 = f(x0) = (Bl
j)

−1

(
1 + 2Al

j(x0) −Au
j (x0) −Al

j+1(x0)

2

)
(25)

or

(Bu
j )−1

(
1 + Au

j (x0) −Al
j+1(x0)

2

)
, (25’)

or

y0 = f(x0) = (Bl
j)

−1

(
1 + Al

j(x0) −Au
j+1(x0)

2

)
(26)

or

(Bu
j )−1

(
1 + Al

j(x0) + Au
j+1(x0) − 2Al

j+1(x0)

2

)
. (26’)

Proof. According to Lemma 4.1, we have the following equation:

TL(Ãj+1(x0), B̃j(y)) = TL(Ãj(x0), B̃j+1(y)).

This implies that the following system of equations holds:
(Al

j+1(x0) + Bl
j(y) − 1) ∨ 0 = (Al

j(x0) + Bl
j+1(y) − 1) ∨ 0

(Al
j+1(x0) + Bu

j (y) − 1) ∨ (Au
j+1(x0) + Bl

j(y) − 1) ∨ 0)

= (Al
j(x0) + Bu

j+1(y) − 1) ∨ (Au
j (x0) + Bl

j+1(y) − 1) ∨ 0

.

(27)

The two solutions of this system of equations are z1 = 1
2 (1 + 2Al

j(x0) − Au
j (x0) −

Al
j+1(x0)), z2 = 1

2 (1 + Au
j (x0) − Al

j+1(x0)) and z′1 = 1
2 (1 + Al

j(x0) − Au
j+1(x0)),

z′2 = 1
2 (1 + Al

j(x0) + Au
j+1(x0) − 2Al

j+1(x0)), respectively. Obviously, z1 ≤ z2 and

z′1 ≤ z′2. If we take [z1, z2] = B̃j(y), then y0 = (Bl
j)

−1

(
1+2Al

j(x0)−Au
j (x0)−Al

j+1(x0)

2

)
or (Bu

j )−1

(
1+Au

j (x0)−Al
j+1(x0)

2

)
.

If we take [z′1, z
′
2] = B̃j(y), then y0 = (Bl

j)
−1

(
1+Al

j(x0)−Au
j+1(x0)

2

)
or (Bu

j )−1 (

1+Al
j(x0)+Au

j+1(x0)−2Al
j+1(x0)

2

)
. �
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Lemma 4.3. Let →S be an interval-valued S-implication generated by continuous
representable interval-valued s-norm and involutive negation N . Then, for any
input x0 the system function of interval-valued fuzzy systems based on →S is

y0 = f(x0) = (Bl
j)

−1(z1)(or (Bu
j )

−1(z2)), (28)

where y0 satisfies condition Bl
j(y0) + Bu

j+1(y0) = 1 (or Bu
j (y0) + Bl

j+1(y0) = 1).

Proof. For any input x = x0, Equation (19) can be rewritten as follows

B̃′(y) = S(N (Ãj(x0)), B̃j(y)) ∧ S(N (Ãj+1(x0)), B̃j+1(y)). (29)

Without loss of generality, we assume that [yj−1, yj+1] and [yj , yj+2] are the support

set of B̃j(y) and B̃j+1(y), respectively. We can assert that the point y0 that B̃′(y)
gets its maximum value lies in [yj , yj+1]. Otherwise, we first assume that y0 /∈
[yj−1, yj+2], then B̃′(y0) = N (Ãj(x0)) ∧ N (Ãj+1(x0)). However, there exist some

y ∈ [yj−1, yj+2] such that S(N (Ãj(x0)), B̃j(y)) > S(N (Ãj(x0)), 0LI ) = N (Ãj(x0))

and S(N (Ãj+1(x0)), B̃j+1(y)) > S(N (Ãj+1(x0)), 0LI ) = N (Ãj+1(x0)) hold. And

then we have B̃′(y) > N (Ãj(x0)) ∧N (Ãj+1(x0)). This is a contradiction.

Further, it is no difficult to see that B̃′(y) gets its maximum value when the
following equation holds:

S(N (Ãj(x0)), B̃j(y)) = S(N (Ãj+1(x0)), B̃j+1(y)). (30)

Since S is representable and N is involutive, there exists s-norms S1, S2 and nega-
tions N1, N2 on [0, 1] such that the following system of equations holds: S1(N1(Au

j (x0)), Bl
j(y)) = S1(N1(Au

j+1(x0)), Bl
j+1(y))

S2(N2(Al
j(x0)), Bu

j (y)) = S2(N2(Al
j+1(x0)), Bu

j+1(y)) (31)

Let h1(z1, z2) = S1(N1(Au
j (x0)), z1)−S1(N1(Au

j+1(x0)), 1−z2). Obviously, h1(z1, z2)
is continuous and non-decreasing for the first and second variables. It is no difficult
to see that h1(0, 0) = S1(N1(Au

j (x0)), 0)−S1(N1(Au
j+1(x0)), 1) = N1(Au

j (x0))−1 ≤
0 and h1(1, 1) = S1(N1(Au

j (x0)), 1)−S1(N1(Au
j+1(x0)), 0) = 1−N1(Au

j+1(x0)) ≥ 0.

Thus, there exists (z01 , z
0
2) ∈ LI such that h1(z01 , z

0
2) = 0 by the intermediate value

theorem. Similarly, let h2(z1, z2) = S2(N2(Al
j(x0)), z2)−S2(N2(Al

j+1(x0)), 1− z1).
It is easy to find that h2(z1, z2) is continuous and non-decreasing for the first and
second variables. Moreover, we can obtain that h2(0, 0) = S2(N2(Al

j(x0)), 0) −
S2(N2(Al

j+1(x0)), 1) = N2(Al
j(x0)) − 1 ≤ 0 and h2(1, 1) = S2(N2(Al

j(x0)), 1) −
S2(N2(Al

j+1(x0)), 0) = 1−N2(Al
j+1(x0)) ≥ 0. Therefore, there exists (z0

′

1 , z0
′

2 ) ∈ LI

such that h2(z0
′

1 , z0
′

2 ) = 0 by the intermediate value theorem. This implies that
equation (31) can be rewritten as{

h1(z1, z2) = 0

h2(z1, z2) = 0
,

(32)

where 0 ≤ z1 ≤ z2 ≤ 1. Choose any (z1, z2) as a solution of equation (32) and take

[z1, z2] = B̃j(y). Since Bl
j(y) and Bu

j+1(y) are pseudo-trapeziod-shaped respec-

tively, there exists one unique point y0 = (Bl
j)

−1(z1)(or (Bu
j )−1(z2). Obviously, y0

satisfies the condition Bl
j(y0) + Bu

j+1(y0) = 1 (or Bu
j (y0) + Bl

j+1(y0) = 1). �
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The following fact reveals that interval-valued fuzzy systems based on interval-
valued R-and S-implications are universal approximators.

Theorem 4.4. Let U ⊆ Rm be a unlimited domain and ∀ε > 0. For any continuous
function g : U → R such that lim

||x||→∞
g(x) exists for any x ∈ U , there exist some

interval-valued fuzzy systems y = f(x) based on R- and S-implications such that

max
x∈U

|f(x)− g(x)| < ε. (33)

Proof. In order to simply and better showing the proof, we shall only consider the
case when m = 2. The proof for other cases is similar. Without loss of generality,
we assume U = [a1,+∞) × [a2,+∞) and lim

||x||→+∞
g(x) = A. It is not difficult

to prove that g is uniformly continuous on [a1,+∞) × [a2,+∞). And then there
exists a closed interval [c, d] such that g(U) ⊆ [c, d]. Since lim

||x||→+∞
g(x) = A, for

any ε > 0 we can find two positive numbers b1(> a1) and b2(> a2) such that
|g(x1, x2) − A| < ε

2 if x1 > b1 and x2 > b2. For any ε > 0, the continuity of g
implies that there exists δ > 0 such that |g(x1, x2) − g(x′

1, x
′
2)| < ε

2 if |x1 − x′
1| < δ

and |x2 − x′
2| < δ for any x1, x

′
1 ∈ [a1,+∞), x2, x

′
2 ∈ [a2,+∞). With the δ defined

above, natural numbers n1 and n2 such that b1−a1

n1
< δ

2 and b2−a2

n2
< δ, respectively.

Choose x1
i ∈ [a1, b1](i = 1, 2, · · · , n1) and x2

j ∈ [a2, b2](j = 1, 2, · · · , n2) such that

max(|x1
i+1 − x1

i |, |x2
j+1 − x2

j |) < δ.

Following the idea presented in [26], let yk = g(x1
i , x

2
j )(k = 1, 2, · · · , n1n2).

Take the distinct yk’s and sort them ascending. In other words, yk = y′σ(k),

where σ is a permutation from Nn1n2 to Nl and y′σ(k) are in ascending order.

Although g(x1
i , x

2
j ) = yk = y′σ(k), (x1

i , x
2
j ), (x1

i+1, x
2
j+1) ∈ U may not be mapped

to y′σ(k), y
′
σ(k)+1 or y′σ(k), y

′
σ(k)−1. Therefore, we need to refine every sub-interval

[x1
i , x

1
i+1] × [x2

j , x
2
j+1] according to the following three cases.

Case 1: If y′σ(k+1) = y′σ(k)−1 or y′σ(k)+1 then we do nothing.

Case 2: If y′
σ(k+1) = y′

σ(k)+p with p ≥ 2. In this case, we can find a point
(x1, x2) ∈ [x1

i , x
1
i+1] × [x2

j , x
2
j+1] such that y′ = g(x1, x2) for any y′ ∈ {y′

σ(k)+1, y
′
σ(k)+2,

· · · , y′
σ(k)+p−1} by the continuity of g. Further, we split [x1

i , x
1
i+1] and [x2

j , x
2
j+1] into

[x1
i , x

1
i1 ], [x

1
i1 , x

1
i2 ], · · · , [x

1
ip−1

, x1
i+1] and [x2

j , x
2
j1 ], [x

2
j1 , x

2
j2 ], · · · , [x

2
jp−1

, x2
j+1], respectively.

Case 3: If y′
σ(k+1) = y′

σ(k)−p with p ≥ 2. Similar to Case 2, [x1
i , x

1
i+1] and [x2

j , x
2
j+1]

are split into [x1
i , x

1
i1 ], [x

1
i1 , x

1
i2 ], · · · , [x

1
ip−1

, x1
i+1] and [x2

j , x
2
j1 ], [x

2
j1 , x

2
j2 ], · · · , [x

2
jp−1

, x2
j+1],

respectively.

After achieved the above procedure, we rename the points x1
i (i = 1, 2, · · · , n1),

x1
is

and x2
j (j = 1, 2, · · · , n2), x2

js
(s = 1, 2, · · · , p − 1) as x1

i (i = 1, 2, · · · , n′
1) and

x2
j (j = 1, 2, · · · , n′

2), respectively.

Next, we construct interval-valued fuzzy sets on U and [c, d] with the (x1
i , x

2
j )’s

and yk’s mentioned above as follows. Two group of complete and consistent interval-

valued fuzzy sets {Ã1
i }

n′
1+1

i=1 on [a1,+∞) and {Ã2
j}

n′
2+1

j=1 on [a2,+∞) are respectively
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constructed such that Ã1
1 = ((A1

1)l, (A1
1)u) = ((0, x1

1, x
1
2; 1), (0, x1

1, x
1
2, x

1
3; 1)), Ã1

i =
((A1

i )l, (A1
i )u) = ((x1

i−1, x
1
i , x

1
i+2, x

1
i+3; 1), (x1

i , x
1
i+1, x

1
i+1, x

1
i+2; 1)) for each 1 < i ≤

n′
1−1, Ã1

n′
1

= ((A1
n′
1
)l, (A1

n′
1
)u) = ((x1

n′
1−2, x

1
n′
1−1, b1 +δ1, b1 +2δ1; 1), (x1

n′
1−1, b1, b1 +

δ1, b1 + 2δ1; 1)), Ã1
n′
1+1 = ((A1

n′
1+1)l, (A1

n′
1+1)u) = ((b1, b1 + δ1,+∞; 1), (b1, b1 +

2δ1,+∞; 1)) and Ã2
1 = ((A2

1)l, (A2
1)u) = ((0, x2

1, x
2
2; 1), (0, x2

1, x
2
2, x

2
3; 1)), Ã2

j = ((A2
j )l,

(A2
j )u) = ((x2

j−1, x
2
j , x

2
j+2, x

2
j+3; 1), (x2

j , x
2
j+1, x

2
j+1, x

2
j+2; 1)) for each 1 < j ≤ n′

2−1,

Ã2
n′
2

= ((A2
n′
2
)l, (A2

n′
2
)u) = ((x2

n′
2−2, x

2
n′
2−1, b2+δ2, b2+2δ2; 1), (x2

n′
2−1, b2, b2+δ2, b2+

2δ2; 1)), Ã2
n′
2+1 = ((A2

n′
2+1)l, (A2

n′
2+1)u) = ((b2, b2+δ2,+∞; 1), (b2, b2+2δ2,+∞; 1)),

respectively. A group of complete and consistent interval-valued fuzzy sets {B̃l}k+1
l=1

on [c, d] such that B̃1 = (Bl
1, B

u
1 ) = ((0, y1, y2; 1), (0, y1, y2, y3; 1)), B̃j = (Bl

j , B
u
j ) =

((yj−1, yj , yj+2, yj+3; 1), (yj , yj+1, yj+1, yj+2; 1)) for each 1 < j ≤ k − 1, B̃k =

(Bl
k, B

u
k ) = ((yk−2, yk, yk, yk; 1), (yk−1, yk, yk, yk; 1)), B̃k+1 =

{
1LI y = A
0LI otherwise

.

Then, interval-valued fuzzy rules can be designed as follows:

Rij : IF x1 is Ã1
i AND x2 is Ã2

j THEN y is B̃l (i = 1, 2, · · · , n′
1; j = 1, 2, · · · , n′

2),

Rn′
1+1,n′

2+1 : IF x1 is Ã1
n′
1+1 or x2 is Ã2

n′
2+1 THEN y is B̃k+1,

where B̃l is chosen such that yl = g(x1
i , x

2
j ) if x1

i and x2
j belong to KerÃ1

i and KerÃ2
j ,

respectively. It is easy to prove that if the rules Rij are fired, then the membership
functions of the consequent part of these rules have at most two adjacent different

elements B̃j , B̃j+1.
Thus, we have constructed the interval-valued fuzzy system. Moreover, for any

given input x0 ∈ U either there exists [x1
i0
, x1

i0+1]× [x1
j0
, x1

j0+1] for some i0 ≤ n′
1−1

and j0 ≤ n′
1 − 1 such that x0 ∈ [x1

i0
, x1

i0+1] × [x1
j0
, x1

j0+1] or x0 ∈ [b1,+∞) ×
[b2,+∞). According to our construction, we have B̃′(y) =

(
Ãi(x0) → B̃i(y)

)
∧(

Ãi+1(x0) → B̃i+1(y)
)

. Let us consider the following three cases:

i. x0 ∈ [x1
i0
, x1

i0+1] × [x1
j0
, x1

j0+1]. This case implies that y0 = (Bl
i)

−1(z1) (or

(Bu
i )−1(z2)) is in [yj−1, yj ] or [yj , yj+1] by Lemma 4.1. Without of loss generality,

we assume that y0 ∈ [yj , yj+1]. Therefore, max{|y0 − yj |, |y0 − yj+1|} < ε
2 . Thus,

|f(x0)−g(x0)| = |y0−g(x0)| ≤ min{|y0−yj |+|yj−g(x0)|, |y0−yj+1|+|yj+1−g(x0)|}
< ε

2 + ε
2 = ε.

ii. x0 ∈ [b1,+∞) × [b2,+∞). This case implies that y0 = A by Lemma 4.1. So,
|f(x0) − g(x0)| = |y0 − g(x0)| = |A− g(x0)|} < ε.

Hence, max
x∈U

|f(x) − g(x)| = max( max
x∈[a1,b1]×[a2,b2]

|f(x) − g(x)|, max
x∈[b1,+∞)×[b2,+∞)

|f(x) − g(x)|) < ε. �

5. The Sufficient Condition for Interval-valued Fuzzy Systems as
Universal Approximators

This section investigates the sufficient condition for interval-valued fuzzy systems
based on R- and S-implications as universal approximators in order to answer the
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question: “Given a real continuous function, how should the membership functions
of interval-valued fuzzy sets be designed, and how many interval-valued fuzzy sets
are needed for each input and output variable in order to guarantee the desired
approximation accuracy?”

As argument in Theorem 4.4, it is sufficient to approximate a real continuous
function defined on a compact subsets of Rm by an interval-valued fuzzy system.
Therefore, we only consider the real continuous functions defined on [a, b]m in the
section.

Definition 5.1. For a normal interval-valued fuzzy set Ã on U , x0 is called the

central point of Ã if x0 is the central point of KerÃ.

Definition 5.2. A group of normal interval-valued fuzzy sets Ãi (i = 1, 2, · · · , n)

defined on U is said to be overlapping if ci−1 ≤ inf(Supp(Ãi)) ≤ sup(Supp(Ãi−1)) ≤
ci holds for any i = 2, 3, · · · , n, where ci is the central point of the fuzzy set Ãi.

Let a group of normal interval-valued fuzzy sets Ãi (i = 1, 2, · · · , n) on U be

overlapping. It can be easily verified that for any i ̸= j, i, j = 1, 2, · · · , n, Ãi(cj) =

0LI holds, and for any x ∈ U , at most two adjacent fuzzy sets Ãj and Ãj+1

can have memberships of x greater than 0LI and must have cj ≤ x ≤ cj+1(j ∈
{1, 2, · · · , n− 1}).

Definition 5.3. Let the central point of the i-th interval-valued fuzzy set Ãi on
U be chosen at ci (i = 1, 2, · · · , n), where c1 < c2 < · · · < cn. For each variable
x ∈ U , the distance of the fuzzy partition is defined as

Dk = ck − ck−1 (k = 1, 2, · · · , n + 1). (34)

Based on the above argument, the maximum distance of fuzzy partition is defined
as

Dmax = max
k

Dk (k = 1, 2, · · · , n + 1). (35)

Definition 5.4. A group of normal interval-valued fuzzy sets on U are said to be
equally distributed if Dk = Dmax (k = 1, 2, · · · , n + 1).

Lemma 5.5. Suppose that n0 overlapping and equally distributed interval-valued
fuzzy sets are assigned to each output variable of interval-valued fuzzy systems based
on R- or S-implications, and n′

i overlapping and equally distributed interval-valued
fuzzy sets are assigned to their each input variable. Then, for an arbitrary poly-
nomial P (x) defined on [a, b]m and the approximation error bound ε > 0, there
exist interval-valued fuzzy systems f(x) based on R- or S- implications such that

max
x∈[a,b]m

|P (x)−f(x)| < ε holds whenever n0 > d−c
2ε −1, n′

i >
n0(b−a)

2ε max
x∈[a,b]m

| ∂P∂xi
(x)|−

1(i = 1, 2, · · · ,m).

Proof. Since P (x) is continuous on [a, b]m, its image set is a closed interval, says
[c, d]. For any x ∈ [a, b]m, we can construct an interval-valued fuzzy system y =
f(x) based on R- (or S-) implication as follows. First, a group of normal interval-

valued fuzzy sets {Ãi
ki
}mi=1 is constructed such that they are a Ruspini Partition
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of [a, b], and the central points are chosen at c
′i
ki

, respectively. Since these fuzzy

sets assigned to each input variable are overlapping and equally distributed, |c′iki
−

c
′i
ki−1| = b−a

ni+1 (ki = 1, 2, · · · , ni + 1) hold. Next, a group of normal fuzzy sets

{B̃k}nk=1 is constructed such that they are a Ruspini Partition of [c, d], and the

central points are chosen at ck = P (c
′1
k1
, · · · , c′mkm

), respectively. Then, the fuzzy
rules can be designed as follows:

Ri1i2···im : IF x1 is Ã1
i1 and x2 is Ã2

i2 and · · · and xm is Ãm
im THEN y is B̃k

with i1 = 1, 2, · · · , n′
1, · · · , im = 1, 2, · · · , n′

m and k = 1, 2, · · · , n.

It is easily proven that only fuzzy rule Ri1i2···im is fired for any c′i = (c
′1
i1
, c

′2
i2
, · · · ,

c
′m
im

), and that f(c′i) = ck holds. Using Taylor’s formula, yields P (x) = ck + r1(x),

where the Lagrange remainder r1(x) is expressed as r1(x) = ∂P
∂x |x=η(x − x′), η is

located in the minimum super sphere containing x and (c
′1
k1
, · · · , c′mkm

), and ∂P
∂x is the

Jacobian determinant of P . Let |ck+1 − ck| < ε
2 and

m∑
i=1

max
x∈[a,b]m

| ∂P∂xi
(x)| 1

n′
i+1 < ε

2 .

Since |f(x) − ck| ≤ |ck+1 − ck| < ε
2 , we have n0 > d−c

2ϵ − 1.

Moreover, |r1(x)| = |∂P∂x |x=η(x − x′)| ≤
m∑
i=1

max
x∈[a,b]m

| ∂P∂xi
(x)| b−a

n′
i+1 < ε

2 ; further-

more, if we let max
x∈[a,b]m

| ∂P∂xi
(x)| 1

n′
i+1 < ε

2n0(b−a) , then n′
i >

n0(b−a)
2ε max

x∈[a,b]m
| ∂P∂xi

(x)|−

1 holds. Hence, |f(x)−P (x)| = |f(x)− ck − r1(x)| ≤ |f(x)− ck|+ |r1(x)|; further-

more, max
x∈[a,b]m

|f(x) − P (x)| < ε
2 + ε

2 < ε. �

Theorem 5.6. Suppose that n0 overlapping and equally distributed interval-valued
fuzzy sets are assigned to each output variable of an interval-valued fuzzy system
based on R- or S-implication, and n′

i overlapping and equally distributed interval-
valued fuzzy sets are assigned to each input variable of the interval-valued fuzzy
system. Then, for an arbitrary real continuous function g(x) ∈ [a, b]m and approx-
imation error bound ε > 0, there exists an interval-valued fuzzy system y = f(x)
based on R- (or S-implication) such that max

x∈[a,b]m
|f(x) − g(x)| < ε holds when

n0 > d−c
2(ε−ε1)

−1, n′
i >

n0(b−a)
2(ε−ε1)

max
x∈[a,b]m

| ∂P∂xi
(x)|−1, where i = 1, 2, · · · ,m, 0 < ε1 < ε

and max
x∈[a,b]m

|f(x) − g(x)| < ε1.

Proof. By the Weierstrass Theorem, there always exists a polynomial P (x) such
that max

x∈[a,b]m
|g(x) − P (x)| < ε1 holds. According to Lemma 5.5, there exists an

interval-valued fuzzy system based on R- (or S-implication), which can reassume
max

x∈[a,b]m
|P (x)−g(x)| < ε−ε1 if n0 > d−c

2(ε−ε1)
−1 holds. This implies that max

x∈[a,b]m
|g(x)−

f(x)| ≤ max
x∈[a,b]m

|g(x)−P (x)| + max
x∈[a,b]m

|P (x)−g(x)| < ε. Hence, n′
i >

n0
2(ε−ε1)

max
x∈[a,b]m

| ∂P
∂xi

(x)|−

1 holds. �
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Figure 2. The Membership Functions of Input Variable in Example 6.1

6. Examples

Example 6.1. Design a fuzzy system based on interval-valued R-implications

to approximate the continuous function g(x) =

{
1 x = 0
sin x
x otherwise

defined over

[−3, 3] with an accuracy of ε = 0.2.

The proposed method for design the fuzzy systems based on interval-valued R-
implications is now presented as follows:

Step 1: Construct the input and output interval-valued fuzzy membership func-
tions. The image set of g(x) on [−3, 3] is [0.047, 1]. By Theorem 4.4, the output
discourse is divided into ⌈ 1−0.047

0.2 ⌉ + 1 = 5 parts. Thus, we construct the member-

ship functions of consequence as B̃1, B̃2, B̃3 which are depicted as Figure 2.
Let δ = 2

3 . Then the input discourse is divided into ⌈(3−(−3))× 3
2⌉+1 = 10 parts,

implying that the membership functions of the antecedent consist of Ã1, Ã2, · · · , Ã6

(Figure 3).

Step 2: Construct the interval-valued fuzzy rules base. The interval-valued
fuzzy rules base consists of:

R1: IF x is Ã1 OR Ã6, THEN y is B̃1;

R2: IF x is Ã2 OR Ã5, THEN y is B̃2;

R3: IF x is Ã3 OR Ã4, THEN y is B̃3.

Step 3: Choose fuzzifier in equation (10) (or equation (12)) and implication
operator in equation (19). Here, we choose R-implication generated by interval-
valued  Lukasiewicz t-norm as implication operator in equation (19).

Step 4: Choose defuzzifier in equation (19) and compute the output by equation
(20) and equation (26). Here, we use averaging of maximum defuzzifier and compute
the output by equation (19).

Finally, we obtain the interval-valued fuzzy system y = f(x) depicted in Figure
4. The approximation error is ε = max

x∈[−3,3]
|f(x) − g(x)| = 0.0554 < 0.2. Figure

4 depicts also the comparison of the interval-valued fuzzy system function y =
f(x) and the origin function y = g(x). In this example, we use only 3 rules to
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Figure 3. The Membership Functions of Output Variable
in Example 6.1

Figure 4. Comparison of The Interval-valued Fuzzy System
y = f(x) and The Origin Function y = g(x)

approximate g(x) with an accuracy ε = 0.2, while Ying in [37] used 207 rules to
approximate the same function.

Example 6.2. Design a fuzzy system based on interval-valued R-implications to
approximate the polynomial P (x1, x2) = 0.52 + 0.1x1 + 0.38x2 − 0.06x1x2 defined
over [−1, 1] × [−1, 1] with an accuracy of ε = 0.1.

Since the image set of P (x1, x2) is [−0.02, 0.94], by Theorem 5.6 we obtain n0 =
⌈ 0.94+0.02

0.1 ⌉ + 1 = 10.

Thus, the membership functions of consequence consist of B̃1, B̃2, · · · , B̃6. Let

δ1 = 0.5 and δ2 = 0.14. Then n1 = ⌈ 1−(−1)
0.5 ⌉ + 1 = 5 and n2 = ⌈ 1−(−1)

0.14 ⌉ + 1 =
15 hold. Thus, the membership functions of the input variables x1 and x2 are

Ã1
1, Ã

1
2, Ã

1
3, Ã

1
4 and Ã2

1, Ã
2
2, · · · , Ã2

9 respectively. Table 1 presents the fuzzy rules.
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i\j 1 2 3 4 5 6 7 8 9

1 1 1 2 3 3 3 4 4 5
2 2 2 2 3 3 3 4 4 5
3 2 2 3 3 3 4 4 4 5
4 2 3 3 3 4 4 4 5 6

Table 1. The Interval-valued Fuzzy Rules for Example 6.2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

Figure 5. Graphical Illustration of the Interval-valued Fuzzy Sys-
tem f(x1, x2) in Example 6.2.

Let x →R y = [ y1

x1
∧ y2

x2
∧ 1, y2

x2
∧ 1] and the product operator, the interval-valued

system f(x1, x2) is depicted in Figure 5. The approximation error is ϵ = 0.078 <
0.1.

In this example, we use only 36 rules to approximate P (x1, x2) = 0.52 + 0.1x1 +
0.38x2 − 0.06x1x2 defined over [−1, 1] × [−1, 1] with accuracy ε = 0.1 while Ying
in [37] used 225 rules to approximate the same function.

7. Conclusions

In this paper, we constructively proved that the fuzzy systems based on interval-
valued R- and S-implications have the ability to uniformly approximate any mul-
tivariate continuous function defined on a compact set to arbitrary accuracy. A
formula was presented to compute the lower upper bounds on the number of fuzzy
sets to achieve pre-specified approximation accuracy for an arbitrary multivari-
ate continuous function. Finally, a general approach to construct fuzzy systems



108 D. Li and Y. Xie

based on interval-valued R- and S-implications was also represented. This method
avoids to calculate the centroid of an interval-valued fuzzy set, implying the type-
reduction problem of traditional interval-valued fuzzy systems can be effectively
resolved. These results may lay a theoretical foundation for the fuzzy systems
development.

In the future, we wish to investigate the necessary condition for the interval-
valued fuzzy systems based on R- and S- implications as universal approximators
with minimal system configurations.
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