Automatic Curvilinear Quality Mesh Generation with Smooth Mesh Boundaries of Medical Images

Jing Xu and Andrey N. Chernikov
Department of Computer Science,
Old Dominion University,
Norfolk, VA, USA,
{jxu,achernik}@cs.odu.edu

Keywords: medical image processing, high-order mesh generation, Bézier polynomial basis, smoothness

Abstract
The development of robust high-order finite element methods requires the curvilinear discretization for complex geometries without user intervention. In this work we present a new technique that allows for the automatic construction of high-order curvilinear meshes with two main features: first, the boundary of the mesh is globally smooth, i.e., it satisfies either the C^1 or the C^2 smoothness requirement; second, all elements are valid as measured by their Jacobians. Example meshes demonstrate the features of the algorithm.

1. INTRODUCTION

High-order finite element methods have been used extensively in direct numerical simulations in the last few decades. The exponential rates of convergence, small dispersion and diffusion solution errors have all motivated the development of high-order finite element techniques which better capture the geometry [1, 2, 11]. How well the geometry is approximated has fundamentally important effects on the accuracy of finite element solutions [6, 10]. Therefore, valid meshes with properly curved elements must be constructed to approximate the curved geometric domain.

The discretization error results from the fact that a function of a continuous variable is represented in the computer by a finite number of evaluations. In conventional meshes with all straight-sided elements, the discretization error is usually controlled by making sufficiently small elements where geometric features occur such as on the objects’ boundary. But this is not numerically efficient in the sense that the cost of assembling and solving a sparse system of linear equations in the FE method directly depends on the number of elements. The high-order methods however, decompose the solution domain into fewer elemental regions that capture the features of the geometry.

When a geometric domain is given, the common way to accomplish the generation of a curvilinear mesh is to initially construct a straight-edge discretization of the model geometry, followed by the transformation of that discretization into high-order elements suitable for a high-order FE method.

Figure 1: An example of invalid meshes. The red line is the curved mesh boundary, and the blue lines are straight mesh edges in the interior. The curved triangles that are tangled are highlighted in gray.

Figure 2: An illustration of the local u, v, w coordinates are distorted into a new, curvilinear set when plotted in global Cartesian x, y space. A general principle for the transformation: a one-to-one correspondence between Cartesian and curvilinear coordinates.

The naive approach does not ensure that all elements of the final curved mesh are valid. The invalid elements are usually caused by curving only the boundary mesh edges while the interior mesh edges remain straight. Fig. 1 gives an example of this critical issue: some of the curvilinear triangular patches have tangled edges. The validity of curved meshes is absolutely crucial to the successful execution of high-order finite element simulations, even one invalid element can ruin the whole simulation. Thus, it is necessary to verify the valid-
ity and eliminate all the invalid elements by curving interior mesh edges as a post-processing step once the curved mesh has been constructed.

When elements of the basic types are mapped into distorted forms, a general principle is that a one-to-one correspondence between Cartesian and curvilinear coordinates can be established (illustrated in Fig. 2). If a non-uniqueness occurs, a violent distortion occurs, the mesh would be invalid even if the mesh boundary is an accurate approximation of the geometric domain. The well-known condition for an one-to-one mapping can be decided by the specific property of the Jacobian of the transformation that maps a reference element onto each element in the physical domain. A curved element is valid if and only if the sign of the Jacobian remains unchanged at all the points of the mapped element, i.e., strictly positive everywhere on this element. To detect invalid elements, one approach is verifying the positiveness by sampling the Jacobian at discrete locations [12]. A more accurate way is to calculate the determinant of the Jacobian matrix. When elements of the basic types are mapped into distorted shapes, the Jacobian does not have arbitrarily small angles) and the fidelity (a reasonable close representation) requirements. The edges of those elements constitute a smooth curve. Once the valid edges are generated, the mesh validity verification procedure next curves the interior elements by solving for the equilibrium configuration, vertices located in the interior are relocated as a result of a prescribed boundary displacement. George and Borouchaki [14] proposed a method for constructing tetrahedral meshes of degree two from a polynomial surface mesh of degree two. Jacobian is introduced for guiding the correction of the invalid curved elements. Finally an optimization procedure is used to enhance the quality of the curved mesh. Luo et al. [9] isolate singular reentrant model entities, then generate linear elements around those features, and curve them while maintaining the gradation. Modification operations are applied to eliminate invalid elements whenever they are introduced.

The rest of the paper is organized as follows. In Section 2., we review some basic definitions. Section 3. gives a description of the automatic construction of a graded linear mesh and the transformation of the linear mesh into a valid high-order mesh. We present meshing results in Section 4. and conclude in Section 5.

2. PRELIMINARIES

2.1. Bézier curves

We express Bézier curves in terms of Bernstein polynomials. A nth order Bernstein polynomial is defined explicitly by

$$B^n_i(t) = \binom{n}{i} t^i (1-t)^{n-i}, \quad i = 0, \ldots, n, \quad t \in [0, 1],$$

where the binomial coefficients are given by

$$\binom{n}{i} = \left\{ \begin{array}{ll} \frac{n!}{i!(n-i)!} & \text{if } 0 \leq i \leq n \\ 0 & \text{else} \end{array} \right.$$

One of the important properties of the Bernstein polynomials is that they satisfy the following recurrence:

$$B^n_i(t) = (1-t)B^n_{i-1}(t) + tB^n_{i-1}(t),$$

with

$$B^n_0(t) \equiv 1, \quad B^n_j(t) \equiv 0 \quad for \quad j = 0, \ldots, n.$$

Then the Bézier curve of degree n in terms of Bernstein polynomials can be defined recursively as a point-to-point linear combination (linear interpolation) of a pair of corresponding points in two Bézier curves of degree $n-1$. Given a set of points $P_0, P_1, \ldots, P_n \in E^2$, where E^2 is two-dimensional Euclidean space, and $t \in [0, 1]$, set

$$b^n_i(t) = (1-t)b^n_{i-1}(t) + tb^n_{i+1}(t), \quad i = 0, \ldots, n-1.$$

Peraire [13] proposed a node relocation strategy for constructing well-shaped curved meshes. They use a nonlinear elasticity analogy, and by solving for the equilibrium configuration, vertices located in the interior are relocated as a result of a prescribed boundary displacement.
2.2. Bézier control polygon.

Fig. 3a gives an example of the cubic Bézier curve with its control net formed by ten control points.

and \(\mathbf{b}^0(t) = P_i \). Then \(\mathbf{b}^n(t) \) is the point with parameter value \(t \) on the Bézier curve \(\mathbf{b}^n \). The set of points \(P_0, P_1, \ldots, P_n \) are called control points, and the polygon \(P \) formed by points \(P_0, P_1, \ldots, P_n \) is called control polygon of the curve \(\mathbf{b}^n \).

An explicit form of a \(n \)-th order Bézier curve can be defined as

\[
\mathbf{b}^n(t) = \sum_{i=0}^{n} \mathbf{B}^n_i(t)P_i,
\]

The barycentric form of Bézier curves demonstrates its symmetry property nicely. Let \(u \) and \(v \) be the barycentric coordinates, \(u \in [0,1] \) and \(v \in [0,1] \), then

\[
\mathbf{b}^n(u,v) = \sum_{i+j=n} \mathbf{B}^n_{ij}(u,v)P_{ij},
\]

where \(\mathbf{B}^n_{ij}(u,v) = \frac{n!}{i!j!(n-i-j)!}u^i v^j \), \(P_{ij} \in E^2 \) are the control points, and \(i + j = n \).

Specifically, the cubic Bézier curve can be written in terms of the barycentric coordinates,

\[
b^3(u,v) = \sum_{i+j=3} \mathbf{B}^3_{ij}(u,v)P_{ij} = u^3P_{03} + 3u^2vP_{12} + 3uv^2P_{21} + v^3P_{30},
\]

Fig. 3a gives an example of the cubic Bézier curve with its control polygon.

2.2. Bézier triangles

Univariate Bernstein polynomials are the terms of the binomial expansion of \(t + (1-t)^n \). In the bivariate case, a \(n \)-th order Bernstein polynomial is defined by

\[
\mathbf{B}^n_t(\mathbf{u}) = \binom{n}{t} u^t v^{n-t},
\]

where \(t = \{i, j, k\}, \quad \mathbf{u} = \{u, v, w\}, \quad u \in [0,1], \; v \in [0,1] \) and \(w \in [0,1] \) are the barycentric coordinates and \(u + v + w = 1 \). It follows the standard convention for the trinomial coefficients \(\binom{n}{t} = \frac{n!}{t!n-t!} \).

This leads to a simple definition of a Bézier triangle of degree \(n \)

\[
\mathbf{Q}^n(u,v,w) = \sum_{i+j+k=n} \mathbf{B}^n_{ijk}(u,v,w)P_{ijk},
\]

where \(P_{ijk} \) is a control point. Specifically, the Bézier triangle of degree three can be written as

\[
\mathbf{Q}^3(u,v,w) = \sum_{i+j+k=3} \mathbf{B}^3_{ijk}(u,v,w)P_{ijk}
\]

\[
= P_{000}u^3 + P_{030}v^3 + P_{003}w^3 + 3P_{201}u^2w + 3P_{120}uv^2 + 3P_{102}uw^2 + 3P_{021}v^2w + 3P_{012}vw^2 + 6P_{111}uvw.
\]

Fig. 3b gives an example of the cubic triangular patch with its control net formed by its ten control points.

The Bézier shapes possess three important properties [7] which are useful to this work: (1) the convex hull property: a Bézier curve, surface or volume is completely contained in the convex hull formed by its control points; (2) all derivatives and products of Bézier functions are Bézier functions; (3) the convex hull can be refined by Bézier degree elevation algorithm or Bézier subdivision algorithm.

2.3. The Jacobian

We explore the concept of a derivative of a coordinate transformation, which is known as the Jacobian of the transformation.

Let’s start at the definition of a finite element. A typical finite element \(e \), \(e \in E^n \), is defined by a closed subset of \(K, K \subset \mathbb{R}^n \) with a non empty interior, a set of real-valued functions \(N \) defined over the set \(K \), and a finite set of local nodes \(u_i, 1 \leq i \leq N \). Then the mapping from the set of local coordinates \(\tilde{x}, \tilde{y} \) to a corresponding set of global coordinates \(x, y \) is:

\[
\tilde{u} = \sum_a N_a \tilde{u}_a = [N_1, N_2, ..., N_N] \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}, \quad a = 1, 2, ..., N,
\]

where \(\tilde{u} = (x, y) \), and \(\tilde{u}_a = u_a(\tilde{x}, \tilde{y}) \). The functions \(N_a \) are called shape functions (or basis functions).

By the chain rule of partial differentiation we have

\[
J = \begin{bmatrix}
\frac{\partial N_a}{\partial x} & \frac{\partial N_a}{\partial y} \\
\frac{\partial N_a}{\partial \tilde{x}} & \frac{\partial N_a}{\partial \tilde{y}}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial \tilde{u}_a}{\partial x} & \frac{\partial \tilde{u}_a}{\partial y} \\
\frac{\partial \tilde{u}_a}{\partial \tilde{x}} & \frac{\partial \tilde{u}_a}{\partial \tilde{y}}
\end{bmatrix} J,
\]

where \(J = \begin{bmatrix}
\frac{\partial x}{\partial \tilde{x}} & \frac{\partial x}{\partial \tilde{y}} \\
\frac{\partial y}{\partial \tilde{x}} & \frac{\partial y}{\partial \tilde{y}}
\end{bmatrix} \)
Figure 4: An illustration of the main steps performed by our algorithm. (a) The input two-dimensional image. It shows a curvilinear domain to be meshed. (b) A linear mesh satisfies the user specified quality and fidelity tolerance. The shaded region represents the fidelity tolerance. (c) Those edges that are classified on the linear mesh boundary are curved such that those edges form a smooth curve, and either the \(C_1 \) or \(C_2 \) smoothness requirement is satisfied. When there are curved edges on the boundary and linear edges in the interior, the mesh validity need to be verified. The red triangles are invalid elements detected by our verifying procedure. (d) To fix these invalid triangles, the interior edges are curved by solving for the equilibrium configuration of an elasticity problem, and a valid mesh is obtained.

\(J \) is known as the Jacobian matrix for the transformation. As \(x, y \) are explicitly given by the relation defining the curvilinear coordinates, the matrix \(J \) can be found explicitly in terms of the local coordinates.

3. MESH GENERATION FOR CURVILINEAR DOMAINS

In this section we will describe the proposed algorithm. A comprehensive description of the framework with an extensive evaluation on more data sets is available at [18, 19].

Given a bounded curved domain \(\Omega \subset \mathbb{R}^2 \), the algorithm outputs a curvilinear mesh of the interior of \(\Omega \) with global smooth boundary. Fig. 4 illustrates the main steps performed by our algorithm. The details are elaborated below.

3.1. Linear mesh construction

To generate the initial linear mesh, we adopt the image-to-mesh conversion algorithm [3], for four reasons: (1) it allows for a guaranteed angle bound (quality), (2) it allows for a guaranteed bound on the distance between the boundaries of the mesh and the boundaries of the object (fidelity), (3) it coarsens the mesh to a much lower number of elements with gradation in the interior, (4) it is formulated to work in both two and three dimensions.

3.2. Smooth boundary construction

A curve or surface can be described as having \(C^n \) continuity, \(n \) being the measure of smoothness. Consider the segments on either side of a point on a curve: (1) \(C_0 \): The curves touch at the join point; (2) \(C_1 \): First derivatives are continuous; (3) \(C_2 \): First and second derivatives are continuous.

We aim to find a smooth \(C^1 \) curve passing through all the mesh boundary points given in order. A Bézier path is \(C^1 \) smooth provided that two Bézier curves share a common tangent direction at the join point. The basic idea is to calculate control points around each endpoint so that they lie in a straight line with the endpoint. However, curved segments would not flow smoothly together when quadratic Bézier form (three control points) is used. Instead, we need to go one order higher to a cubic Bézier (four control points) so we can build \(S \) shaped segments. We find these control points by translating the segments formed by the lines between the previous endpoint and the next endpoint such that these segments become the tangents of the curves at the endpoints. We scale these segments to control the curvature. An example is illustrated in Fig. 5.

A smooth \(C^2 \) curve is a piecewise cubic curve that is composed of pieces of different cubic curves glued together, and it is so smooth that it has a second derivative everywhere and the derivative is continuous. Fig. 6a gives an example of a cu-
3.3. Element validity

A curvilinear mesh is valid provided that the intersection of the interiors of two different elements is the null set and any two mesh edges or faces do not intersect each other (except the common vertices or edges). To verify a curved element, one way is detecting the intersection at the element level by evaluating the sign of the Jacobian throughout the element. When the Bézier form is used to map a reference element, it is possible to calculate a precise lower bound of the Jacobian. Indeed, the Jacobian is a Bézier function with order \(q = \text{dimension} \times (\text{degree} - 1) \) [8], and its lower bound is easy to be obtained by its convex hull property. In the case that a positive lower bound is obtained, it guarantees that the element is valid; on the contrary, when a non-positive bound occurs, the element may or may not be invalid. In this case we need to obtain a tighter bound. This evaluation can be either used to check the validity or to guide the correction of invalid elements.

The Jacobian matrix of a Bézier triangle can be written as

\[
J = \begin{bmatrix}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\
\frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w}
\end{bmatrix}
\]

with variable change \((u = 1 - \tilde{x} - \tilde{y}, v = \tilde{x}, w = \tilde{y})\) [14],

\[
\begin{bmatrix}
\frac{\partial x}{\partial u} \\
\frac{\partial y}{\partial u} \\
\frac{\partial z}{\partial u}
\end{bmatrix} = \begin{bmatrix}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{bmatrix},
\]

therefore,

\[
J = \begin{bmatrix}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\
\frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial T}{\partial u} - \frac{\partial T}{\partial v} & \frac{\partial T}{\partial u} - \frac{\partial T}{\partial w} \\
\frac{\partial T}{\partial v} - \frac{\partial T}{\partial u} & \frac{\partial T}{\partial v} - \frac{\partial T}{\partial w}
\end{bmatrix}.
\]

Finally,

\[
\det(J) = \left(\frac{\partial T}{\partial v} - \frac{\partial T}{\partial w}\right) \times \left(\frac{\partial T}{\partial u} - \frac{\partial T}{\partial w}\right) \cdot \vec{n},
\]

where \(\vec{n}\) is the vector \((0, 0, 1)\). Because the derivative of a \(qth\) order Bézier function is a \((q-1)th\) order Bézier function and the product of two Bézier functions is also a Bézier function, the resulting Jacobian is a Bézier polynomial function with order \(2(q-1)\). In our case, the Jacobian is a fourth order Bézier polynomial with fifteen control points. Specifically,

\[
T^4(u, v, w) = \sum_{i+j+k=4} B^4_{ijk}(u, v, w) P_{ijk},
\]

where \(B^4_{ijk}(u, v, w) = \frac{\partial^4 T}{\partial u^i \partial v^j \partial w^k} u^i v^j w^k, u \in [0, 1], v \in [0, 1]\) and \(w \in [0, 1]\) are the barycentric coordinates and \(u + v + w = 1\). \(P_{ijk}\) are the fifteen control values, and are listed in Table 1.

Figure 6: An illustration of the construction of the cubic spline curve. (a) An example of a cubic spline curve, formed by two Bézier curves with control points \(P_0, P_1, P_2, S\) and \(Q_1, Q_2, Q_3\). (b) An \(A\)-frame is a structure in which \(P_2\) is the midpoint of \(AP_1\), \(Q_1\) is the midpoint of \(AQ_2\) and \(S\) is the midpoint of \(P_2Q_1\). (c) The cubic spline curve constructed with the help of the \(B\)-spline points shown in green. The black points are \(S\) points, which are the endpoints of the boundary edges of the linear mesh. The red points are the control points need to be calculated to form the cubic spline curve.
If the element is valid, it means the Jacobian is positive everywhere in this element. However, if the computed lower bound of the Jacobian is non-positive, it does not necessarily mean that the element is invalid. Since it is only a sufficient condition to calculate a lower bound of the Jacobian, sometimes, it is overly conservative. In the cases that the bound is not tight, the minimum value could be positive whereas the element is reported invalid. To further confirm the answer, we obtain the tighter bound by refining the convex hull using the Bézier subdivision algorithm. The algorithm relies on the convex hull property and the de Casteljau algorithm [7].

Indeed, if the negative minimum of the fifteen control values corresponds to one of the vertices of the element, then the element is invalid. If not, and the negative minimum of the fifteen control values corresponds to one of the three nodes on the edge, then it is necessary to refine this edge. We use the Bézier subdivision algorithm to split the edge into two sub-edges. If the negative minimum of the fifteen control values corresponds to one of the three nodes on the face, then it is necessary to refine this face. We use the Bézier subdivision algorithm to split the face into three sub-faces. In this way, the new control polygons are closer to the original polynomial, and the bound becomes much tighter. Other algorithms such as degree elevation could also be used, but the Bézier subdivision algorithm is selected here because the convergence of this repeated subdivision process is very fast [4, 5].

3.4. Mesh untangling

It is usually not enough to curve only the mesh boundary because some control points may be located such that element distortions occur in the interior of the mesh. In such case, interior mesh edges should also be curved to eliminate the invalidity or improve the curved element quality.

We move the control points of the interior mesh edges using a finite element method [20]. The geometry of the domain to be meshed is represented as an elastic solid. For each linear mesh edge, the positions of the two points which are located in the one third and two thirds ratio of each edge are computed. These positions are the original positions of the control points of the interior edges before deformation. These points form the control nets of the linear mesh elements. The control nets sticking together as a whole is the undeformed geometry (shown in Fig. 7b). The external loadings are the control points (red points in Fig. 7c) of the smooth curved boundary edges. The control nets are deformed such that the control points of the boundary edges of the linear mesh move to the corresponding control points of the curved boundary edge. By solving for the equilibrium configuration of an elasticity problem, the final configuration is determined and the new positions of the control points of the interior mesh edges after deformation are obtained. Fig. 7 illustrates these steps.

4. MESH EXAMPLES

We apply our algorithm to two examples in the following. For these examples, the input data is a two-dimensional image. The procedure described in Section 3.4. was implemented in MATLAB. All the other steps were implemented in C++ for efficiency.

In both of the brain atlas [17] and abdominal atlas [16], the
Table 2: Number of invalid elements and corrected elements for the examples below

<table>
<thead>
<tr>
<th>Image</th>
<th>Total</th>
<th>Invalid</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPL brain atlas</td>
<td>3034</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>SPL abdominal atlas</td>
<td>2025</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 8: Results of the first two steps of our algorithm. (a) Linear mesh of a slice of the brain atlas within two pixels fidelity tolerance. (b) Smooth C^2 boundary of a slice of the brain atlas within two pixels fidelity tolerance.

Figure 9: Results of the first two steps of our algorithm. (a) Linear mesh of a slice of the abdominal atlas within two pixels fidelity tolerance. (b) Smooth C^1 boundary of a slice of the abdominal atlas within two pixels fidelity tolerance.

Figure 10: Valid high-order meshes for the brain atlas and abdominal atlas.

5. CONCLUSION

We presented a new approach for automatically constructing a guaranteed quality curvilinear mesh to represent geometry with smooth boundaries. The algorithm we presented is sequential. Our future work includes the development of the corresponding parallel algorithm and the extension to the three-dimensional high-order mesh generation.

6. ACKNOWLEDGMENTS

This work was supported (in part) by the Modeling and Simulation Graduate Research Fellowship Program at the Old Dominion University.

REFERENCES

Figure 11: Zoomed-in views of high order valid elements.

