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Abstract: Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and
minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet,
or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas,
oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes
upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects,
as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However,
scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding
the odds, a few companies have already overcome market constraints, and are successfully selling
extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific
evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded
on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf
life extension have indeed constrained commercial viability. There are, however, scattered pieces of
evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides—hardly
fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal
tract of humans/animals for that matter. However, consistent applications exist only in the dairy
industry and aquaculture. Despite the underlying potential in formulation of functional food/feed,
extensive research and development efforts are still required before microalgae at large become a
commercial reality in food and feed formulation.
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1. Introduction

Microalgae are ancestral living organisms that constitute the basis of aquatic food chains. They are
a phylogenetically diverse group, encompassing a number of different phyla and classes of organisms,
in some cases, cyanobacteria are also included [1,2]. Microalgae grow well not only in freshwater,
seawater, and hypersaline environments, but also in moist soils and rocks [3].

Microalgae have to date found a number of industrial applications—examples of success include
formulation of food [4], feed [5], cosmetics [6], health products [7], and fertilizers [8], as well as tools
for wastewater treatment [8,9] and biofuel production [5]. However, most technological research
findings have failed to reach commercial level due to constraints encompassing, namely: (i) small
market size; (ii) production at uncompetitive cost, compared to alternative products obtained either via
chemical synthesis, or directly as a result of metabolism by other microorganisms (e.g., fungi, bacteria),
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or even as extracts from fossil raw materials; and (iii) tighter regulatory constraints in terms of quality
specifications, safety assurance, and minimization of environmental impact [10,11].

Microalgae may be regarded as a promising food or feed ingredient, owing to their nutritional
features [12]—a trait highly dependent upon microalga own composition, and amount thereof in
the diet(s). Furthermore, the said nutritional compounds depend on the species used and growth
conditions provided, namely in terms of light, temperature, and nutrient profile.

A wide spectrum of biologically active compounds have been found in microalgal biomass—in
the form of protein, polyunsaturated fatty acids (PUFAs), pigments, vitamins, and minerals, or as
extracellular compounds, such as oligosaccharides [13–15]. The associated efficiency of (bio) synthesis
is greater than that observed in terrestrial crop plants.

A number of studies have claimed benefits of such microalgal compounds upon human
health—bearing anticancer, anti-inflammatory, antioxidant, antimicrobial, and anti-obesity capacities,
further to hypocholesterolemic character. Hence, they may serve as nutraceuticals [15], and their
market value in food is expected to rise on the short run [16].

Microalgae have also been increasingly tested either as nutraceutical by the feed
industry—especially for aquaculture, to improve immune response of marine animals. Unfortunately,
commercial use has faced hardships as per the high production costs pertaining to concentration and
storage [17]. Additionally, industrial use of microalgae as prebiotics in feed formulation has faced
several challenges and novel or improved processing techniques are still required to lower production
costs [18].

The main goal of this short review is to highlight recent research studies and patents, encompassing
(actual and proposed) industrial applications of microalgae/cyanobacteria — specifically in the
functional food and feed areas, which bear on their own a major potential for improvement of human
and/or animal health. The gap/bridge between research development and actual commercialization of
such high-value products from microalgae is also discussed to some extent.

2. Microalgae as Functional Food

Food is originally intended to respond to hunger, and thus provide nutrients needed for human
survival. According to United Nation figures, the global population is expected to grow by almost 50%
since 2000, to 9.5 billion in 2050 [19]. Not only will the required amount of food increase, but also the
type of foods sought and their relative contribution to diet(s). Worldwide demand for animal-derived
protein will likely double by 2050 [20], thus raising concerns regarding (sustained) security and
safety. Meanwhile, negative environmental impacts have been occurring, e.g., generation of larger
and larger emissions of greenhouse-effect gases, besides the excessive amounts of freshwater and land
occupation required.

Large-scale cultivation of microalgae started in the 1960s in Japan, where Chlorella sp. were used
as a food additive. In the 1970s and 1980s, industrial production of microalgae expanded to USA,
China, Taiwan, Australia, India, Israel, and Germany—with an emphasis on Spirulina sp., and Chlorella
sp. in more recent years. The current combined production adds up to ca. 5000 and 2500 tons of dry
biomass, respectively, and has contributed to address the so-called “protein gap” [21].

As a source of proteins, microalgae other than Chlorella vulgaris or Arthrospira plantesis (former
Spirulina) as is the case of Dunaliella salina, Haematococcus pluvialis, and Phaeodactylum tricornutum,
have been employed by the food industry. Unfortunately, utilization of microalgae as a dietary protein
source is still poorly developed in Europe because it requires prior development of novel value
chains—with special attention paid to such issues as production costs (algal protein versus e.g., soy or
lupin), food safety (especially in view of strict European legislation on the subject), scalability of
processes, and consumer acceptance at large [22,23].

Meanwhile, demand for functional foods has boomed in recent decades, due to consumers’ growing
awareness of food impact upon human’s health. Functional foods (or nutraceutical components in food)
trigger, by definition, beneficial effects upon physiological functions, improve the well-being and the
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health of consumers, and reduce the risk of illness [13]. Therefore, regular inclusion of functional food
in the diet promotes quality of life, and will eventually reduce costs of health care for the population
at large—characterized by an ever growing life expectancy [24]. The functional value of microalgae
utilized as food arises from their high contents of proteins, polyunsaturated fatty acids, polysaccharides,
pigments, vitamins, minerals, phenolic compounds, volatile compounds, and sterols [21].

Microalgae are relevant sources of long-chain polyunsaturated fatty acids and they have
accordingly been employed in the food industry as supplements. Microalgae are indeed able to
synthesize members of the omega 6 family (ω6)—which include linoleic acid, γ-linolenic acid (GLA),
and arachidonic acid (ARA), as well as of the omega 3 family (ω3)—which include linolenic acid,
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). DHA and EPA are associated with
reduction of complications in cardiovascular effusions, arthritis, and hypertension; they also exhibit
relevant hypolipidemic activity, for reducing triglycerides and increasing high-density lipoprotein
cholesterol [25].

DHA is also relevant for development and functioning of the nervous system. ARA and EPA
are responsible for aggregative and vasoconstricting action of platelets, and anti-aggregative and
vasodilator effects in the endothelium—besides chemotactic action in neutrophils [25,26]. The pigments
of microalgae belong, in general, to one of three classes: i) chlorophylls; ii) carotenes and xanthophylls;
and iii) phycobiliproteins, such as c-phycocyanin and allophycocyanin. They are responsible for several
health benefits, namely anti-inflammatory, antihypertensive, anticancer, antioxidant, antidepressing,
and antiaging features [27–29] (see Table 1); however, their primary application is as food colorants.
Human beings are incapable of synthesizing these pigments, so they rely solely upon dietary intake
thereof. β-Carotene in Arthrospira and astaxanthin in Haematococcus pluvialis may account for more
than 80% (relative to biomass) of the total carotenoids in cells [30]. Several studies focused on cell
accumulation and product yield optimization by strains of these two green algal species—further to
attempts to improve their extractability. Furthermore, astaxanthin and β-carotene have experienced a
strong and ever growing market demand. According to forecasts by Zion Market Research Global
in 2016 [31], the market value of carotenoids is anticipated to evolve, between 2016 and 2021, at a
(compound) annual growth rate of 3.5%, thus reaching an expected revenue of USD 1.52 billion by
2021. Due to their intrinsically high levels of endocellular accumulation of carotenoids along with the
projected market demand, Dunaliella salina and Haematococcus pluvialis are generally considered as
promising microalgal sources for industrial bioprocessing.
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Table 1. Potential industrial applications of microalgae in functional food, sorted by type of food, commercial form of biomass, and bioactive compound.

Microalgae Food Commercial Form
of Biomass

Bioactive Compound Health Benefit Reference
Genus/Species Product Sensory Effect

Chlorella sp.
Sprirulina sp. Milk Improved flavor and mouthfeel Powder or liquid Protein,

PUFA-ω3, EPA *, DHA ** Reduced risk of anemia [32]

Arthrospira platensis Yoghurt Improved texture and viscosity Extract Phycocyanin Anticancer; antioxidant and anti-inflammatory [33]

Arthrospira platensis Chlorella sp. Cheese Improved texture Powder Protein, carbohydrates,
PUFA-ω3

Anticancer; reduced risk of gastric ulcers, constipation, anemia,
hypertension, diabetes, infant malnutrition, neurosis [34,35]

Spirulina sp. Alcohol-free beverage Improved color and sour taste Powder or liquid Protein, chlorophylls, phycocyanin Improved immune and lymphatic systems, protection against
cancers and ulcers [36,37]

Arthrospira maxima
Chlorella protothecoides
Haematococcus pluvialis

Desserts Improved color and stability Powder or flour Protein, vitamins, minerals Antioxidant activity, prevention of constipation [38,39]

Arthrospira platensis Chlorella vulgaris
Hematococcus pluvialis Phaeodactylum

tricornutum
Tetraselmis suecica

Cookies and biscuits Improved color, stability and texture Powder or flour Protein,
PUFA-ω3, EPA, DHA, astaxanthin Antioxidant activity [12,40–44]

Arthospira platensis Chlorella sp. Bread and cookies Improved flavor, texture and appearance Powder or flour Protein, vitamins, minerals Reduced fat and cholesterol levels, induced satiety [45–47]

Dunaliella sp.
Spirulina sp. Miso Slightly seaweed taste Powder Protein, vitamins, minerals Antioxidant activity [48]

Chlorella sp.
Sprirulina sp. Koji No flavor or smell Powder n.a. ***** Improved immunity and blood pressure [49]

Dunaliella salina Pasta Improved color and texture Powder Protein, carotenoids Antioxidant activity [50]

Diacronena volkianum Isochrysis galbana Pasta Improved color, flavor, texture and
firmness Powder

Protein,
PUFA-ω3, EPA, DHA,

carotenoids

Protection against gastric ulcers, prevention of constipation,
reduced anemia and diabetes, improved blood pressure [51,52]

Arthrospira maxima
Diacronena volkianum

Haematococcus pluvialis
Vegetarian food gels Improved color and firmness Gels PUFA-ω3, EPA, DHA, GLA ***,

carotenoids Antioxidant activity [53]

Chlorella vulgaris
Haematococus pluvialis

Emulsions or
vegetarian

mayonnaise
Improved color and stability Oil or emulsions Protein,

carotenoids Antioxidant activity [4,54]

Chlorella vulgaris Soybean oil Improved color and stability Oil Carotenoids Antioxidant activity [55]

Arthrospira platensis n.a. n.a. Oil Carotenoids Antimicrobial and antiviral activities [56]

Dunaliella salina Culinary condiment
with sea salt Improved flavor Powder Carotenoids Antioxidant activity [57]

Chlorella sp.
Schizochytrium sp. Thraustochytrium sp. Food supplement n.a. Powder, flour, tablet

or liquid
Proteins,

PUFA-ω3 Prevention of constipation, induction of satiety [58,59]

Dunaliella sp. Phaeodactylum tricornutum
Nannochloris sp. Nannochloropsis sp. Food supplement n.a. Capsules Protein n.a. [60]

Haematococcus pluvialis Food supplement n.a. Capsules Astaxanthin
Improved eye and brain health, UV protection and skin health,

anti-coagulatory and anti-inflammatory effects in diabetes,
immune system modulation, cardiovascular health

[61–63]

Parietochoris incisa Food supplement n.a. Powder or tablet ARA **** n.a. [64]

Tetraselmis suecica Food supplement n.a. Extract n.a. Prevention of obesity and diabetes [65]

* EPA—Eicosapentaenoic acid, ** DHA—Docosahexaenoic acid, *** GLA—Gamma-linolenic acid, **** ARA—Arachidonic acid, ***** n.a.—Information not available.
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β-Carotene is an intensely-colored orange pigment, abundant in green leafy plants (e.g.,
parsley, spinach, broccoli), certain fruits (e.g., mandarin, peach), and several vegetables (e.g., carrot,
pumpkin) [66]. It is a precursor (or inactive form) of vitamin A, which is synthesized from carotenoids
via the catalytic action of β-carotene 15,15′-monooxygenase 1. Vitamin A is a widely-recognized
factor toward child health and survival. Its deficiency causes disturbances in vision, and leads to
lung, trachea, and oral cavity pathologies. Other biological roles performed by β-carotene include
absorption of light energy, transport of oxygen [67], enhancement of in vitro antibody production, and
antitumor, antioxidant, and anti-inflammatory activities [68]. Among all natural sources of carotenoids,
marine microorganisms have emerged as the easiest to handle. Therefore, the European Commission
and other international bodies have been contracting research in blue biotechnology—concerned with
exploration and exploitation of the biodiversity of marine organisms, aiming at development of novel
products [69]. A significant number of research groups are in fact working, in a coordinated manner,
to strengthen knowledge about carotenoids, and find novel natural sources; this the case of such
networks as International Carotenoid Society [70], Eurocaroten [71], IBERCAROT [72], and CaRed [73].

Seafood (such as salmon, shrimps, crabs, lobsters, crayfish, and trout) is the major source of
astaxanthin in the human diet, but their amount is usually insufficient. The U.S. Food and Drug
Administration (FDA) approved astaxanthin as nutritional supplement in 1999, owing to beneficial
effects stemming from its potent anti-oxidant features [74]. Among the various health benefits claimed,
viz. anti-diabetic, anti-oxidative, anti-inflammatory, anti-cancer, anti-hypertensive, anti-aging, and
immunomodulatory effects (see Table 1), positive impacts have been reported upon the central
nervous system, eyes, and brain [31,66]. The astaxanthin market was first dominated (>95%) by
synthetic astaxanthin, obtained from petrochemical derivatives. Companies such as DSM in the
Netherlands, BASF in Switzerland, and Zhejiang NHU in China then accounted for most supply [67,68].
However, natural astaxanthin derived from Haematococcus pluvialis proved superior to its synthetic
counterpart [75]. In fact, the intracellular antioxidant capacity of naturally occurring, esterified
astaxanthin from H. pluvialis exhibits a potency that is 90-fold that of synthetic astaxanthin, besides
its being devoid of toxicity. Synthetic astaxanthin appears in free form, while naturally occurring
astaxanthin derived from H. pluvialis is found either conjugated to proteins (such as in salmon muscle
or lobster exoskeleton), or esterified with one or two fatty acids—which stabilize the molecule against
oxidation, while facilitating absorption and expression of bioactivity [69,70]. A rising awareness among
customers, coupled with increasingly strict regulations pertaining to use of synthetic derivatives
has been instrumental to expand market demand for natural astaxanthin. In the case of microalgae,
H. pluvialis [76] and Chlorella zofingiensis [77], together with Chlorococcum sp. account for the major
natural sources, while only the former has received FDA approval for use as human nutritional
supplement, with the others being primarily used as aquaculture feed. The antioxidant properties
of astaxanthin are believed to play a key role upon several desirable features, such as protection
against ultraviolet-light photooxidation, inflammation, cancer, Helicobacter pylori-mediated ulcers,
and age-related diseases and aging at large, or else promotion of immune response and liver function,
as well as heart, eye, joint, and prostate health [75]. Phycocyanin is another pigment, holding a unique
blue color, readily available for food formulation purposes and economically attractive [78]. Although
comparative cost evaluation and life cycle assessment of pigments produced auto- and heterotrophically
by microalgae have been made available, the lack of trustworthy information specifically on food uses
has been outlined [79]. Microalgal cells are also rich in vitamin A, C, E, and K, thiamine, pyridoxin,
riboflavin, nicotinic acid, biotin, and tocopherol. Applications are consolidated at the immune system
level, encompassing for instance antioxidant activity, cell formation, and blood coagulation [78,80].

The list of health benefits derived from consumption of functional foods containing microalgal
ingredients has been steadily increasing. The apparently contradictory nature of some of the results
conveyed by the literature may be a consequence of differences in geographical origin, harvesting period,
(aqueous) medium characteristics, genetic variability, post-harvest conditions, and method of extraction
(including type of solvent used) [81]. Interaction of microalgae with intrinsic or extrinsic properties of
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foods where they appear—namely pH, fat, protein, water content, and oxygen concentration, and upon
preservation thereof, still needs a deeper mechanistic elucidation. Research and development efforts
have already solved a number of technical extraction issues, when attempting to adapt microalgal
biomass to market specifications of final foods. Alternative forms of such additives include liquid
for beverages, powder for flour-based products (e.g., bread, biscuits, pasta), oil for fatty foods (e.g.,
mayonnaise), and tablets and capsules for food supplements—as tabulated in Table 1.

Sensory aspects play a key role in determining consumer acceptance of foods. Hence, one of
the main problems regarding application of microalgal biomass in food products is stability, namely
when exposed to more or less severe processing conditions [13]. For instance, powders traditionally
obtained from microalgae cultured photosynthetically in outdoor ponds or in indoor photo-bioreactors
exhibit too dark a green color (arising from chlorophyll), along with a strong unpleasant taste that may
compromise their use in food formulation. Efforts have accordingly been directed toward bleaching
of microalgal whole biomass, meant to reduce such an unappealing trait [82]. As shown in Table 1,
sensory aspects of functional foods containing microalgae have chiefly pursued higher stability of
color, and/or improvement of flavor and texture. This strategy, focused on the additive rather than
the basic food matrix itself, circumvents the difficulty in changing food eating habits—especially
knowing that Europeans, with long lasting cultural motivations, strongly resist food innovation and
diversification [13].

3. Microalgae as Functional Feed

Increasing demand for meat by a rising population will become particularly dramatic in the
coming decades, because dedicated soybean food crops—the conventional feedstuff for animal feeding,
will occupy an increasing fraction of arable land [83]. A few studies have meanwhile unfolded
interesting results on use of microalgae as animal feed, in terms of quality and performance of final
product (as depicted in Table 2).

Feed enriched with small amounts of microalgal biomass contributes positively to animal
physiology, by improving their immune response, disease resistance, and gut function—besides
enhancing antiviral and antibacterial protection, as well as increasing reproductive performance,
feed conversion and weight gain [84,85]. In particular, use of Chlorella vulgaris to feed dairy cattle
actually alters the fatty acid profile of milk, by reducing the amount of saturated fatty acid residues
and concomitantly increasing the proportion of DHA [86]. Addition of microalgae to feed designed
for lambs and horses increased the fatty acid content of the resulting meat [87,88], while inclusion
of Arthrospira platensis in feed for pigs and poultry improved weight gain [89]—even though at
the expense of a lower rate of feed conversion [85]. Genera of microalgae other than Arthrospira,
Chlorella, and Dunaliella have been employed by the feed industry. Diets containing microalgae have
also been tested in animals besides fish and chicken, with notable degrees of success (see Table 2).
The improved quality of the meat obtained, in terms of flavor, color or texture, has favorably contributed
to consumer acceptance.

Inclusion of microalgae in aquaculture feeding represents a promising avenue for expansion of the
animal production sector, as a sustainable, environment-friendly alternative to classical land agriculture
or cattle raising. To date, astaxanthin is mainly utilized in the aquaculture industry as feed additive,
to enhance the color of farmed fish and shrimp [90], along with production of good quality seafood
for consumption at large [79]. It has been reported that addition of astaxanthin improves growth rate
and survival of larvae in aquaculture, as well as reproductive performance and egg quality of aquatic
animals owing to its potent antioxidant activity. It has also proven effective toward enhancement of
resistance to, and immune response against infectious diseases in farmed fish [91]. From a commercial
point of view, application of microalgae as feed in aquaculture is limited by the high costs of production
upstream; concentration and storage [17] do indeed still hamper their economic feasibility.
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4. Microalgae as Probiotics

Emergence of microbiota resistant to conventional drugs and antibiotics has urged alternative
strategies to fight them. On the other hand, nano-encapsulated multiplex supplements are still
expensive and inconvenient to use. Therefore, simple, low-cost approaches to achieve health benefits
in a preventive manner have resorted to supplementation with probiotics [92]. The term probiotic
comes from the Greek words “pro” and “bios”, meaning “for life”—and has classically referred to living
microorganisms that naturally help improve health of the host organism at large, when administered
in appropriate quantities and as part of a balanced diet (FAO, WHO).

Table 2. Potential industrial applications of microalgae in functional feed, sorted by type of animal,
resulting food product, and bioactive compound.

Microalgae Feed Resulting Food Commercial Form
of Biomass

Bioactive
Compound Health Benefit Reference

Genus/Species Animal Product Sensory Effect

Schizochytrium sp. Cow Meat n.a *** Powder
PUFA-ω3,

EPA *,
DHA **

Improved cardiovascular,
brain and eye systems [93]

Chlorella vulgarisa
Spirulina sp. Piglet Meat n.a. Powder or spray Cu Increased nutritional

properties [94]

Arthrospira platensis
Isochrysis sp. Lamb Meat

Improved color,
(not so intense) odor

and flavor
Powder Protein,

PUFA-ω3
Prevention of

cardiovascular diseases [95–98]

Arthrospira platensis
Schizochytrium sp. Rabbit Meat n.a. Powder

PUFA-ω3,
γ-linolenic

acid

Anti-inflammatory activity,
increased

nutritional properties
[99,100]

Arthrospira platensis
Chlorella vulgaris

Staurosira sp.
Schizochytrium sp.

Chicken Meat
Improved color

(yellowness of flesh,
and redness of liver)

Powder or spray PUFA-ω3,
EPA, DHA

Antibiotic activity,
reduced risk of chronic

diseases, improved
well-being

[101–106]

Chlorella vulgaris Pekin
duck Meat Improved color

(yellowness of flesh) Fermented Protein Improved immunity [107]

Arthrospira platensis
Nannochloropsis gaditana Hen Egg Improved color

(yellow to orange) Powder or spray
PUFA-ω3,
EPA, DHA,
carotenoids

Prevention of
cardiovascular diseases,

anti-inflammatory,
antihypertensive, anticancer,
antioxidant, antidepressing

and antiaging activities

[108–110]

Porphyridium sp.
White

Leghorn
chicken

Egg Improved color
(yellow to orange) Freeze dried

PUFA-ω3,
EPA, DHA,
γ-linolenic

acid

Improved nutritional
properties [111]

Dunaliella sp. Shrimp Meat n.a. Freeze dried Carotenoids Antioxidant activity,
improved immunity [112]

Tetraselmis chuii Shrimp Meat n.a. Freeze dried Astaxanthin Antioxidant activity [113]

Nanofrustulum sp.
Tetraselmis sp.

Atlantic
salmon Meat n.a. Powder Protein,

lipids
Improved nutritional

properties [114]

Haematococcus pluvialis
Salmon

and
trout

Meat Improved color Powder Astaxanthin Antioxidant activity [115]

Arthorospira platensis Coral
trout Meat n.a. Pellet Protein,

lipids
Improved nutritional

properties and immunity [116]

Arthrospria maxima
Chlorella vulgaris

Haematococcus pluvialis

Koi
carp

goldfish

Food
supplement

Improved color (red
hue) Powder Carotenoids Antioxidant activity [117]

* EPA—Eicosapentaenoic acid, ** DHA—Docosahexaenoic acid, *** n.a.—Information not available.

Several studies have unfolded promising results of probiotics, when included in the diet, against
various enteric pathogens, due to the unique ability of the former to compete for medium nutrients and
adhesion sites, alienate pathogens by secreting antibacterial substances (e.g., bacteriocins, organic acids),
and produce antitoxins. When provided at viable numbers above a minimum threshold, probiotics are
also able to modulate the autoimmune system, regulate body allergic response, reduce blood pressure,
normalize cholesterol and glucose levels, alleviate constipation, and reduce proliferation of cancer
cells [118,119].

Probiotic lactic acid bacteria (LAB) were primarily isolated from infant feces, and accordingly
considered as an important part of their intestinal microbiota. It was first suggested that they were
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acquired through oral contamination with maternal LAB during transit through the labor channel.
However, recent molecular studies have shown that LAB colonization is not significantly related to the
delivery method (i.e., vaginal delivery versus cesarean section). Instead, breast milk was the major
source of maternal LAB to the infant gut. As a consequence, probiotics were pioneered as additives by
the dairy industry. An increased demand from vegetarian populations, complemented by awareness
by consumers of the contribution of milk cholesterol to atherosclerosis and milk protein to allergy have
expanded demand for non-dairy probiotic products, as is notably the case of fruits and vegetables.
Technological advances have supported changes in structural features of plant matrices, via controlled
modification of their components relevant for their eventual roles as food [118]. The resulting taste
profiles are indeed appealing to several age groups, and such products are further perceived as
healthy foods. Examples include fermented fruits and vegetables [120,121], fruit juices and other
beverages [122], and table olives [123–125].

The most common probiotics employed in the food industry are bacteria, and yeasts to a
lesser extent. They are chiefly derived from human sources and/or animals, and belong mainly to
genera Lactobacillus and Bifidobacterium, seconded by Streptococcus, Lactococcus, and Saccharomyces [92].
At present, no reliable scientific evidence pertaining to the use of microalgae as probiotics in food is
available in the literature.

Centrifugation has been successfully applied to prepare probiotic concentrates, despite its
limitations—as said process involves exposure of cells to high centrifugal and shear forces that damage
cell structure. Furthermore, processing of large culture volumes is time-consuming and requires
expensive equipment, namely specialized continuous centrifuges [126]. Research on post-harvest
preservation is still required though, in attempts to extend shelf life beyond 4–8 weeks.

Aquaculture is an important sector aimed at fulfilling nutritional food demand, especially when
depletion of natural stocks will lead to upper limits be imposed on sea captures. Meanwhile, disease
outbreaks have become a major problem in aquaculture, likely to cause huge economic losses to
aquaculture plants. Use of costly chemotherapeutic drugs for treatment holds negative impacts upon
the aquatic environment. Hence, a growing impetus exists to find alternatives for control of infectious
agents and treatment of diseases, which are safe, non-antibiotic based, and eco-friendly as this is
notably the case in the use of probiotics as a food component. The term probiotic in feed farms has
been associated to live or dead microorganisms, or components thereof that improve the hosts or
the environmental microbial balance when administered via the feed or to the rearing water [127].
An extensive set of research findings have been reported encompassing the effect of bacterial probiotics
upon fish health [128].

Several studies claim that the addition of living (probiotic) microalgae to feed will improve health
and survival of the marine animal at stake, yet scientific evidence for a probiotic benefit itself is
lacking in most of them—as the fate of microalgae in, and their effect upon the microbiota of the gut
of said animals has not been ascertained. Remember this is one of the requirements for labeling as a
probiotic. For instance, inclusion of Nannochloropsis oculata in the diet of seahorse (Hippocampus reidi), or
Chaetoceros sp., Pavlova sp., and Isochrysis sp. (as such, or combined with each other) in the diet of oyster
(Pinctada margaritifera) improved survival by reducing the viable count of bacterial pathogens [129,130].
Neyrinck et al. studied the potential hepatoprotective effect of Spirulina sp. in aged mice, and its relation
to modulation of the gut microbiota [131]. Oral administration of a Spirulina sp. was apparently able
to modulate the gut microbiota, and to activate the immune system therein—a mechanism eventually
leading to improvement of hepatic inflammation. This unfolds the possibility of using microalgae as a
new therapeutic tool to preserve a healthy gastrointestinal microbial community, and consequently
to enhance their beneficial effect upon immune function, by taking advantage of gut microbe-host
interactions [131]. Regunathan and Wesley proved that reduction of pathogenic bacteria in the gut of
Indian white shrimp (Fenneropenaeus indicus) can be controlled by dietary inclusion of (living cells of)
Tetraselmis suecica [132]. Nimrat, Boonthai, and Vuthiphandchai examined the effects of probiotic forms
(microencapsulated versus freeze-dried cells), probiotic nature (as bacteria, yeasts, or microalgae) and
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probiotic administration (or supplementation as either water additive or through probiotic-enriched
Artemia) upon growth, survival rate, and viable microbial numbers of Pacific white shrimp (Litopenaeus
vannamei) at various stages [133]. Their study suggested that incorporation of microalga Chaetoceros sp.,
in microencapsulated or freeze-dried forms, in water additives, or probiotic-enriched Artemia brings
about an effective probiotic outcome upon L. vannamei—as concluded from enhancement of survival
and growth rates, and concomitant increase in numbers of beneficial microbes in the gut of shrimp at
larval and post-larval stages, as well as in culture water. This hypothesis was worked out in another
three studies focused on the effect of those microalgae on shrimp (Artemia sp.) where the reduction
achieved in bacterial load was claimed to be of a probiotic nature [134–136]. The chance for success
may still be enhanced by application of mixed probiotics [137].

Marine hatcheries have easy access to such microalgae as Tetraselmis sp., Chlorella sp.,
and Dunaliella sp., and handling thereof is straightforward. Therefore, addition of said microalgae to
live feed could entail an effective vehicle of otherwise probiotic strains. However, this would require
addition of such probiotic strains during the enrichment process, as only very high numbers thereof
play a significant role upon the bacterial load in the gut of marine animals. Therefore, this approach is
difficult to implement in practice.

Despite the aforementioned pieces of evidence, reliable scientific information that living microalgae
do act as true probiotics in aquaculture farms, specifically in controlling pathogenic bacteria, remains
scarce at present. In fact, the changes in environmental microbiota and culture conditions make it
difficult to prove that live microalgae used as feed will actually control growth of pathogenic bacteria
in the gut of the animals fed. Therefore, more detailed investigation is necessary to clarify those points,
which may even lead to development of novel probiotic strategies to prevent diseases in aquaculture.
Remember that a microorganism can be called a probiotic only after successful completion of the
screening stages discussed above [138].

If the probiotic is to be eventually commercialized, analysis of economic feasibility is a must upon
successful completion of the in vivo trials. Reliable information of this kind, encompassing different
product formulations, packaging options, and dosing recommendations is still in need. In any case,
probiotic bacteria-based products are already available in the market. This is the case of a blend of
(probiotic) Bacillus subtilis, Bacillus licheniformis, and Bacillus pumilus, traded as Dans’ Feed with Probiotics
(Aquafauna Bio-Marine, Hawthorne CA, USA).

5. Microalgae as Prebiotics

Carbohydrates are the major products derived from photosynthesis and carbon fixation metabolism.
However, the chemical profile of, and the metabolic routes involving carbohydrates (mainly starch and
cellulose) may differ significantly from species to species of microalga [139–141]. In particular, cell wall
thickness and composition depend on microalgal species, growth conditions and stage of growth [142].

The cell wall polysaccharides of microalgal biomass can be partially hydrolyzed. This procedure is
widely employed in the food and feed industry to produce non-digestible oligosaccharides, which fulfill
important roles in human and animal health and nutrition. In fact, microalgal oligosaccharides cannot
be fermented at all (or, at least, not completely) by the regular intestinal microbiota of humans [140,143]
or animals [144,145]. However, they selectively stimulate growth and activity of specific beneficial
bacteria (e.g., Lactobacilli and Bifidobacteria) if present in the colon, thus contributing to improve the
host’s health—in which case, they will act as prebiotics [119,140,143,146]. More specifically, a prebiotic
may be seen as an indigestible food compound that effects specific changes in composition and/or
activity of gastrointestinal microbiota, thus conferring benefits upon the health of the host as a
whole [140].

A few studies suggest that prebiotics exhibit such desirable features as alleviation of
irritable bowel syndrome [119], action as antinociceptive agent and peripheral analgesic, and
contribution to neovascularization and hepatoprotection [147], besides acting as virucidal,
antibacterial, antifungal, anti-inflammatory, immunomodulatory, anticoagulant/antithrombotic,
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antiproliferative/tumor suppressor, antilipidemic, and hypoglycaemic agent, as well as apoptotic and
hypotensive agent [119]. Despite the benefits observed in animal studies, reliable data pertaining to
humans are quite scarce. This realization calls for more extensive research on the mechanism of action
of prebiotics toward human health and clinical nutrition [146,148]. This is indeed a challenging task,
due to the complexity of human gut microbiome, the composition of which can be influenced by a
myriad of parameters, ranging from host genetics and state [149] to environment and lifestyle [150].

It has been known for some time that pathogenic and beneficial bacteria coexist in the
gastrointestinal tract. Current research trends have dealt chiefly with changes in their balance,
namely caused by presence of prebiotics, leading to reduction of (potentially) dangerous bacteria while
favoring development of other beneficial ones and accordingly strengthening resistance to infections, or
reducing risk of colon cancer and development of obesity. Furthermore, prebiotics have been shown to
increase calcium and magnesium absorption, influence glucose levels, and improve plasma lipids [7].

The food industry has always sought more efficient, more sustainable, simpler, and less expensive
processes toward application on a large scale. However, production of prebiotic oligosaccharides can
be constrained by their structural complexity, so the associated costs may compromise competitiveness
of industrial production. On the other hand, prebiotic oligosaccharides can be found in conventional
agrofood sources or, alternatively, be produced via enzymatic synthesis from disaccharides or hydrolysis
of polysaccharides. Seaweeds and marine microalgae are another relevant (although indirect) source of
oligosaccharides, in the form of polysaccharides that will eventually degenerate onto oligosaccharides.
They are not broken down by digestive enzymes in the upper part of gastrointestinal tract, while bearing
unique biochemical and fermenting features [119]. Conversion of polysaccharides to oligosaccharides
may resort to such methods as ultrasound, microwave, free radicals generated by Cu2+, Fe2+, or H2O2,
hydrolysis by phosphoric acid, and thermal-acidic hydrolysis with dilute HCl [148]. Physical techniques
(e.g., ultrasound and microwave) usually exhibit lower, or no side effects at all. In addition, they are not
toxic, and quite effective from the points of view of energy and time consumption [140]. Compounds
from microalgal sources that possess prebiotic properties include inulin, galacto-oligosaccharides,
xylo-oligosaccharides, agarose-derived oligosaccharides, neoagaro-oligosaccharides, alginate-derived
oligosaccharides, arabinoxylans, galactans, and β-glucans [151].

Previous studies have shown that Arthrospira platensis has a positive effect upon viability of such
bacteria as Lactobacillus casei, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacteria when
part of the intestinal flora [18,143,152–154], while such pathogenic bacteria as Proteus vulgaris, Bacillus
subtilis and Bacillus pumulis have been suppressed during in vitro studies. When added to yoghurt,
Spirulina sp. promoted growth of L. acidophilus and Bifidobacteria, while Isochrysis galbana, characterized
by high concentrations of both soluble and insoluble fibers, appears promising as a prebiotic. This was
concluded from the increase in the number of lactic acid bacteria in the feces of rats, when previously
treated with the said microalgae [18,38,52,143].

Specific biological functions played by microalgal species have been related to their sugar
complexes, as is the case of Chlorella pyrenoidosa and Chlorella ellipsoidea. Glucose, and a variety of
mannose, galactose, ramnose, N-acetylglucosamine, N-acetylgalactosamine, and arabinose residues are
in fact present. Said complexes possess immuno-stimulatory, and even anti-proliferative effects against
Listeria monocytogenes and Candida albicans. Another carbohydrate derived from Chlorella sp. that holds
immune-stimulatory activity is β-1,3-glucan, namely as free radical scavenger. In addition, it reduces
lipid levels in the blood. Polysaccharides extracted from Porphyridium sp. and Nostoc flagelliforme have
also proven effective against Herpes simplex virus [7].

Use of microalgae as prebiotics by the food industry has, however, been restricted so far to
dairy products (see Table 4). This is expected since such products are the first vehicles of probiotic
(bacterial) strains, as explained above. As also outlined before, vegan consumers are looking for
non-dairy matrices, and technological advances have already permitted tailor-made modification of
food components in fermented fruits and vegetables. Oligosaccharides derived from plant material
have been claimed to hold a prebiotic potential [155–157] and some are already available in commercial
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form (e.g., Prebiotin®). Therefore, there is a window of opportunity for development of prebiotics
from microalgae, to be eventually applied to lactic acid-fermented foods other than yogurt or cheese.

In aquaculture, immunostimulants have been exploited toward strengthening of the immune
system of fish subjected to stress. Those compounds promote, in general, cell activity, and proliferation
of such leukocytes as monocyte-macrophages and neutrophils, as well as phagocytic activity and
secretion of immune mediators (e.g., cytokines). Paramylon (a linear β-1,3 polymer of glucose) is one
such immunostimulant used in aquaculture, as depicted in Table 3. These prebiotic compounds are
incorporated as supplements in the feed (but not together with live probiotics therein). Representative
examples encompass mussels [158], Atlantic salmon [159], matrinxã [160], and red drum [161].
A parallel application entails addition of β-glucan derived from Euglena sp. to feed for poultry,
cows, horses, dogs, cats, reptiles and birds, as well as valuable exotic animals kept at zoos or in
aquariums [162].

Table 3. Potential industrial applications of microalgae as prebiotics in feed, sorted by commercial
form of biomass and animal type.

Microalgae
Probiotic
Bacteria

Animal Health Benefit Reference
Genus/Species Commercial Form

of Biomass Bioactive Compound

Navicula sp. Freeze dried Oligosaccharides Lactobacillus sakei Pacific red snapper
(Lutjanus peru)

Improved immune
system and

antioxidant activity
[169]

Phaeodactylum
tricornutum

Tetraselmis chuii
Freeze dried Protein Bacillus

subtilis
Gilthead seabream

(Sparus aurata)

Improved immune
system and increased

intestinal
absorption ability

[144]

Arthrospira platensis Freeze dried C-phycocyanin Vibrio
alginolyticus

Shrimp (Litopenaeus
vannamei)

Improved
immune system
(>lysozyme) and
disease resistance

[170]

Dunaliella tertiolecta Freeze dried β-carotene Bacillus sp. Shrimp (Artemia
franciscana)

Improved immune
system and

disease resistance
[136]

Arthrospira platensis Powder

Phycobilins,
phycocyanin,

allophycocyanin,
xanthophylls and

carotenoid

Pseudomonas
fluorescens

Nile tilapia
(Oreochromis
niloticus L.)

Improved immune
system and

antioxidant activity
[171]

Euglena gracilis Powder Paramylon Streptococcus
iniae

Red drum (Sciaenops
ocellatus L.)

Immunostimulant
activity [161]

Arthrospira platensis Powder Oligosaccharides Bacillus
subtilis

Prawn (Penaeus
merguiensis)

Improved immune
system and

disease resistance
[172]

Euglena gracilis Powder β-glucan

Bacillus
licheniformis
or Bacillus

subtilis

Poultry, cows, horses,
dogs, cats, reptiles,

birds

Improved well-being
and immune system [162,173]
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Table 4. Potential industrial applications of microalgae as prebiotics in food, sorted by type of food.

Microalgae

Target Probiotic Bacteria

Food

Health Benefit Reference
Genus/Species Commercial Form

of Biomass
Bioactive

Compound Product Sensory Effect

Arthrospira
platensis Chlorella

vulgaris
Powder

Glucose,
rhamnose,

mannose, xylose
and galactose

Lactobacillus acidophilus
Bifidobacterium lactis

Lactobacillus delbrueckii
Streptococcus thermophilus

Yoghurt Improved color, stability
and texture

Prevention of constipation, improved immune system,
enhanced absorption of minerals and lactose, reduced

cholesterol
[155,163–165]

Arthrospira
platensis Powder PUFA-ω6

Streptococcus thermophilus
Lactobacillus delbrueckii spp.

bulgaricus Lactobacillus lactis ssp.
lactis Lactobacillus acidophilus

Milk n.a. * Improved nutritional properties [166]

Cryptheiconidium
cohnii

Powder or freeze
dried

Phycocyanin,
vitamin C,

Se, Zn, Fe, Mg

Streptococcus salivarius
Thermophilus sp.

Lactobacillus delbrueckii
Lactobacillus bulgaricus
Bifidobacterium bifidum
Lactobacillus acidophilus

Milk n.a. Anticarcinogenic and anti-inflammatory activities,
improved blood and cholesterol levels [167]

Chlorella sp.
Scenedesmus sp.

Spirulina sp.
Powder Carotenoids,

γ-linolenic acid
Lactobacillus plantarum

Bifidobacteria Cheese Improved color (green-blue)
and texture Improved nutritional properties [168]

* n.a.—Information not available.
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Beta-glucan derived from yeast (especially Saccharomyces cerevisiae) has to date been the most
successful prebiotic in the market. It is commercially available as WellMuneTM by Biothera Corporation
(Eagan, MN, USA), BetaGlucans by BioTec Pharmacon (Tromsø, Norway), and as MacrogardTM

by Immunocorp (Werkendam, Neteherlands). As an exception to this rule is paramylon (available
commercially as Algamune™ by Algal Scientific Corporation (Plymouth, MI, USA)) [161], which has
been produced to high purity levels departing from preparations of β-glucans from yeasts, curdlan
from Gram-negative bacteria, laminarin from brown seaweeds, or scleroglucan from fungi [162].
Despite the great probability of finding prebiotic compounds among marine-derived saccharides,
the exact composition and substituent distribution needed for effective activity remains largely to be
explored. Hence, deeper investigation of these compounds will likely provide novel insights on the
specific structures required to enhance prebiotic activity.

6. From Research Findings to Actual Commercialization

Production at the industrial scale of microalgae-based products with a functional role emerges as
an opportunity, given the information already made available by research studies. This may support
gains of market share in the bioactive molecule segment, dominated so far by synthetic molecules,
or molecules extracted from animal and plant sources (see Table 5).

In the early 1960s, single cell protein (SCP), or protein-rich biomass, for feed was the main product
targeted by industry, while applications directed toward food and prophylactic uses appeared only
later. Production of microalgal pigments boomed in the 1980s, through cultivation of Dunaliella sp. and
Haematococcus sp. with a focus on β-carotene and astaxanthin, to be used as additives in food or feed.
Production of PUFAs, chiefly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), started in
the early 1990s – for eventual use in aquaculture feed and enrichment of nutritional products. Despite
some microalga-based products bearing a relatively long tradition, large-scale commercial production
is still in its infancy. Commercial facilities for microalga production are scattered worldwide (see
Table 5) while commercialization is dominated by North America and Asia, with rather poor inputs by
Europe, North Africa, and Oceania.

Since most microalga-based products at present are intracellular, biomass production rate and
yield represent the main criterion to ascertain techno-economic feasibility. Bulk production of proteins,
carbohydrates, and lipids via microalgae as cell factories is not foreseen in the short run, owing to the
high production volumes expected. An economy of scale therefore plays a crucial role in capital and
operational expenditures associated to the processes, with substantially high fixed capital expenditures
and labor costs [174]. Additionally, high-value products from microalgae are normally intended for
human or animal consumption, so their manufacture processes have to abide to a range of regulations
and standards. Labelling issues worsen the problem, as they vary widely from country to country, and
can add to the overall cost of manufacturing a saleable product [11,174]. Recent studies have, however,
taken advantage of biorefinery strategies and treatment of wastewater to relieve net processing costs,
while enhancing sustainability of microalga production.
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Table 5. Examples of commercial applications of microalgae in food and feed, sorted by microalga.

Microalgae Food Feed Reference

Genus/Species Main Product Main Product
Application Industries Main Product Industries

Arthrospira plantensis Phycocyanin Food colorant and
supplement

A4F-Algae 4 Future (Portugal)
Blue Biotech (Germany)

DIC Lifetec (Japan)
E.I.D Parry (India)
Necton (Portugal)

Ocean Nutrition (Canada)

Feed supplement Blue Biotech (Germany)
Ocean Nutrition (Canada) [175–180]

Chlorella vulgaris Lutein Food supplement

A4F-Algae 4 Future (Portugal) Algomed (Germany)
Buggypower (Portugal)

E.I.D Parry (India)
Phycom (Netherlands)
Chlorella Co. (Taiwan)

Feed supplement Blue Biotech (Germany)
Necton (Portugal) [175,176,178,179,181–184]

Dunaliella salina β-carotene Food colorant and
supplement

BASF (Germany)
Nikken Sohonsa Co. (Japan)

Wonder Care Pvt. Ltd. (India)
Solazyme, Inc. (San Francisco)

Feed supplement

Blue Biotech (Germany)
Necton (Portugal)

Algalimento SL (Canary
Islands)

[176,179,185–189]

Haematococcus
pluvialis Astaxanthin Food supplement

AlgaTech (Israel)
AstraReal Co. (Japan)

Blue Biotech (Germany)
Fuji Chemicals (Japan)

E.I.D Parry (India)
Solix Inc. (USA)

Feed supplement (pigment
enhancer for fish) Blue Biotech (Germany) [176,178,190–193]

Labosphaera incisa ARA *** Food supplement A4F-Algae 4 Future (Portugal) n.a. **** n.a. [175]

Nannochloropsis sp. EPA and
DHA (ω-3) Food supplement

AstraReal Co. (Japan)
AlgaTech (Israel)

Cyanotech (US, Hawaii)
E.I.D Parry (India)

Feed additive Blue Biotech (Germany)
Innovative Aqua (Canada) [176,178,189–191,194]

Euglena gracilis Paramylon/Linear
beta-1,3-glucan Food supplement

Algaeon Inc. (USA)
Kemin Industries (USA)

Valensa International (USA)
n.a. n.a. [195–197]

Phaeodactylum
tricornutum

EPA (ω-3),
Fucoxanthin Food supplement A4F-Algae 4 Future (Portugal)

AlgaTech (Israel) n.a. n.a. [175,190]

* EPA—Eicosapentaenoic acid, ** DHA—Docosahexaenoic acid, *** ARA—Arachidonic acid, **** n.a.—Information not available.
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7. Sustainability Issues

A number of studies have recently addressed the market success of microalgae in the food/feed
industries based on sustainability considerations [198–202]. One interesting way to alleviate the high
costs of producing microalgal biomass for animal feed is to first extract their lipids for production
of biodiesel, due to their intrinsically high lipid contents, and then process the remainder lipid-free
material to obtain protein-rich products [203]. Such a possibility may extend to the situations where
biomass is obtained from wastewater as growth medium in the first place, as long as it is clearly
demonstrated that the final biomass is free of pathogens, toxins, and harmful residues of any kind, and
thus safe for feed uses. For instance, Trivedi et al. [201] showed that Chlorella vulgaris can effectively
be cultivated in untreated wastewater from fish processing industry, without the need to add extra
nutrients, and used downstream for biodiesel production, before ending up as protein-rich feed.
Botryococcus, Chlorella, and Scenedesmus appears as the most promising genera in this endeavor [202],
while extraction should resort, as much as possible, to green solvents. Scaleup of microalga cultivation
in wastewater apparently does not hamper biomass productivity [198] and circumvents the need for
an intermediate step of physical extraction, or plant-mediated concentration of the said nutrients
prior to incorporation in the final feed. Alternative uses under scrutiny include fermentation of
leftover biomass for production of bioethanol or biomethane. Enhancement of lutein productivity to be
extracted prior to feed use of the left biomass, can also resort to flue gas as a base nutrient. Quantitative
removal of nitrate, nitrite, ammonium and carbon dioxide, dissolved in the aqueous medium upon
bubbling, was reported elsewhere [200].

In more quantitative terms, microalgae-based processes can reduce the energy consumption of
conventional wastewater treatments by about one half, while allowing recovery of up to 90% of the
nutrients present therein. When production of microalgae is coupled with nutrient recovery from
wastewater, the associated production costs will lie below 1 €/kg—the threshold normally accepted for
economic feasibility [199]. However, there is still room for improvement of the technology currently
available, in terms of photobioreactor-based production and harvesting procedures, in attempts to
reduce land requirement and hydraulic retention time [198]. Said technology also has to be adapted to
a wide range of wastewater sources, from domestic sewage to cattle manure. Target figures indicate a
need of 450 ton of C, 25 ton of N, and 2.5 ton of P per ha and per year to support a biomass productivity
of 200 ton ton/ha·yr, while current levels are still well below and improvements will likely need a higher
efficiency in light utilization. At the same time, sequestering of atmospheric CO2 to serve as source of C
constitutes a major environmental advantage of phototrophic microalgae, which will strengthen their
competitive advantage, especially as environmental legislation becomes stricter and stricter. Another
advantage of resorting to wastewater, as a raw material, comes from the high-water consumption
nature of microalga-mediated processes, besides energy demands and requirement for bioavailable
forms of nitrogen [202]. One well-documented example is production of high-value lipids, namely
essential fatty acids with claimed health benefits (e.g., PUFAs-ω3). Fernandez et al. [198] claimed that
coupling of biomass production with nutrient recovery from waste will constitute an irreversible trend
in the coming years, in a continuing quest for economic feasibility and to further search for better
performing strains and consortia thereof.

8. Conclusions

Scientifically validated evidence that compounds in microalgal viable or unviable biomass
play functional roles when used as, or incorporated in food or feed has been recently increasing.
This mini review attempted to provide a useful, yet concise update on scientific application and
commercialization in the field. Biotechnological research in this area is promising, and likely to offer
new types of biologically active compounds that are relevant in attempts to decrease frequency of
occurrence and severity of chronic diseases, in both humans and animals. The fast growing body of
scientific and technological information unfolds indeed a great potential for large-scale production in
the near future.
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Nutritionally speaking, microalgal proteins are comparable to plant proteins, yet their commercial
development has been hampered by higher production costs, technical difficulties in extraction and
refining, and sensory and palatability issues when attempting to formulate novel food products.

Further to the technological and economic challenges posed to production of microalgae at large
scale for food and feed uses, the sustainability issue is to be appropriately addressed. Taking advantage
of microalga cell factories to also produce biodiesel, or use of wastewater as broth for microalga growth
are but two possibilities likely to prove economically feasible.

Studies on uses of microalgae as probiotics in food are quite scarce, unlike what happens with
probiotic bacteria and (more recently) yeasts. Based on the possible use of microalgae as probiotics in
the feed industry, resources are to be focused on how to promote survival and growth of microalgae,
and how to deliver such alive beings using food as a vehicle. Reduced application of microalgae as
prebiotics in the food industry is also apparent, despite their potentially beneficial effects upon human
health, via control of host’s gut microflora, thus further research efforts are accordingly needed.

Considering the above facts, microalga-based products still face technological and economic
difficulties to win the market battle. However, this situation is likely to be reversed due to their
potential features, as conveyed by a fast growing body of scientific information generated by academy,
startups, and multinational companies. In any case, quality assurance, safety, regulatory and labeling
issues, and environmental impact have to be duly addressed when attempting to bring a microalgal
product to the market which will necessarily extend the time period prior to commercial production.

Author Contributions: Authorship was limited to those who have contributed substantially to the work reported,
as follow: conceptualization, A.C. and F.C.; writing – original draft preparation, A.C. and F.C.; writing – review,
discussion and editing, A.C. and F.M.; supervision and project administration, F.M.; and funding acquisition, A.C.
and F.M.

Funding: This work was financially supported by Project DINOSSAUR—PTDC/BBB-EBB/1374/2014—POCI-01-014
5-FEDER-016640, funded by European Regional Development Fund (ERDF) through COMPETE2020—Programa
Operacional Competitividade e Internacionalização (POCI), and by national funds through FCT— Fundação para a
Ciência e a Tecnologia. This research was also supported by Project PROMETHEUS—POCI-01-0145-FEDER-029284,
funded by European Regional Development Fund (ERDF) through COMPETE2020 — Programa Operacional
Competitividade e Internacionalização (POCI), and by national funds through FCT—Fundação para a Ciência
e a Tecnologia. Project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment,
Biotechnology and Energy—UID/EQU/00511/2013), funded by European Regional Development Fund (ERDF)
through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national
funds through FCT—Fundação para a Ciência e a Tecnologia, is also gratefully acknowledged. Author Franciele. P.
Camacho was financially supported by Project LEPABE-2-ECO-INNOVATION—NORTE-01-0145-FEDER-000005,
funded by Northern Portugal Regional Operational Program (NORTE 2020), under PORTUGAL 2020 Partnership
Agreement, through the European Regional Development Fund (ERDF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kay, R.A.; Barton, L.L.; Kay, R.A. Microalgae as food and supplement microalgae as food and supplement.
Crit. Ver. Food Sci. Nutr. 1991, 30, 37–41.

2. Hayes, M.; Skomedal, H.; Skjånes, K.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Catala, M.; Isleten Hosoglu, M.;
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