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Abstract

In recent years, dimensionality reduction methods have become critical for visualiza-
tion, exploration, and interpretation of high-throughput, high-dimensional biological data,
as they enable the extraction of major trends in the data while discarding noise. However,
biological data contains a type of predominant structure that is not preserved in commonly
used methods such as PCA and tSNE, namely, branching progression structure. This struc-
ture, which is often non-linear, arises from underlying biological processes such as dif-
ferentiation, graded responses to stimuli, and population drift, which generate cellular (or
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population) diversity. We propose a novel, affinity-preserving embedding called PHATE
(Potential of Heat-diffusion for Affinity-based Trajectory Embedding), designed explicitly
to preserve progression structure in data.

PHATE provides a denoised, two or three-dimensional visualization of the complete
branching trajectory structure in high-dimensional data. It uses heat-diffusion processes,
which naturally denoise the data, to compute cell-cell affinities. Then, PHATE creates a
diffusion-potential geometry by free-energy potentials of these processes. This geometry
captures high-dimensional trajectory structures, while enabling a natural embedding of the
intrinsic data geometry. This embedding accurately visualizes trajectories and data dis-
tances, without requiring strict assumptions typically used by path-finding and tree-fitting
algorithms, which have recently been used for pseudotime orderings or tree-renderings
of cellular data. Furthermore, PHATE supports a wide range of data exploration tasks
by providing interpretable overlays on top of the visualization. We show that such over-
lays can emphasize and reveal trajectory end-points, branch points and associated split-
decisions, progression-forming variables (e.g., specific genes), and paths between develop-
mental events in cellular state-space. We demonstrate PHATE on single-cell RNA sequenc-
ing and mass cytometry data pertaining to embryoid body differentiation, IPSC reprogram-
ming, and hematopoiesis in the bone marrow. We also demonstrate PHATE on non-single
cell data including single-nucleotide polymorphism (SNP) measurements of European pop-
ulations, and 16s sequencing of gut microbiota.

1 Introduction
Biological data are often developmental in nature and can be characterized by various types
of progressions. In particular, progression is inherent to single-cell data since all human body
cells arise from a single oocyte, which differentiates into the various tissues and subtypes. For
example, progression is present in directed differentiation of embryonic stem cells, which has
recently shown promise for regenerative medicine. Additionally, cells in many areas of the body
are actively differentiating or progressing in response to signals. For instance, bone marrow
cells are constantly differentiating from hematopoetic stem cells into myeloid and lymphoid
cells. Cells in the embryo can undergo a progression known as the epithelial-to-mesenchymal
transition, which turns epithelial cell types into free-floating mesenchymal cell types (a process
hijacked by cancer).

Progression is also inherent to other biological datatypes. For example, gut bacterial species
in patients with autoimmune conditions can show progression based on the extent of the under-
lying disease. Population genetic data can show progression in genotypes based on population
drift and admixture events.

There has recently been an explosion in high-throughput technologies that can measure such
progressions in biology. Examples include single-cell RNA-sequencing (scRNAseq), mass cy-
tometry, SNP arrays, and microbiome sequencing. New snapshot single-cell technologies (such
as those in mass cytometry or scRNAseq) can capture cells in all phases of these progressions.
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Figure 1: Conceptual figure demonstrating the progression of stem cells into different cell types
and the corresponding high dimensional single-cell measurements (e.g., mass cytometry or scR-
NAseq). PHATE embeds the progression structure within the high dimensional data into lower
dimensions (e.g., 2D or 3D) for visualization. The trajectories and branches can then be ana-
lyzed to extract biological meaning.

Other technologies, such as SNP arrays and microbiome sequencing, can measure progression
between patients.

Many of these high-throughput technologies provide high dimensional data (e.g., gene ex-
pression levels for thousands of genes in scRNAseq data), which can be used to characterize
the biological progressions in great detail. For instance visualizing different cell-fates in the
data in terms of genes that increase or decrease expression along trajectories is key to under-
standing what drives certain paths. However, the high dimensional and noisy nature of the data
also makes it difficult to extract or visualize the progression (see Fig. 1) or to use it for data
exploration.

Data dimensionality reduction methods such as PCA, and more recently, tSNE [1] have been
used for biological data visualization. However, these methods do not address the urgent need
in biology to visualize and understand high-dimensional progression or branching trajectory
structures that often occur as a dominant underlying pattern in biological systems.
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To address this need, we present a new dimensionality reduction technique to optimally
characterize, organize, and visualize biological data given its highly non-linear structure, noise
(both biological and technical), and continuous progressive nature. We call our new method
PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding). PHATE con-
structs a non-linear embedding of high dimensional data that simultaneously denoises the data
and emphasizes the continuous nature of any underlying progressions and trajectories. PHATE
naturally uncovers branching progression structures in the data in very low (i.e., two or three)
dimensions to enable visualization. We show that this method outperforms existing methods in
terms of revealing correct underlying structure in a low dimensional visualization. Additionally,
PHATE has advantages over tree-rendering techniques that initially cluster the data and then ar-
tificially construct the data as a tree (methods such as Monocle2 [2] or SPADE [3]): PHATE
is a true dimensionality reduction method that preserves heat-diffusion potential distances such
that trajectory structure is naturally and accurately emphasized. Therefore, PHATE is stable and
robust and will not provide a different rendering at each run. Additionally, PHATE embeddings
can be colored by local intrinsic dimensionality to reveal branch points, eigencentrality to re-
veal endpoints, and various genes to reveal the progression of gene expressions along branches.
We demonstrate the utility of PHATE on a wide variety of biological datasets that contain large
sample sizes, primarily scRNAseq and mass cytometry (CYTOF) data. We also show results on
gut microbiome data, and on SNP (single-nucleotide polymorphism) population genetics data to
emphasize the generality of our visualization on any high dimensional data matrix. In addition,
we describe methods for extracting quantitative information from PHATE such as branch point
and branch identification. This can then be used to identify genes that correlate with branches
to derive biological meaning from PHATE. We note that PHATE complements methods that
extract pseudo-time orderings from data, including Wanderlust [4], and Wishbone [5] as they
can be run on top of PHATE dimensions.

2 The PHATE Algorithm
The development of PHATE was inspired by Word2vec [6], Glove [7] and other algorithms
that find low-dimensional metric embeddings of words. These methods take advantage of the
observation that meaningful representations of words should not consider them individually,
but rather as parts of a phrase or a sentence whose progression develops semantic notions.
They use the structure provided by input text to define and associate a context with each word,
and in turn, identify similarities between words by their contexts. Then, they construct an
embedding of words into a vector space by ensuring that the proximities between embedded
vectors correlate with similar textual contexts. Surprisingly, the relations uncovered by such
context-based metric embedding is not only proximal, but it has been shown that directionality
in the embedded space uncovers semantic progression between words. For example, specific
directions identify gender relations (e.g., male-female and king-queen), geographical relations
(e.g., Spain-Madrid, Italy-Rome, and Germany-Berlin), or even grammatical conjugations (e.g.,
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walked-walking or swam-swimming).
Biological data often consists of developmental progressions that can be continuously ob-

served in cells. For example, cells gradually change state during the course of differentiation
processes. Therefore, a cascade of local cell-cell similarities (e.g., nearest neighbor affinities)
can be used to define a developmental context that reveals differentiation pathways, and thus
expresses cells as parts of such progression. Unlike text processing, in our case the input data is
given in unstructured form, and therefore the proposed PHATE method must infer the context
of cells in order to utilize it for embedding and visualization purposes. First PHATE computes
local affinities between cells, and then these affinities are used to define transitional probabili-
ties and propagate them via a Markovian diffusion process over the data. This causes the data to
separate and contract onto diffusion trajectories, which are spread among numerous orthogonal
directions identified by the eigenstates of the diffusion process.

To stabilize the diffusion trajectories and allow their embedding in a low-dimensional (most
importantly - easily visualizable) space, we transform the diffusion transitional probabilities
into a novel, localized heat potential representation. The context of each cell in the data is then
represented by the potential of the heat it propagates to other cells. These heat-potential con-
texts are embedded into a two dimensional space using non-metric multi-dimensional scaling
(MDS), which preserves monotone relations between potential distances. In other words, the
data is organized by preserving monotone ordering of developmental context variations; thus, it
visually emphasizes progression branches and trajectories.

We demonstrate PHATE on a synthetically generated dataset that uses diffusion limited ag-
gregation [11] to generate an artificial tree-like structure. This data was generated to have 20
branches in 100 dimensions and 100 data points per branch. We added noise to the tree (see
Methods) and then compared the PHATE embedding to PCA, tSNE, and diffusion maps (DM)
in Fig. 2. The PCA embedding preserves some of the global structure of the data. However,
the local information is lost due to the noise and the nonlinear structure of the data and thus the
structure appears fuzzy. The tSNE embedding preserves some of the local structure branching
structure but loses all global structure as it shatters the trajectories into clusters. The DM em-
bedding preserves some global progression structure. However, it tends to put each progression
into a different dimension and does not result in a low-dimensional embedding. In contrast,
the PHATE embedding is best at finding both the global and local progression structures and
preserving them in low dimensions.

We perform a similar comparison on several single-cell biological datasets in Fig. 3. The
datasets used include: 1. Developing mouse bone marrow cells, enriched for the myeloid and
erythroid lineages, which were measured with the MARS-seq single cell RNA-sequencing tech-
nology [8]; 2. Developing mouse bone marrow cells, enriched for lymphoid lineages, as mea-
sured via mass cytometry [9]; 3. Mass cytometry data showing iPSC reprogramming of mouse
embryonic fibroblasts [10]. PHATE is the only method designed to emphasize and preserve tra-
jectory structure in the data. The biological datasets represent differentiating processes within
the body, and hence visualizing progression is key to understanding the structure of this data.
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Figure 2: PHATE applied to artificial tree branching data with 20 branches in 100 dimensions
and 100 data points per branch. (Left) A 2D drawing of the noiseless artificial tree colored by
branch. (Right) A comparison of the PHATE embedding to PCA, tSNE, and diffusion maps
(DM) with data points colored by branch. The scale for the DM and PHATE embeddings
is t = 30. The PHATE embedding is best at finding the global structure of the data while
simultaneously distinguishing more of the smaller branches from the global structure.
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Figure 3: Comparison of PCA, tSNE, diffusion maps (DM), and the PHATE embeddings for
various data sets. PHATE is the only method designed to emphasize and preserve trajectory
structure in data for visualization. (A) Mouse bone marrow scRNAseq data colored by cell
type as identified in [8]. See Fig. 10 for a legend. The scale for DM and PHATE is t = 40.
(B) Bone marrow mass cytometry data [9] subsampled at N = 10000 points and colored by
CD4 expression level. The scale for DM and PHATE is t = 100. (C) iPSC CyTOF data [10]
subsampled at N = 50000 points and colored by sample time. The scale for DM and PHATE
is t = 250.
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2.1 Manifold and Diffusion Geometry Data Models
In order to establish an abstract geometric model for the types of data that are suitable for
PHATE, we consider two properties: 1. Development occurs incrementally, as an aggregation
of many small modifications, and 2. There are a limited number of possible outcomes from
each incremental modification. These properties, which are valid in cellular developmental
progression, indicate that instantaneous progression can be captured and expressed by locally
low dimensional neighborhoods of observed cells. Progression tracks can thus be modeled
geometrically by smoothly varying data patches defined by such neighborhoods. This collection
essentially constitutes a mathematical manifold model for the geometry of a progression track.
Furthermore, such manifolds have a low intrinsic dimension, even if curvature and noise forces
them to span a high dimensional volume in the collected feature space. Finally, in the case of
cellular progression, progression tracks form trajectories, with a small number of “branching
points”, where progression splits into several directions. Therefore, in this case it is useful to
model the data as a collection of intrinsically one-dimensional manifolds (i.e., curves) that cross
each other in branching points.

It has been shown in several works (e.g., [12, 13]) that manifold geometries are closely re-
lated to heat diffusion, modeled by the differential heat equation, on the one hand, and to differ-
ential Laplace-Beltrami operators on the other hand. Indeed, solutions of the heat equation over
a manifold capture its intrinsic properties, while providing embeddings, affinities, and distance
metrics that capture intrinsic manifold relations. It has further been shown that these can be
robustly discretized for empirical observations that correlate with hidden (or latent) manifold
models, e.g., by considering diffusion maps embedding of the data [14–16]. The embedding
obtained by PHATE extends these results by considering an underlying geometry consisting of
multiple one-dimensional manifolds (i.e., trajectory curves) that cross each other, while alleviat-
ing boundary-condition instabilities to maintain low dimensionality of the embedded space. We
note that the trajectory structure is not artificially generated in our case, but rather it is expected
to be dominant (albeit latent or hidden) in the data. Therefore, the PHATE visualization will
only show trajectory structures when data fits such a geometry; otherwise, other (e.g., cluster)
patterns will be expressed in the PHATE visualization.

2.2 Overview of the PHATE Algorithm
The main steps for obtaining the proposed embedding are described in Alg. 1. PHATE in-

volves computing a localized Markov transition matrix (henceforth called a diffusion operator)
between cells (or samples). This operator is computed by first computing local affinities be-
tween points and then normalizing the affinities such that they become transition probabilities
between cells. Then we power or diffuse the matrix to obtain longer-range, cleaner connec-
tions between cells. Then we transform these transition probabilities into the heat-potential
context. Finally, we embed the resultant matrix with non-metric MDS for visualization in low
dimensions. These steps are demonstrated in Fig. 4 by a block diagram, which shows the main
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Algorithm 1: The PHATE algorithm
Input: Data matrix X , neighborhood size k, locality scale α
Output: The PHATE embedding Y

1: D ← compute pairwise distance matrix from X
2: Compute the k-nearest neighbor distance εk(x) for each column x of X
3: Kk,α ← compute local affinity matrix from D and εk (see Eq. 3)
4: P ← normalize Kk,α to form a Markov transition matrix (diffusion operator; see Eq. 2)
5: t← compute time scale via Von Neumann Entropy (see Eq. 7)
6: Diffuse P for t time steps to obtain P t

7: Compute potential representations: Ut ← − log(P t)
8: DU,t ← compute potential distance matrix from Ut (see Def 1)
9: Y ← apply nonmetric MDS of DU,t to embed in R2

(
or R3

)
Data Distances Affinities

Diffusion
 Affinities

Potential 
DistancesPHATE

PHATE 1
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A
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Figure 4: Block diagram demonstrating the main matrices computed by the PHATE algorithm
(Alg. 1) when embedding noisy tree structure with 3 branches from R

12 into R2.

matrices computed by PHATE to embed an artificially generated tree structure. Once the two-
or three-dimensional embedding is constructed, it can be visualized to allow intelligible explo-
ration and determination of branching and trajectory structures. We note that PHATE is different
from a diffusion map in that it does not eigendecompose the powered diffusion operator directly
but rather uses a distance preserving embedding of cells re-represented by their potential heat
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distances to other cells. This has the affect of collecting trajectories in low dimensions rather
than spreading them out into individual dimensions like diffusion maps.

The following sections provide detailed explanations regarding each of the steps in the al-
gorithm. Furthermore, we also propose and describe methods for automatically annotating the
provided visualization by extracting branching and trajectory information from the embedding.

2.3 The Diffusion Operator
PHATE is based on constructing a diffusion geometry to learn and represent the shape of the
data [14–16]. This construction is based on computing local similarities between data points,
and then walking or diffusing through the data using a Markovian random-walk diffusion pro-
cess to infer more global relations. The local similarities between points are computed by first
computing Euclidean distances and then transforming the distances into similarities, typically
via a Gaussian kernel. This kernel has the advantage of emphasizing local distances and decay-
ing relatively rapidly after one standard deviation.

Let X = {x1, . . . , xN} ⊂ R
d be a dataset sampled i.i.d. from a probability distribution

p : Rd → [0, 1] (with
∫
p(x)dx = 1) that is essentially supported on a low dimensional manifold

Mm ⊆ R
d with m � d. The classic diffusion geometry proposed in [14] is based on first

defining a notion of local neighborhoods in the data. A popular locality notion is given by a
Gaussian kernel kε(x, y) = exp(−‖x− y‖2/ε) that quantifies similarities between points based
on Euclidean distances. The bandwidth ε determines the radius (or spread) of neighborhoods
captured by this kernel. The kernel is then normalized with the row-sums

νε(x) = ‖kε(x, ·)‖1 =
N∑
j=1

kε(x, xj) (1)

resulting in a N ×N row-stochastic matrix

[Pε](x,y) =
kε(x, y)

νε(x)
, x, y ∈ X . (2)

The matrix Pε is a Markov transition matrix where the probability of moving from x to y in a
single time step is given by Pr[x→ y] = [Pε](x,y).

2.3.1 The alpha-decaying kernel and adaptive bandwidth

When applying the diffusion map framework to data, the choice of the kernel K and bandwidth
ε plays a key role in the results. In particular, choosing the bandwidth corresponds to a tradeoff
between encoding global and local information in the probability matrix Pε. If the bandwidth
is small, then single-step transitions in the random walk using Pε are largely confined to the
nearest neighbors of each data point. In biological data, trajectories between major cell types
may be relatively sparsely sampled. Thus, if the bandwidth is too small, then the neighbors of
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points in sparsely sampled regions may be excluded entirely and the trajectory structure in the
probability matrix Pε will not be encoded. Conversely, if the bandwidth is too large, then the
resulting probability matrix Pε loses local information as [Pε](x,·) becomes more uniform for
all x ∈ X , which may result in an inability to resolve different trajectories. Here, we use an
adaptive bandwidth that changes with each point to be equal to its kth nearest neighbor, along
with an α-decaying kernel that controls the rate of decay of the kernel.

The original heuristic proposed in [14] suggests setting ε to be the smallest distance that
still keeps the diffusion process connected. In other words, it is chosen to be the maximal
1-nearest neighbor distance in the dataset. While this approach is useful in some cases, it is
greatly affected by outliers and sparse data regions. Furthermore, it relies on a single manifold
with constant dimension as the underlying data geometry, which may not be the case when the
data is sampled from specific trajectories rather than uniformly from a manifold. Indeed, the
intrinsic dimensionality in such cases differs between mid-branch points that mostly capture
one-dimensional trajectory geometry, and branching points that capture multiple trajectories
crossing each other.

This issue can be mitigated by using a locally adaptive bandwidth that varies based on the
local density of the data. A common method for choosing a locally adaptive bandwidth is to use
the k-nearest neighbor (NN) distance of each point as the bandwidth. A point x that is within
a densely sampled region will have a small k-NN distance. Thus, local information in these
regions is still preserved. In contrast, if x is on a sparsely sampled trajectory, the k-NN distance
will be greater and will encode the trajectory structure. We denote the k-NN distance of x as
εk(x) and the corresponding diffusion operator as Pk.

A weakness of using locally adaptive bandwidths alongside kernels with exponential tails
(e.g., the Gaussian kernel) is that the tails become heavier (i.e., decay more slowly) as the
bandwidth increases. Thus for a point x in a sparsely sampled region where the k-NN distance
is large, [Pk](x,·) may be close to a fully-supported uniform distribution due to the heavy tails.
This can be mitigated by using the following kernel

Kk,α(x, y) =
1

2
exp

(
−
(
‖x− y‖2

εk(x)

)α)
+

1

2
exp

(
−
(
‖x− y‖2

εk(y)

)α)
, (3)

which we call the α-decaying kernel. The exponent α controls the rate of decay of the tails in
the kernel Kk,α. Increasing α increases the decay rate while decreasing α decreases the decay
rate. Since α = 2 for the Gaussian kernel, choosing α > 2 will result in lighter tails in the kernel
Kk,α compared to the Gaussian kernel. We denote the resulting diffusion operator as Pk,α. This
is similar to common utilizations of Butterworth filters in signal processing applications [17].
See Fig. 5 for a visualization of the effect of different values of α on the kernel function.

Our use of a locally adaptive bandwidth and the kernel Kk,α requires the choice of two
tuning parameters: k and α. k should be chosen sufficiently small to preserve local information,
i.e., to ensure that [Pk,α](x,·) is not a fully-supported uniform distribution. However, k should
also be chosen sufficiently large to ensure that the underlying graph represented by Pk,α is
sufficiently connected, i.e., the probability that we can walk from one point to another within
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Figure 5: The α-decaying kernel Kα,σ(x) = exp
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as a function of x for different

values of α and σ = 1. As α increases, Kα,σ(x) becomes more constant for x ∈ (−σ, σ) and
the tails of the kernel become lighter (i.e., decay to zero more quickly) for x /∈ (−σ, σ).

the same trajectory in a finite number of steps is nonzero.
The parameter α should also be chosen with k. α should be chosen sufficiently large so that

the tails of the kernel Kk,α are not too heavy, especially in sparse regions of the data. However,
if k is small when α is large, then the underlying graph represented by Pk,α may be sparsely
connected. Thus we recommend that α be fixed at a large number (e.g. α ≥ 10) and then k can
be chosen to determine the connectivity of the graph. In practice, we find that choosing k to be
around 5 and α to be about 10 works well for all the data sets presented in this work.

2.4 Powering the Diffusion Operator
In this section we discuss the motivation for raising the diffusion operator to its t-th power in
Alg. 1. To simplify the discussion we use the notation P for the diffusion operator, whether
defined with a fixed-bandwidth Gaussian kernel or our adaptive kernel. This matrix is referred
to as the diffusion operator, since it defines a Markovian diffusion process that essentially only
allows single-step transitions within local data neighborhoods whose sizes depend on the kernel
parameters (ε or k and α). In particular, let x ∈ X and let δx be a Dirac at x, i.e., a row vector
of length N with a one at the entry corresponding to x and zeros everywhere else. The t-step
distribution of x is the row in P t

ε corresponding to x:

ptx , δxP
t = [P t](x,·) . (4)

These distributions capture multi-scale (where t serves as the scale) local neighborhoods of data
points, where locality is considered via random walks that propagate over the intrinsic manifold
geometry of the data.
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For appropriate choices of kernel parameters (as describe in previous sections), the diffusion
process defined by P is ergodic and it thus has a unique stationary distribution p∞ that is inde-
pendent of the initial conditions of the process. Thus p∞x = p∞ for all x ∈ X . The stationary
distribution p∞ is the left eigenvector of P with eigenvalue λ0 = 1 and can be written explicitly
as ν/‖ν‖1 with the row-sums from Eq. 1 (possibly adapted to use Kk,α from Eq. 3). It can be
shown [16] that for fixed-bandwidth Gaussian-kernel diffusion, p∞ converges asymptotically to
the original distribution p of the data as N →∞ and ε→ 0.

The representation provided by the diffusion distributions ptx, x ∈ X , defines a diffusion
geometry with the diffusion distance

Dt(x, y) , ‖ptx − pty‖`2(1/p∞) =

(
N∑
j=1

(ptx(xj)− pty(yj))2

p∞(xj)

)1/2

, (5)

which is given by a weighted `2 distance between the diffusion distributions originating from the
data points x and y. This distance incorporates a comparison between intrinsic manifold regions
of the two data points as well as the concentration of data between them, i.e., the difference
between the mass distributions.

The diffusion distance at all time scales can be approximated by the Euclidean distance in
the diffusion map embedding, which is defined as follows. If the diffusion process is connected,
the eigenvalues of P can be indexed as 1 = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ 0. Let ψi and φi be the
corresponding ith left and right eigenvectors of P , respectively. The diffusion map embedding
is defined as

Φt(x) = (λt1φ1(x), λt2φ2(x), . . . , λtN−1φN−1(x)) . (6)

The time scale t only impacts the scaling of the embedded coordinates via the powers of the
eigenvalues. It can then be shown that Dt(x, y) = ‖Φt(x)− Φt(y)‖2.

2.4.1 Choosing the Diffusion Time Scale t with von Neumann Entropy

The diffusion time scale t is an important parameter that affects the embedding. The parameter
t determines the number of steps taken in a random walk. A larger t corresponds to more
steps compared to a smaller t. Thus, t provides a tradeoff between encoding local and global
information in the embedding. The diffusion process can also be viewed as a low-pass filter
where local noise is smoothed out based on more global structures. The parameter t determines
the level of smoothing. If t is chosen to be too small, then the embedding may be too noisy. On
the other hand, if t is chosen to be too large, then some of the signal may be smoothed away.

We choose the timescale t by quantifying the information in the powered diffusion operator
with various values of t. We quantify the amount of information in the diffusion operator
at time step t by computing the spectral or von Neumann entropy of the powered diffusion
operator. The amount of variability explained by each dimension is equal to its eigenvalue
in the eigendecomposition of the related (non-Markov) affinity matrix that is conjugate to the
Markov diffusion operator. The von Neuman entropy is calculated by computing the Shannon
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entropy on the normalized eigenvalues of this matrix. Due to noise in the data, this value is
artificially high for low values of t, and rapidly decreases as one powers the matrix. Thus, we
choose values that are beyond the ”knee” of this decrease.

More formally, to choose t, we first note that its impact on the diffusion geometry can
be determined by considering the eigenvalues of the diffusion operator, as the corresponding
eigenvectors are not impacted by the time scale. To facilitate spectral considerations, we use a
symmetric conjugate

[A](x,y) =
√
ν(x)[P ](x,y)/

√
ν(y)

of the diffusion operator P with the row-sums ν. This symmetric matrix is often called the
diffusion affinity matrix. We quantify the impact of the time scale t by computing the Von
Neumann Entropy (VNE) [18,19] of this diffusion affinity. It can be verified that the eigenvalues
of At are the same as those of P t, and furthermore these eigenvalues are given by the powers
{λti}N−1

i=1 of the spectrum of P . Let η(t) be a probability distribution defined by normalizing
these (nonnegative) eigenvalues as [η(t)]i = λti/

∑N−1
j=0 λtj . Then, the VNE H(t) of At is given

by the entropy of η(t), i.e.,

H(t) = −
N∑
i=1

[η(t)]i log[η(t)]i , (7)

where we use the convention of 0 log(0) , 0. The VNE H(t) is dominated by the relatively
large eigenvalues, while eigenvalues that are relatively small contribute little. Therefore, it
provides a measure of the number of the relatively significant eigenvalues.

The VNE generally decreases as t increases. As mentioned previously, the initial decrease
is primarily due to a denoising of the data as less significant eigenvalues (likely corresponding
to noise) decrease rapidly to zero. The more significant eigenvalues (likely corresponding to
signal) decrease much more slowly. Thus the overall rate of decrease in H(t) is high initially
as the data is denoised but then low for larger values of t as the signal is smoothed. As t→∞,
eventually all but the first eigenvalue decrease to zero and so H(t)→ 0.

To choose t, we plot H(t) as a function of t as in the first column of Fig. 6. Choosing t
from among the values where H(t) is decreasing rapidly generally results in noisy embeddings
(second column in Fig. 6). Very large values of t result in an embedding where some of the
branches or trajectories are combined together and some of the signal is lost (fourth column
in Fig. 6). Good PHATE visualizations can be obtained by choosing t from among the values
where the decrease in H(t) is relatively slow, i.e. the set of values soon after the “knee” in
the plot of H(t) (third column in Fig. 6 and the PHATE embeddings in Fig. 3). This is the set
of values for which much of the noise in the data has been smoothed away, and most of the
signal is still intact. The PHATE embedding is fairly robust to the choice of t in this range, as
demonstrated in the Methods section. The actual value can be chosen by selecting a t value
where the second derivative of H(t) is low.
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A

B

Figure 6: Demonstration of the effect of the scale t on the PHATE embedding for the (A)
branching data in Fig. 2 and the (B) bone marrow mass cytometry data in Fig. 3. The colorings
are also the same. The first column shows the VNE H(t) (see Eq. 7) of the diffusion affinities
as a function of the time scale t. The other columns give the PHATE embedding with different
values of t. The red dots in the first column indicate the values of t chosen for the plots. The
red dots surrounded by a black box indicate the chosen value of t for the embeddings in Figs. 2
and 3. Values of t that are too low can give noisy embeddings while very high values of t can
result in a loss of information in the embedding. However, the range of t values that give a good
embedding is generally quite large.
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2.5 Creating Potential Distances
In PHATE, we recover a new type of distance from the transition probabilities of the diffusion
operator that we call the potential distance by taking the negative log of the transition probabil-
ities. Intuitively, in one-dimensional manifolds (such as branches of a tree), this corresponds to
the time it takes to diffuse between two points. Further, in Fig. 7 we show that this transforma-
tion has the effect of stabilizing the embedding near the boundaries.

To analyze the constructed heat diffusion process, two possible scenarios can be considered
for the origin of the dataset X and its distribution p, as described in [15, 16]. In the first sce-
nario, the data generation process is modeled as an instantiation of a dynamical system that has
reached an equilibrium state independent of the initial conditions. Mathematically, let U(x) be
a potential and w(x) be an d-dimensional Brownian motion process. The data distribution is the
steady state solution of the of the stochastic differential equation (SDE) ẋ = −∇U(x) +

√
2ẇ,

where ẋ denotes differentiation of x with respect to time. The time steps of the system are
dominated by the forward and backward Fokker-Planck equations. This steady state solution is
given by

p(x) = exp(−U(x)),

up to normalization in the L1 norm to form a proper probability distribution.
The distribution of the data in this case is dominated by the potential U that models the un-

derlying structure of the data. As an example, if the data is uniformly distributed on or around
a manifold, then this potential is minimal on the manifold itself and increases rapidly when
deviating from the manifold. The underlying potential also incorporates data densities that are
not uniform. For example, data clusters are represented as local wells or pits in the underly-
ing potential, while progression trajectories and transitions between clusters are represented as
rivers or branches in the potential. See [15, 16] for more details.

In the second scenario, the data generation process is not modeled as a dynamical system.
Instead, we consider the data in this case as generated by drawing N i.i.d. samples from the
probability distribution p(x). We then artificially define the underlying potential of the data as

U(x) = − log(p(x)).

The potential U can be used in this scenario since its properties and its relation to the structure
of the data are not directly related to the notion of time. Furthermore, in both scenarios, the
diffusion-based analysis introduces the notion of diffusion time in order to reveal intrinsic data
geometry. Finally, as shown in [15, 16], in both scenarios the Markov process that defines
the diffusion geometry converges asymptotically to a diffusion process governed by Fokker-
Planck equations with a potential 2U(x), whether the original potential is defined naturally or
artificially.

Using the same relationship between a potential U and an equilibrium distribution p, we
can define a diffusion potential from the stationary distribution p∞ as U∞ = − log(p∞). This
potential corresponds to data generation using the random walk process defined by Pε with
t → ∞ with random initial conditions. Similarly, if we consider a data generation process
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using this random walk process with t-steps and a fixed initial condition δx, then the generated
data is distributed according to ptx and the corresponding t-step potential representation of x is
U t
ε,x = − log(ptx).

Given the potential representations U t
x, x ∈ X of the data in X , we define the following

potential distance metric as an alternative to the distribution-based diffusion distance:

Definition 1. The t-step potential distance is defined as Vt(x, y) , ‖U t
x − U t

y‖2, x, y ∈ X .

The following proposition shows a relation between the two metrics by expressing the potential
distance in embedded diffusion map coordinates1 for fixed-bandwidth Gaussian-based diffusion
(i.e., generated by Pε from Eq. 2):

Proposition 1. Given a diffusion process defined by a fixed-bandwidth Gaussian kernel, the

potential distance from Def 1 can be written as Vt(x, y) =

(
n∑
j=1

log2

(
1+〈Φt/2(x),Φt/2(xj)〉
1+〈Φt/2(y),Φt/2(xj)〉

))1/2

Proof. According to the spectral theorem, the entries of P t
ε can be written as

[P t
ε ](x,y) = ψ0(y) +

n−1∑
i=1

λtiφi(x)ψi(y)

since powers of the operator Pε only affect the eigenvalues, which are taken to the same power,
and since the trivial eigenvalue λ0 is one and the corresponding right eigenvector φ0 only con-
sists of ones. Furthermore, it can be verified that the left and right eigenvectors of Pε are related
by ψi(y) = φi(y)ψ0(y), thus, combined with Eqs. 4 and 6, we get

ptε,x(y) = ψ0(y)

(
1 +

n−1∑
i=1

λtiφi(x)φi(y)

)
= ψ0(y)

(
1 +

〈
Φt/2
ε (x),Φt/2

ε (x)
〉)
.

By applying the logarithm to both ends of this equation we express the entries of the potential
representation U t

ε,x as

U t
ε,x(y) = − log(1 +

〈
Φt/2
ε (x),Φt/2

ε (y)
〉
)− log(ψ0(y)) ,

and thus for any j = 1, . . . , N ,(
U t
ε,x(xj)− U t

ε,y(xj)
)2

=
[
log(1 +

〈
Φt/2
ε (x),Φt/2

ε (xj)
〉
)

− log(1 +
〈
Φt/2
ε (y),Φt/2

ε (xj)
〉
)
]2

= log2

1 +
〈

Φ
t/2
ε (x),Φ

t/2
ε (xj)

〉
1 +

〈
Φ
t/2
ε (y),Φ

t/2
ε (xj)

〉
 ,

which yields the result in the proposition.
1Recall the diffusion distance is simply the Euclidean distance in these coordinates
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2.6 Diffusion Potential Embedding with Non-Metric MDS
Instead of using diffusion maps coordinates, the potential-based embedding in PHATE is ob-
tained by using the potential distance from Def. 1 as input for distance embedding methods,
which find optimal two- or three-dimensional coordinates that approximate the potential dis-
tance as an embedded Euclidean distance.

Some common distance embedding methods are known as multidimensional scaling (MDS)
methods. Classical MDS [20] takes a distance matrix as input and embeds the data into a
lower-dimensional space using eigendecomposition techniques. We apply classical MDS to the
potential distances of the data to obtain an initial configuration of the data in low dimension.
This configuration is then optimized further using nonmetric MDS as described later in this sec-
tion. First, we use this initial configuration to demonstrate a crucial advantage of our proposed
diffusion potential embedding over diffusion maps.

Consider a simple case of data sampled uniformly on a circle in R2. Diffusion maps (with
suitable density normalization) has been shown to perform well in applications where the data
can be modeled intrinsically as being sampled from a circle, e.g., [14, 21, 22]. Indeed, it can
be verified in Fig. 7(right) that both the diffusion maps and PHATE embeddings recover the
circle up to centering and scaling. However, as a manifold, the circle contains no endpoints, in
contrast with the branching structure in many biological datasets. To introduce endpoints, we
consider the lower half of the circle in Fig. 7(left). In this case, the diffusion maps embedding
suffers from instabilities that generate significantly higher densities near the end points, due to
boundary conditions of the diffusion eigenfunctions, which distorts the embedding. The PHATE
embedding does not exhibit these instabilities. This demonstrates that the PHATE embedding is
more robust than diffusion maps to boundary conditions. Thus, it is better suited for visualizing
data with boundary conditions such as those introduced by endpoints as well as branch points,
where multiple branches intersect.

While classical MDS is computationally efficient relative to other MDS approaches, it as-
sumes that the input distances directly correspond to low-dimensional Euclidean distances,
which may be overly restrictive. Additionally, since we are primarily interested in trajectory
visualization, it is not important that the exact distance is preserved between points on two
different trajectories.

Nonmetric MDS is an approach that relaxes the assumptions on the distance matrix by al-
lowing the input to be some measure of dissimilarity rather than a distance metric [23–25]. This
relaxation is made by optimizing a monotonic relation between the input dissimilarities and the
embedded Euclidean distances between the points. This relation is quantified by a goodness of
fit criterion, which is typically referred to as a stress function. Several possible stress functions
can be used in nonmetric MDS. The results presented in this paper were obtained by using the
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Figure 7: Comparison of Diffusion Maps (blue) and PHATE (orange) embeddings on data
(black) from a half circle (left) and a full circle (right). Both the data and the embeddings have
been centered about the mean and rescaled by the max Euclidean norm. For the full circle,
both embeddings are identical (up to centering & scaling) to the original circle. However, for
the half circle, the Diffusion Maps embedding (blue) suffers from instabilities that generate
significantly higher densities near the two end points. The PHATE embedding (orange) does
not exhibit these instabilities.

popular2 Kruskal normalized stress 1 from [25]. Namely, we minimize the following stress:

Stress1(x̂1, . . . , x̂N) =

√√√√∑
i,j

(
f
(
Dt

(xi,xj)

)
− ‖x̂i − x̂j‖

)2
/∑

i,j

‖x̂i − x̂j‖2 . (8)

over embedded d′-dimensional coordinates x̂i ∈ Rd′ of data points in X and weakly monotone
relations3 f : R → R between potential distances and embedded (Euclidean) distances. This
optimization is essentially an isotonic regression problem, which can be solved by suitable
standard optimizers (e.g., using gradient descent).

If the stress of the embedded points is zero, then the input data is faithfully represented in
the MDS embedding. The stress may be nonzero due to noise or if the embedded dimension
d′ is too small to represent the data without distortion. Thus, by choosing the number of MDS
dimensions to be d′ = 2 (or d′ = 3) for visualization purposes, we trade off distortion in ex-
change for readily visualizable coordinates. However, as mentioned previously, some distortion
of the distances/dissimilarities is tolerable in many of our applications since precise dissimilari-
ties between points on two different trajectories are not important as long as the trajectories are

2We use the default Matlab mdscale implementation.
3Technically, the optimization only considers N2 values of f for distances between points in X .
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visually distinguishable. By using non-metric MDS, we find an embedding of the data with the
desired dimension for visualization and the minimum amount of distortion as measured by the
stress.

2.7 Comparing PHATE to Other Methods
PHATE is primarily a dimensionality reduction method that takes high dimensional raw data
and embeds it, via a metric preserving embedding, into low dimensions that naturally show
trajectory structure. Thus, we focus our comparisons of PHATE to existing dimensionality
reduction methods such as PCA, tSNE and diffusion maps. However, because PHATE can
extract trajectory or differentiation structure, we also compare it to tools that find and render
explicit “differentiation tree structures”; these methods include SPADE [3] and Monocle2 [2].

Finally, we note that several methods exist that find pseudotime orderings of cells, such
as Wanderlust [4], Wishbone [5], and diffusion pseudotime [26]. These methods focus on
finding orderings of cells along branches. These methods can be used alongside PHATE to order
parts of the branching progressions. Wanderlust can find single non-branching progressions.
Wishbone recognizes a single branch, while diffusion pseudotimes provides potentially multiple
branches.

However, pseudotime approaches do not naturally provide a dimensionality reduction method
to visualize such structure. Therefore, the resulting cell orderings can be difficult to interpret
and verify, especially in the context of the entire data set. In contrast, PHATE reveals the entire
branching structure in low dimensions, giving an overall view of progression structure in the
data. Thus pseudotime orderings can be visualized and verified with PHATE.

Comparison of PHATE to dimensionality reduction methods: As mentioned previously,
Figs. 2 and 3 compare the PHATE embedding to the principal components analysis (PCA),
tSNE, and diffusion maps embeddings on four different data sets. For all four datasets, the
PHATE visualization is best at distinguishing branches and trajectories within the data. While
the diffusion maps embedding does capture some trajectory structure, many of the trajectories
are not visible in the visualization. Additionally, the PCA and tSNE embeddings do not em-
phasize trajectory structure, and the trajectory structures in the data are very difficult, if not
impossible, to extract from the PCA and tSNE visualizations. The popular method of princi-
pal component analysis (PCA) assumes a linear structure on the data. Since biological data are
rarely linear, PCA is not able to optimally reduce non-linear noise along the manifold and reveal
progression structure.

Recently, tSNE (t-distributed stochastic neighbor embedding) [1] has become popular for
revealing cluster structure or separations in single cell data [27]. However, tSNE tends to shatter
trajectories into clusters (Fig. 2), at times artificially. Furthermore, the adaptive kernel used in
tSNE for calculating neighborhood probabilities tends to spread out neighbors such that dense
clusters occupy proportionally more space in visualization as compared to sparse clusters. Thus,
the relative location of data points within the tSNE embedding often does not accurately reflect
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the relationships between them. Finally, while the diffusion maps embedding does capture some
trajectory structure, many of the trajectories are not visible in the visualization, as diffusion
maps tend to split trajectories into different orthogonal dimensions instead of showing a unified
low-dimensional structure as PHATE shows.

Comparison of PHATE to tree-rendering methods: SPADE [3], Monocle2 [2] and other
methods first cluster the data and then render progression as connections between clusters.
SPADE finds a minimal spanning tree that fits to the clusters, and Monocle2 finds a graph to fit
to the clusters. Clustering methods tend to make less restrictive assumptions on the structure of
the data compared to PCA. However, clustering methods assume that the underlying data can
be partitioned into discrete separate regions. In reality, biological data are often continuous,
and the apparent cluster structure given by clustering methods is only a result of non-uniform
density and finite sampling of the continuous underlying state space. Further, these methods
tend to be unstable, producing different trees and different numbers of branches each time that
they are run, as shown in Figs. 8B and 8C. Thus it is difficult to determine the right tree to fit to
the data. Further, several spurious branches seem to arise in both settings. In contrast, for the
same set of parameters, PHATE produces the same results with each run as it is not based on a
tree or graph-fitting paradigm.

2.8 PHATE Overlays
In this section, we describe some methods for automatically extracting information from the
PHATE embedding. We first describe techniques for identifying branch points using local in-
trinsic dimensionality and end points using eigencentrality and diffusion map extrema within
the embedding. From these points, trajectories can be extracted for analysis.

2.8.1 Branch Point Identification with Local Intrinsic Dimensionality

A PHATE embedding consists of trajectories and branching points. Trajectories are paths of
progression along which cells vary smoothly in particular dimensions. Branch points are de-
cision points where cells sharply veer towards one of a small number of fates, and contain
switch-like decisions. For instance, there is a split between CD4+ cells and CD8+ cells in
Fig. 11A, where CD4 is turned off in one branch and CD8 in another. These represent distinct
mutually exclusive paths of progression.

We use the concept of local intrinsic dimensionality for identifying these types of branch
points. In biological data, often many variables for each datapoint are measured. The total num-
ber of variables measured for each data point is the extrinsic dimension of the data. However,
generally many dependencies and redundancies exist between these variables. Thus, the total
number of (potentially transformed) variables required to accurately represent the data is less
than the extrinsic dimension. This number is known as the intrinsic dimension of the data.
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Figure 8: (A) Comparison of PHATE to SPADE and Monocle2 on the bone marrow mass
cytometry data set [9] colored by CD4 expression levels. (B) Multiple runs of SPADE on the
same data set colored by CD4 expression levels. (C) Multiple runs of Monocle2 on the same
data set colored by CD4 expression levels. Some of the results from the different runs for both
SPADE and Monocle2 vary significantly from each other suggesting that they are sensitive to
randomization. In contrast, given the same parameters, PHATE produces the same results with
each run.
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Intrinsic dimension can also be understood in terms of manifolds. If the dependencies be-
tween variables are smooth, then the data can be modeled as lying on a manifold inside the full
space with intrinsic dimension less than the extrinsic dimension of the full space. For many
complicated datasets, the underlying manifold, and potentially the intrinsic dimension, of the
data may also vary locally [28, 29]. For a toy example of data with varying local intrinsic di-
mension, see Fig. 9A. In this figure, the red data points can be modeled as lying on a manifold
with intrinsic dimension equal to one (a circle) while the black data points can be modeled with
a manifold with intrinsic dimension equal to two (a plane).

Intuitively, points on branches lie on manifolds with low intrinsic dimension. Branch points
are regions where two or more branches originate or intersect. Thus, branch points are locations
where several directions of progression merge into a cluster of data points. This cluster lies on
a manifold with higher intrinsic dimensionality than the branches. This suggests that local
intrinsic dimensionality estimation techniques may be used to detect branching zones.

There are many different methods for estimating local intrinsic dimension. We use the
method given in [28], which uses a local version of the k-nn graph approach derived in [30]
combined with neighborhood smoothing for variance control as follows. Let Zn = {z1, . . . , zn}
be a set of independent and identically distributed random vectors with values in a compact
subset of Rd. LetNk,j be the k nearest neighbors of zj; i.e. Nk,j = {z ∈ Zn \{zj} : ||z−zj|| ≤
εk(zj)}. The k-nn graph is formed by assigning edges between a point in Zn and its k-nearest
neighbors. The power-weighted total edge length of the k-nn graph is related to the intrinsic
dimension of the data and is defined as

Lγ,k(Zn) =
n∑
i=1

∑
z∈Nk,i

||z− zi||γ, (9)

where γ > 0 is a power weighting constant. Let m be the global intrinsic dimension of all the
data points in Zn. It can be shown that for large n,

Lγ,k(Zn) = nβ(m)c+ εn, (10)

where β(m) = (m−γ)/m, εn is an error term that decreases to 0 as n→∞, and c is a constant
with respect to β(m) [30]. A global intrinsic dimension estimator m̂ can be defined based on
this relationship using non-linear least squares regression over different values of n [28, 30].

A local estimator of intrinsic dimension m̃(i) at a point zi can be defined by running the
above procedure in a smaller neighborhood about zi. This approach is demonstrated in Fig. 9A,
where a k-nn graph is grown locally at each point in the data. However, this estimator can
have high variance within a neighborhood. To reduce this variance, majority voting within a
neighborhood of zi can be performed:

m̂(i) = arg max
`

∑
zj∈Nk,i

1(m̃(j) = `), (11)

where 1(·) is the indicator function [28].
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Figure 9: (A) A toy example of data with varying local intrinsic dimension. The red data points
can be modeled as lying on a manifold with intrinsic dimension equal to one (a circle) while
the black data points can be modeled with a manifold with intrinsic dimension equal to two (a
plane). Local intrinsic dimension can be estimated by growing a k-nn graph locally at each data
point due to the relationship between the k-nn graph growth rate and intrinsic dimension. (B)
The PHATE embedding of the bone marrow scRNAseq dataset shown in Fig. 3A colored by
estimated local intrinsic dimensionality for higher dimensional (d′ = 10) PHATE embeddings.
The estimated local intrinsic dimension is higher at the branch points compared to the branches.
The results are also shown for the mass cytometry datasets. (C) A small graph with nodes
colored by eigenvector centrality. The node that is most connected has the highest centrality
and the centrality of the other nodes depends on their proximity to the most connected node as
well as their connectivity. (D) The PHATE embedding of the bone marrow scRNAseq dataset
shown in Fig. 3A colored by eigenvector centrality calculated from the affinity matrixKk,α. The
endpoints of the branches have lower centrality than other points. The results are also shown
for the mass cytometry datasets.
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Figure 9B shows the estimated local intrinsic dimensionality for higher dimensional (d′ =
10) PHATE embeddings of the bone marrow scRNAseq dataset shown in Fig. 3A. The estimated
local intrinsic dimension is higher at the branch points compared to the branches.

2.8.2 Endpoint Identification with Eigencentrality and Diffusion Map Extrema

In addition to branch points, we also identify end points in the PHATE embedding. These
points correspond to end-states of differentiation processes. We use two features of the data to
accomplish this: eigenvector centrality and diffusion maps extrema.

The centrality of a graph is a measure of the relative influence of a node within a graph.
Nodes with higher centrality have more influence than nodes with lower centrality. Eigenvector
centrality of a graph is a measure of graph centrality. It is defined as the eigenvector corre-
sponding to the largest eigenvalue of the corresponding adjacency matrix [31]. The adjacency
matrix we use is the kernel matrix Kk,α. Points located at the ends of branches in the PHATE
embedding have less influence on the graph. Thus the eigenvector centrality of these points
should be relatively lower (see Fig. 9C). Figure 9D shows the computed eigenvector centrality
of the kernel matrix Kk,α derived from the bone marrow scRNAseq dataset. Indeed we find that
the end points of the branches generally have lower eigenvector centrality.

While choosing points with low eigenvector centrality successfully identifies some end
points of branches, some endpoints may have relatively higher centrality due to their prox-
imity to regions with high centrality. For example, the endpoint of the left-most branch in the
PHATE embedding of the bone marrow mass cytometry data set is closer to the most central
region of the data than the endpoints of the branches on the right (see Fig. 9D). Thus the eigen-
vector centrality of the left branch endpoint is relatively higher than the eigenvector centrality
of the right branch endpoints. Therefore, a global threshold on the eigenvector centrality that is
high enough to include this left branch endpoint would also include many other points on other
branches that are not endpoints.

We automatically detect such endpoints by using the extrema of the diffusion maps embed-
ding. The diffusion maps embedding tends to map the endpoints of branches into the minimum
and maximum values of different dimensions, including the endpoints that have relatively higher
eigenvector centrality (see the DM embeddings in Fig. 3). Thus we can identify many of these
points by choosing the points with the minimum and maximum values in the first few diffusion
maps dimensions.

2.8.3 Branch Point and Endpoint Reduction

After identifying branch points and end points, it becomes easier to identify the segments or tra-
jectories of smooth progression in the data. However, since eigencentrality and local intrinsic
dimension vary smoothly, they tend to select regions in the embeddings rather than particu-
lar points. Therefore, we use a simplified version of the shake-and-bake algorithm from [32]
to reduce the number of branch points and endpoints to a smaller set of representative points;
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namely, ones that correspond to unique decisions and end-states in the data. Algorithm 2 details
the steps of this procedure, based on a proximity threshold that determines the smallest possi-
ble distance desired between the representative branch points and/or endpoints. The candidate
branch points are given in coordinates obtained from applying MDS to potential distances, but
with an embedded dimension higher than two. The presented results in this paper were obtained
with this dimension set to 10.

Algorithm 2: Shake-and-Bake branch & end point reduction
Input: Branch point candidates X = {x1, x2, . . .}, proximity threshold h
Output: Branch points R

1: D ← compute pairwise distance matrix from X
2: I ← random permutation of indices over X
3: R← ∅
4: for j ∈ I {pop the next index based on the permuted order} do
5: Set neighborhood: Nj ← {i ∈ I : ‖xi − xj‖ ≤ h}
6: rj ← centroid of points in {xi ∈ X : i ∈ Nj}
7: Add centroids: R← R ∪ {rj}
8: Remove neighbors: I ← I \ Nj {maintain permuted order of remaining indices}
9: end for

3 PHATE reveals insights into biological differentiation pro-
cesses

PHATE reveals branching differentiation structures in biological data. In this section, we show
the insights gained through the PHATE visualization, which is able to reveal paths of progres-
sion, decision or branch points, and end-states within the various biological datasets used in
Fig. 3, new embryoid body data, SNP data, and microbiome data.

3.1 PHATE Trajectories Have Biological Meaning
We show that the identifiable trajectories in the PHATE embedding have biological meaning
that can be discerned from the expression and mutual information of genes along the trajec-
tories. Figures 10 and 11 show the results for the bone marrow scRNAseq [8], bone marrow
CyTOF [9], and IPSC CyTOF [10] datasets. For each of these datasets, we manually selected
trajectories between the representative branch points and endpoints (explained in Section 2.8.3).
We then ordered the cells within each trajectory by projecting the cells onto the line correspond-
ing to the branch. Ordering is generally from left to right. We note that we could also order
these points based on pseudotime ordering software such as those in [4], [5] or [26].
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Figure 10: Analysis of branches on the PHATE embedding for the bone marrow scRNAseq
dataset from Fig. 3. (i) The PHATE embedding with identified branches. (ii) DREMI scores
[33] between gene expression levels and cell order within each branch. Cell ordering is from
the leftmost to the rightmost endpoint of each branch. MAGIC [34] is applied to the scRNAseq
data first before computing DREMI to impute missing values in the data. (iii) Expression level
for each cell ordered by branch and ordering within the branch. MAGIC is applied first with the
same kernel used for PHATE and scale t = 4. Expression levels are then z-scored for each gene.
(iv) Legend for the cell types identified in [8]. A colorbar is also given below the expression
matrix in (iii) that identifies each cell’s type.

Figures 10 and 11 show the PHATE embedding for the three datasets with the trajectories
identified by color along with gene expression matrices that show the expression level of each
cell along the trajectory. These matrices show the expression of genes along the identified
branches. Ubiquitously expressed genes along a trajectory can allow us to identify cells of the
trajectory. Additionally, we show DREMI matrices that show the mutual information between
the cell order within each branch and selected protein markers to show which genes change
along the branch to form the progression. DREMI is a conditional-density resampled mutual
information, that takes off sampling biases to reveal shape-agnostic relationships between two
variables [33]. As applied here it shows markers that change along a trajectory.
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Figure 11: A similar branch analysis as in Fig. 10 applied to the (A) bone marrow mass cytom-
etry dataset and the (B) iPSC mass cytometry data set from Fig. 3. MAGIC is not applied to
this data.
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Bone Marrow scRNAseq Data Figure 10 shows the color-coded embedding, DREMI ma-
trix, and gene expression matrix for single-cell RNA-sequencing data from mouse bone marrow.
This data is enriched for myeloid and erythroid lineages and was organized into clusters in [8],
which are provided in Fig. 10(iv). Here, we show that PHATE reveals a continuous progres-
sion structure instead of cluster structure and illustrates the connections between clusters. The
PHATE embedding shows a continuous progression from progenitor cell types (shown in light
green in the “Cell Type” color bar below the expression matrix) to erythroid lineages (in red)
towards the left and myeloid lineages towards the right (in cooler colors). The expression ma-
trix shows increasing expression of erythroid markers in the leftmost branches (branches 1 and
2) such as hemoglobin subunits Hba-a2 and Hbb-b1 as well as heme synthesis pathway enzyme
Cpox as the lineage progresses to the left. Towards the right in branch 5, we see an enrichment
for myeloid markers, including CD14 and Elane, which are neutrophil markers. In addition,
PHATE splits the erythrocytes into two branches not distinguished by the authors of [8]. These
branches show differential expression of several genes. Branch 1 is more highly expressed
in Gata1 and Gfi1B, both of which are involved in erythrocyte maturation. Branch 2 is more
highly expressed in Zfpm1 which is involved in erythroid and megakaryocytic cell differentia-
tion. Given these differential expression levels, it is likely that branch 1 contains erythrocytes
that are still maturing while branch 2 contains erythrocytes that are fairly mature [35–41]. In
addition, the branches towards the right have high mutual information with CD235a, which is
an erythroid marker that progressively increases in those lineages, and also with CD34, which
progressively decreases in that lineage.

We note that due to the lack of common myeloid progenitors in this sample, a gap is expected
in the PHATE embedding between the monocytes and megakaryocyte lineage since PHATE
does not artificially connect separable data clusters (see Fig. 19). However, we note that both
the tSNE and PCA embeddings of this data in Fig. 3 also lack a gap between these trajectories.
Given that tSNE in particular is designed to separate clusters, this lack of separation is likely
due to low cell number and depth of measurements in the data.

Bone Marrow Mass Cytometry Data Figure 11A shows an early CyTOF dataset from a
human bone marrow. Branches in this dataset show both developing lineages (B cells, immature
neutrophils) as well as developed T cell subtypes, also identified in [9]. Here, we see that
the branches can be identified as CD4+ helper T Cells in Orange, CD8+ cytotoxic T cells in
yellow, B cells in green as well as developing leukocytes (possibly immature neutrophils) in
blue. Additionally, the light green branch appears to be natural killer cells as identified in [9],
which express CD38 and some of which also express CD8.

iPSC Mass Cytometry Data Figure 11B is a mass cytometry dataset from [10] that shows
cellular reprogramming with Oct4 GFP from mouse embryonic fibroblasts (MEFs) to induced
pluripotent stem cells (iPSCs) at the single-cell resolution. The protein markers measure pluripo-
tency, differentiation, cell-cycle and signaling status. The cellular embedding (with combined
timepoints) by PHATE shows a unified embedding that contains five main branches, each cor-
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responding to biology identified in [10]. The light green cells represent early reprogramming
intermediates with the correct set of reprogramming factors Sox2+Oct4+Klf4+Nanog+ without
CD73+ or CD104+. Out of the light-green stem emerges two branches. The blue branch on top
shows the successfully reprogramming ESC-like lineages expressing markers such as Nanog,
Oct4, Lin28 and Ssea1, and Epcam that are associated with transition to pluripotency [42]. The
green branch shows a lineage that is refractory to reprogramming, does not express pluripotency
markers and is referred to as still “mesoderm-like” in [10].

Then, the side orange branch represents an intermediate, partially reprogrammed state also
containing Oct4+Klf4+CD73+ but is not yet expressing pluripotency markers like Nanog or
Lin28. However, the PHATE embedding indicates that as Epcam, which is known to promote
reprogramming generally [43], increases along this branch (as evidenced by its high DREMI
score against the branch). It joins into the blue branch at a later stage, showing perhaps an
alternative path or timing of reprogramming. Finally, the yellow branch shows a lineage that has
failed to reprogram successfully perhaps due to the wrong stoichiometry of the reprogramming
factors [44]. Of note, this lineage does not contain Klf4+ which is an essential reprogramming
factor.

Additionally, the PHATE embedding shows a decrease in p53 expression in precursor branches
(light green and yellow) indicating that these cells are released from cell cycle arrest induced by
initial reprogramming factor over expression [45]. However, along the green refractory branch
we see an increase in cleaved-caspase3, potentially indicating that the failure to reprogram cor-
rectly initiates apoptosis in these cells [10].

3.2 PHATE on Embryoid Body Data
Embryonic stem cell (ESC) differentiation is a multi-step process that begins with the induction
of primary germ layers –ectoderm, endoderm and mesoderm. In vitro, the induction of primary
germ layers occurs spontaneously when ESCs are grown as three-dimentional aggregates called
embryoid bodies (EB) in the absence of self-renewing signals. EB differentiation closely resem-
bles the embryo development in vivo and has been successfully used to produce multiple cell
types, including various types of neurons, astrocytes and oligodendrocytes [46–49], hematopoi-
etic, endothelial and muscle cells [50–58], hepatocytes and pancreatic cells [59, 60], as well as
germ cells [61, 62]. However, this process is inefficient. The molecular pathways regulating
germ layer development are largely unknown. It remains unclear whether in vitro-derived cells
represent genuine functional cell types. A deeper and more systematic understanding of human
ESCs differentiation is necessary to overcome these challenges. Here, we begin developing
such an understanding, using single-cell technology combined with PHATE to elucidate paths
of differentiation and gene-gene interactions that underlie differentiation.

We generated new scRNAseq data from a 27-day long EB differentiation timecourse. To
comprehensively sample developmental transitions over time, we collected EBs with 3 day in-
tervals, and then combined them in pairs – day 0 with day 3, day 6 with day 9, and so on.
EBs were dissociated into single cells, FACS-sorted to remove doublets and dead cells, and
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A

B

Figure 12: Analysis of new hESC scRNAseq data. (A) The PHATE embedding in two and
three dimensions compared to PCA, tSNE, and DM on the hESC data. The scale for DM
and PHATE is t = 25. Cells are colored by sample. The PHATE embedding shows a clear
branching structure that is correlated with the samples. (B) The PHATE embedding colored by
z-scored expression levels of various markers. MAGIC is applied first using the same kernel as
for PHATE and scale parameter t = 4.
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Figure 13: Branch analysis of the new hESC scRNAseq data. Parts (i) through (iii) are con-
structed in the same manner as in Fig. 10. The time colorbar below the expression matrix
corresponds to the sample color in Fig. 12.

processed on a 10x genomics instrument resulting in approximately 31,000 cells equally dis-
tributed over the timecourse. Figure 12A shows PHATE applied to this EB data compared to
PCA, tSNE, and DM. All embeddings are colored by sample.

The PHATE embedding shows a clear branching structure that is correlated with the sam-
ples. Using the PHATE embedding, we can identify several different stages and lineages in
the data. Figure 13(i) shows the PHATE embedding colored by trajectories or clusters of cells
identified using the process described previously as well as the markers specifically expressed
in those trajectories. Figure 13(iii) shows the corresponding expression matrix of selected genes
ordered in the same manner as in Fig. 10. From this matrix, we see that trajectories 2-7 are asso-
ciated with the neural crest differentiation. Along this trajectory, the ES cell genes Nanog, Oct4,
and Sox2 are sharply downregulated followed by induction of epiblast marker Otx2 and then
neuroectoderm/early neural crest markers Pax6, Zbtb16, Gbx2, Pax3a, and Pax7 in trajectories
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PCA PHATE

Figure 14: PCA and PHATE embeddings of the Human Origins dataset showing genotyped
present day humans from 203 populations.

3 and 4. These early progenitors further resolve into neuronal and late neural crest lineages with
characteristic markers expressed in each branch. The neural crest trajectories 5 and 6 express
Pax7, Sox9, and Sox10 while neural progenitor trajectories 7 and 10 express Ascl1, Neurog1,
and Dcx. Interestingly, differentiation intermediates in trajectory 3 express genes associated
with both mesendoderm (Eomes, T, Mixl1) and early neural crest (Pax3, Pax7, Tfap2a), indi-
cating that the separation of these germ layers occurs at this timepoint. Indeed, mesendoderm
markers continue to be expressed in trajectory 8 and are followed by a wave of the definitive
endoderm markers Foxa2 and Sox17. Trajectory 9 represents cardiac-progenitor-like cells that
express Gata6 and Hand1. Thus the PHATE embedding can successfully resolve germ layers
during in vitro differentiation of human ESCs.

3.3 PHATE on SNP Data
In Section 2.1 we delineated two features of data that PHATE takes advantage of, namely:
1. data with development that occurs incrementally, as an aggregation of many small modifi-
cations, and 2. data with a limited number of possible outcomes from each incremental mod-
ification. However, single-cell data is not the only type of biological data that has this type
of structure. Genetic data such as single-nucleotide polymorphism data on populations can
have such structure too. Individuals, like cells can be slightly modified from each other, and
populations as a whole can diverge in a limited number of ways. To demonstrate that PHATE
emphasizes trajectory structure in this type of data, we examined a dataset containing 2345
present-day humans from 203 populations genotyped at 594,924 autosomal single nucleotide
polymorphisms (SNPs) with the Human Origins array [63].

We used the Eigensoft package [64] to extract 100 PCA components from the SNP array
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data. As with single-cell RNA sequencing data, we computed the distance and affinity matri-
ces using these PCA components. Figure 14 shows that PHATE is able to reveal geographic
population structure much more clearly than PCA alone.

PCA tends to crowd populations together into two linear branches, without clearly dis-
tinguishing between population groups or showing population divergence. Vastly divergent
populations, such as Near-Eastern populations (e.g., Saudi and Iraqi) are mixed with Eastern
European populations (e.g., Ukranian and Bulgarian) and Northern European populations (e.g.,
Finnish and Estonian). These populations are crowded along the bottom axis of the PCA em-
bedding. By contrast, the PHATE embedding shows clear population structures, such as the near
eastern Jewish populations near the bottom (Iranian and Iraqi Jews, Jordanians), with further
branches showing progression within the same population, such as the Jordanian population in
orange diamond. Further, PHATE shows a global structure that mimics geography, with Euro-
pean populations generally towards the top and Near Eastern populations towards the bottom.
Thus PHATE shows that the occurrence and structure of these SNPs follows a progression based
on geography and population divergence. Further, as compared to PCA, the plot is highly de-
noised, as the very high dimensional SNP structure lies in lower dimensional manifolds that are
captured by the Markov affinity matrix and denoised via the diffusion process within PHATE.
.

3.4 PHATE on Microbiome Data
Recently there have been various studies of bacterial species abundance in the human intestinal
tract, saliva, vagina and other membranes as measured by 16S ribosomal-RNA-encoding gene.
It is hypothesized that the bacterial composition of the intestinal tract can affect a wide range of
health and metabolic issues such as body mass, autoimmunity, glycemic index, etc. However,
generally this data has only been analyzed by clustering and principal component analysis.

A prominent study reported that there were three distinct clusters designated as “enterotypes”
identifiable by the variation in the levels of one of three bacterial genera [65]: Bacteroides (en-
terotype 1), Prevotella (enterotype 2) and Ruminococcus (enterotype 3). We study these en-
terotypes on the American Gut Dataset [66], a public repository of over 6500 individuals whose
tissues have been sequenced by 16s sequencing. Figure 15A shows 9660 samples embedded
with PHATE. First we note that PCA (Fig. 15A left) results in an undifferentiated cloud with
two density centers corresponding to fecal samples on the right and oral/skin samples on the
left. In contrast, PHATE shows branching structures with 4 branches emanating from a point
of origin for fecal sample, and additional structures on the right that differentiates between skin
samples, which form their own progression, and oral samples, which again result in several
branches.

Figure 15B shows the PHATE embedding colored by two genera (bacteroides and pre-
votella) and a phylum (actinobacteria) of bacteria on the same 9660 samples as in Fig. 15A.
These two figures show that the Bacteroides genus of bacteria is almost exclusively found in the
fecal samples. The Prevotella genus of bacteria is found in certain stool and oral samples while
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the Actinobacteria phylum is primarily found in the oral and skin samples. This is consistent
with the work in [67] which showed that different genera and phyla of bacteria are prevalent in
the different body sites.

Upon “zooming in” to the 8596 fecal samples in Fig. 15C, we see 4 major branches, instead
of the three enterotypes [65], with highly expressed Firmicutes, Prevotella, Bacteroides and
Verrucomicrobia respectively. Furthermore, the Fermicutes/Bacteroides branches seem to form
a smooth continuum with samples falling into various parts of a triangular simplex shape. This
shows that individuals can exist as mixed phenotypes between archetypal bacterial states as
well as in a continuum with more or less prevalence for each of these states. This could have
implications in metabolism and disease of individuals. For instance, it has been noted that
individuals with a primarily carbohydrate-based diet have predominantly Prevotella in their gut
while individuals who consume more animal fat and proteins have more Bacteroides [68]. These
types of causal dietary associations would be easier to extract via correlation with trajectories
rather than simple expression analysis along clusters.

4 Conclusion
Modern high-dimensional, high-throughput datasets are difficult for biologists to interpret. There-
fore, visualization and data-exploration tools are key to understanding and extracting meaning-
ful structure in biological data and then generating experimental hypotheses. A key observation
we make here is that biological datasets have predominant progression structures that most vi-
sualization methods do not naturally emphasize. The PHATE method presented in this paper
provides a complete embedding and visualization of such branching progression structures in
two dimensions, while simultaneously denoising the data. It is based on metric embedding of
a novel diffusion potential distance, which is recovered from the Markov data-driven diffusion
operator. This metric enables PHATE to express data trajectories in low-dimensional coordi-
nates, in contrast to other methods, such as PCA, diffusion maps, or tSNE.

We showed that PHATE can be colored by gene expression, local intrinsic dimensionality,
and eigencentrality, which reveal progressions of gene expression (or other biological variables)
along branching trajectories, identify branch points where lineages diverge (or converge), and
identify end-state cell types in the embedding, respectively. We further demonstrated that bio-
logically meaningful progressions in several single-cell datasets can be showcased by PHATE.
These include, for example, cells developing in the bone marrow measured by mass cytome-
try and single-cell RNA-sequencing, embryoid body differentiation measured with single-cell
RNA-sequencing, and induced pluripotent stem cell programming as measured by CyTOF. Fi-
nally, our results showed that non-single cell datasets, such as population genetics SNP data
and gut microbiome data, also have progression structures where individuals vary slightly from
each other in a way that can be modeled as forming latent branching progressions.

Our results indicate that PHATE is able to provide meaningful biological insights from
developmental data, including the ability to derive what drives biological progressions. For in-
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Figure 15: Analysis of data from the American Gut project. (A) PCA and PHATE embed-
dings colored by body site. PHATE shows multiple branches that are not visible in the PCA
embedding. (B) The PHATE embedding colored by 2 genera (bacteroides and prevotella) and
a phylum (actinobacteria) of bacteria. (C) The PHATE embedding of only the fecal samples
colored by various genera (bacteroides and prevotella) and phyla (firmicutes, verrucomicrobia,
and proteobacteria) of bacteria. Each PHATE branch is associated with one of these bacteria
groups.
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stance, we showed that computing the mutual information-based score DREMI along trajecto-
ries can lead to insights on what drives progressions. Furthermore, PHATE shows the complete
branching structure within the data. Therefore, paths of progression, how they intersect and
alternative shortcut paths (such as the alternative paths shown in IPSC) are visually evident in
the PHATE graphical visualization. This can suggest alternative paths of reprogramming for
IPSCs or alternative developmental branches not usually seen in experiments. Additionally,
branch-points or decision points are easy to decipher on a PHATE embedding. These points
can be examined to learn cellular logic, i.e., which genes create the split after a branch point
and which genes switch on and off.

Future work will involve using the presented approach for further analyses, as well as ex-
perimental validation of gained insights on, for example, embryoid body data. Additionally,
the scalability of PHATE will be enhanced by applying optimization and numerical techniques,
such as sampling, dictionary learning, out of sample extension, data fusion, and deep learn-
ing. In particular, we will explore scalable alternatives to the isotonic regression used in the
metric embedding (i.e., nonmetric MDS) step of the algorithm. We expect numerous applica-
tions to benefit from the presented embedding and visualization approach of PHATE, both in
high throughput genomics and, more generally, in medical, empirical, and data sciences. Such
additional applications will also be explored in future works.

5 Methods

5.1 Generation of Human EB Data
Low passage H1 hESCs were maintained on Matrigel-coated dishes in DMEM/F12-N2B27
media supplemented with FGF2. For EB formation, cells were treated with Dispase, dissociated
into small clumps and plated in non-adherent plates in media supplemented with 20% FBS,
which was prescreened for EB differentiation. Samples were collected during 3-day intervals
during a 27 day-long differentiation timecourse. An undifferentiated hESC sample was also
included (Fig. 16). Induction of key germ layer markers in these EB cultures was validated by
qPCR (data not shown). For single cell analyses, EB cultures were dissociated, FACS sorted
to remove doublets and dead cells and processed on a 10x genomics instrument to generate
cDNA libraries, which were then sequenced. Small scale sequencing determined that we have
successfully collected data on approximately 31,000 cells equally distributed throughout the
timecourse.

5.2 Construction of the Artificial Tree Test Case
The artificial tree data shown in Fig. 3 is constructed using diffusion limited aggregation [11].
Branches are generated one at a time. A random point on the tree is chosen as the starting point
of the new branch. The next branch is then generated. This process is repeated until the entire
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Figure 16: Inverted images of hESCs and EBs at each timepoint of data collection. Structures of
different densities are clearly visible late in the time course (D15-D27) indicating the formation
of distinct cell types.

tree is generated. We generate a tree with 20 distinct branches in 100 dimensions and 100 data
points per branch. We then add zero mean Gaussian noise with standard deviation equal to 4.

5.3 Data Processing
In this section, we discuss methods we used to pre-process the data.

Data Subsampling The current PHATE implementation scales well for sample sizes up to
approximately N = 50000. For N much larger than 50000, computational complexity can
become an issue due to the multiple matrix operations required. All of the scRNAseq datasets
considered in this paper have N < 50000. Thus, we used the full data and did not subsample
these datasets. However, the mass cytometry datasets have much larger sample sizes. Thus,
we randomly subsampled these datasets using uniform subsampling. The PHATE embedding
is robust to the number of samples chosen, which we demonstrate later in the paper.

Mass Cytometry Data Preprocessing We process the mass cytometry datasets according
to [9].

Single Cell RNA Sequencing Data Preprocessing This data was processed from raw reads
to molecule counts using the Cell Ranger pipeline [69] Additionally, to minimize the effects
of experimental artifacts on our analysis, we preprocess the scRNAseq data. We first perform
library size normalization on the cells. scRNAseq data have large cell-to-cell variations in the
number of observed molecules in each cell or library size. Some cells are highly sampled with
many transcripts, while other cells are sampled with fewer. This variation is often caused by
technical variations due to enzymatic steps including lysis efficiency, mRNA capture efficiency,
and the efficiency of multiple amplification rounds [70]. Normalizing by the library size helps to
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correct for these technical variations. Normalization is accomplished by dividing the expression
level of each gene in a cell by the library size of the corresponding cell.

After normalizing by the library size, we perform PCA to improve the robustness and reli-
ability of the constructed affinity matrix Kk,α. We choose the number of principal components
to retain approximately 70% of the variance in the data which results in 20-50 principal com-
ponents. We then take the log transform of the data.

Gut Microbiome Data Preprocessing We use the cleaned L6 American Gut data and remove
samples that are near duplicates of other samples. We then preprocess the data using a similar
approach for scRNAseq data. We first perform “library size” normalization to account for
technical variations in different samples. We then use PCA to reduce the data to 30 dimensions
and then log transform the data.

Applying PHATE to this data reveals several outlier samples that are very far from the rest
of the data. We remove these samples and then reapply PHATE to the log-transformed data to
obtain the results in Fig. 15.

5.4 Robustness Analysis of PHATE
In this section, we investigate the robustness of the PHATE embedding to subsampling and the
choice of t.

Robustness to Subsampling We demonstrate that the PHATE algorithm is robust to subsam-
pling of the data by running PHATE on the mass cytometry bone marrow dataset with varying
subsample sizes N . The PHATE embedding for N = 10000 is shown in Fig. 3B while Fig. 17
shows the PHATE embedding for N = 1000, 2500, 5000, 7500. Note that most of the branches
or trajectories that are visible when N = 10000 are still visible when N = 7500, 5000, and
2500. Even when N = 1000, several branches are still visible in the embedding. Thus, PHATE
is robust to the subsampling size. Similar results can be obtained on other datasets.

Robustness to t In the Results section, we used the VNE to guide the choice of t in the
PHATE embedding. Here, we show that the PHATE embedding is quite robust to the choice
of t. Figure 18 shows the PHATE embedding on the bone marrow mass cytometry dataset
with varying scale parameter t. Note that in Fig. 3B, we choose t = 100 for the embedding.
Figure 18 shows that the embeddings for 85 ≤ t ≤ 115 are nearly identical. Additionally, the
embeddings for t = 50 and t = 150 are very similar to the embedding for t = 100. Thus,
PHATE is also very robust to the scale parameter t. Similar results can be obtained on other
datasets.
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Figure 17: The PHATE embedding for the bone marrow mass cytometry dataset with vary-
ing number of subsample sizes N . The coloring corresponds to CD4 expression level. Most
branches present for N = 7500 are also visible when N = 5000 or N = 2500 while several
branches are still visible for even N = 1000, demonstrating that the PHATE embedding is
robust to the size of the subsample. See also Fig. 3B for N = 10000.

Figure 18: The PHATE embedding for the bone marrow mass cytometry dataset with varying
scale parameter t. The embeddings for 85 ≤ t ≤ 115 are nearly identical while the embeddings
for t = 50 and t = 150 are still very similar to the embedding for t = 100. This demonstrates
that the embedding is robust to the choice of t.
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A B

Figure 19: Effect of PHATE on naturally clustered data. (A) Left: samples from four 24-
dimensional Gaussian distributions with identical covariance matrices (Σ = 0.1I24 where Id is a
d-dimensional identity matrix) and different means: µ1 = (0, 0, . . . , 0)T , µ2 = (0, 1, 0, . . . , 0)T ,
µ3 = (1, 0, . . . , 0)T , and µ4 = (1, 0.5, 0, . . . , 0)T . Only the first two dimensions are shown.
Right: the PHATE embedding applied to the data. Clusters that are clearly separated are not
connected in the embedding while clusters that are very close are connected. (B) PHATE ap-
plied to data from [71]. The data points are colored by clusters from spectral clustering. Again,
the main clusters are fairly separated from each other in the embedding.

5.5 PHATE on Clusters
We show that the PHATE embedding does not artificially connect clusters that are well sep-
arated from each other. Figure 19A shows PHATE applied to simulated data from four 24-
dimensional Gaussian distributions with identical covariance matrices (Σ = 0.1I24 where Id is a
d-dimensional identity matrix) and different means: µ1 = (0, 0, . . . , 0)T , µ2 = (0, 1, 0, . . . , 0)T ,
µ3 = (1, 0, . . . , 0)T , and µ4 = (1, 0.5, 0, . . . , 0)T . Two of the data clusters are linearly separa-
ble from each other and from the other two clusters, which have some overlap with each other.
When PHATE is applied to the data, the separable clusters are still separable in the PHATE
dimensions while the overlapping clusters are close to each other.

In Fig. 19B, we apply PHATE to data from [71] which has a natural clustering structure.
Note that PHATE keeps the main clusters fairly separate from each other. This demonstrates
that PHATE does not artificially connect clusters.

Software Software for PHATE are available via github for academic use:
https://github.com/SmitaKrishnaswamy/PHATE.
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