Chronic hyponatraemia and risk of myelinolysis: why is it so difficult to control the change in plasma sodium?

Lindsay I G Worthley

Acute hypotonic hyponatraemia is almost always caused by excess total body water — in adults, ranging from 5 L to 10 L. The water excess causes cerebral oedema, with neurological features that include headache, nausea, weakness, lethargy, confusion, disorientation, blurred vision, muscle cramps, coma and seizures. These usually appear when the plasma sodium concentration is less than 125 mmol/L, but may also occur at higher sodium concentrations when there is a sudden fall in sodium, exceeding 15 mmol/L/24 hours. Acute hyponatraemia with cerebral oedema is a medical emergency requiring intravenous hypertonic saline.

In contrast, chronic hyponatraemia may be well tolerated — even with plasma sodium levels below 125 mmol/L — as the brain adapts to a lower extracellular fluid osmolality and prevents cerebral swelling by reducing intracellular fluid osmolar content. Studies in a rat model of hyponatraemia suggest that osmolar equilibration is complete within 48 hours. Thus, most clinicians distinguish acute from chronic hyponatraemia, when the latter exists for more than 48 hours.

Experimentally, the process of osmotic “adaptation” is faster than the process of osmotic “de-adaptation”, with studies in chronically hyponatraemic dogs and rats revealing that rapid restoration of osmolality using hypertonic saline can cause dehydration of brain tissue. An effect which is greater in the hyponatraemic animal than the normonatraemic one, leading to central pontine myelinolysis (CPM) and extrapontine myelinolysis (EPM).

CPM and EPM (eg, myelinolysis within the thalamus, basal ganglia, lateral geniculate nucleus or cerebellum) are non-inflammatory demyelination disorders (in contrast to the inflammatory demyelination disorder, multiple sclerosis). They are thought to be caused by neuronal cell apoptosis, which can be triggered by acute osmotic stress in a patient with prolonged nutritional disturbance. CPM may be asymptomatic, but is usually associated with clinical features that include dysarthria, dysphagia, pseudobulbar palsy, flaccid upper limb weakness (“man-in-the-barrel” syndrome) or flaccid quadriaparesis with a “locked-in” syndrome. EPM may also be asymptomatic, but is usually associated with clinical features that include tremor, ataxia, dystonia, mutism, Parkinsonism and catatonia. In a post-mortem study of 58 patients with non-inflammatory demyelination, 47% had CPM only, 31% had both CPM and EPM, and 22% had EPM only.

Hyponatraemia is one of the most common disorders in clinical medicine and found in up to 80% of critically ill patients, yet despite rapid correction, CPM and EPM are rare and usually restricted to a few clinical situations that include chronic alcoholism (which is still the most common underlying condition in patients with CPM), malnutrition, cachexia, prolonged diuretic use (with severe heart failure), anorexia nervosa (particularly with psychogenic polydipsia) and post-hepatic transplantation. CPM and EPM are also more common when hyponatraemia is corrected in the presence of hypokalaemia, hypophosphataemia, hypomagnesaemia, sepsis or burns.

CPM has also been reported in normonatraemic patients, in normonatraemic patients with hypokalaemia or hypophosphataemia, and during correction of hypernatraemia and hypophosphataemia. A review of 170 patients with CPM suggested there is little clinical evidence for osmolar stress as the cause of CPM, as hyponatraemia was present in only 28% of patients and in most of these was corrected slowly; furthermore, the slow correction may have increased mortality. This conclusion has been supported by others. Nevertheless, experimental evidence linking the rapidity of correction of chronic hyponatraemia with CPM is persuasiv.

In patients who develop acute hyponatraemia, the urinary sodium concentration is often greater than 40 mmol/L, and the plasma urea concentration is low, whereas in chronic hyponatraemia, the urinary sodium concentration is usually less than 20 mmol/L, and the plasma urea concentration is often high. Fluid restriction and reversal of any precipitating factor are often sufficient to manage chronic hyponatraemia (and some suggest are the only way to prevent CPM and EPM). However, if the patient is sodium-depleted (eg, has postural hypotension or prerenal failure), then 0.9% saline to correct the extracellular fluid and plasma volume deficit will be required to suppress antidiuretic hormone (ADH) release, improve renal perfusion and allow the excretion of free water to re-establish plasma sodium levels.

While the rate of correction of chronic hyponatraemia is generally recommended to be slow to reduce the incidence of CPM and EPM, at least nine correction rates have been reported: from 2–3 mmol/L/day up to 25 mmol/L/day.
Nonetheless, the standard recommendation for many years has been to use a rate no greater than 12 mmol/L/day, to be continued until the plasma sodium concentration is 130 mmol/L.

However, the rate of rise in sodium concentration is often difficult to predict or control. A common experience is that the rise during the first day is surprisingly large — even when hypertonic saline is avoided, and a slow rise is attempted — as the sodium concentration seems to “run away”. The same happens in animal models. The problem occurs in the patient with chronic hyponatraemia and hypovolaemia, as the rate of rise in plasma sodium concentration caused by the administration of 0.9% saline is complicated by a spontaneous diuresis and free water loss from the reduction in hypovolaemia-induced ADH secretion.

Fundamentally, plasma sodium is affected by changes to total body water as well as the total exchangeable sodium and potassium (a relationship described almost 50 years ago by Edelman et al):

For example, $Na^+ = X/TBW$

Where $Na^+ = $ plasma sodium (mmol/L) $X = Na^+_{ex} + K^+_{ex}$(mmol) $TBW = $ total body water (L) $Na^+_{ex} = $ total exchangeable sodium (mmol) $K^+_{ex} = $ total exchangeable potassium (mmmol)

In a standard 70 kg man with 60% body weight as water (ie, 42 L) and a plasma sodium concentration of 140 mmol/L, the administration (or loss) of 42 mmol of sodium or potassium will increase (or decrease) the plasma sodium by 1 mmol/L, and the administration (or loss) of 1 L of water will decrease (or increase) the plasma sodium by more than 3 mmol/L.

Therefore, in the patient with hypovolaemia and chronic hyponatraemia treated with 0.9% saline, volume for volume the increase in plasma sodium generated by a spontaneous diuresis (assuming that the urinary sodium and potassium loss will be low), will be at least twice that caused by the saline. However, to accurately predict this effect, the urine volume and sodium and potassium concentrations should be measured.

Although hypotonic solutions and 1-desamino-8-D-arginine vasopressin (DDAVP) have been recommended to counter the increase in plasma sodium concentration caused by the diuresis, they must be used with care, as they may exacerbate hyponatraemia, particularly in patients who continue to drink (eg, with psychogenic polydipsia). Furthermore, as a review suggested that hypokalaemia is also a risk factor for CPM, and recommended it be corrected before correction of hyponatraemia, it should be remembered that potassium replacement increases plasma sodium level — in an adult by about 1 mmol/L for every 40 mmol administered.

How, then, should one correct the plasma sodium level in a patient with chronic hyponatraemia?

- Most patients who receive sodium solutions do not suffer CPM. However, as CPM can develop despite slow correction (with no rate of rise in plasma sodium concentration free of risk), patients at risk of CPM, such as the malnourished chronic alcoholic, should be identified before hyponatraemia is treated. Nutritional abnormalities (eg, vitamin deficiencies) and electrolyte abnormalities (eg, hypokalaemia, hypomagnesaemia and hypophosphataemia) should be managed along with the controlled correction of plasma sodium.
- Asymptomatic or mildly symptomatic patients can be treated by fluid restriction (even water deprivation) and reversal or cessation of precipitating factors (eg, thiazide diuretics).
- Patients with hypovolaemia should receive intravenous isotonic saline (initially 1 L may suffice), and currently it is recommended that the increase in plasma sodium should be no greater than 8 mmol/L on any day of treatment.
- If an excessive diuresis develops, causing a rapid elevation in plasma sodium concentration, then DDAVP should be used, or, if intravenous hypotonic saline or dextrose and potassium solutions are to be used, then plasma concentrations and urinary excretion of sodium and potassium should be measured 2–4-hourly to accurately predict the change in plasma sodium concentration.

