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Abstract — Landslide, one of the most disastrous natural hazards, causes damage to infrastructure worldwide and local communities. 

Pacitan, Indonesia is one city with high susceptibility to landslides occurrence. The conditions of landslide occurrence are assumed to 

be the same in the future. This study’s objective is to produce a landslide susceptibility map by using machine learning methods based 

on topographical factors including elevation, slope, aspect, profile curvature, plan curvature, Topographic Wetness Index (TWI), 

distance to the river, and geological map as independent variables, whereas the landslide inventory map derived from Sentinel-2A and 

Landsat 7 were used as the dependent variables in the model construction. This study's datasets were constructed in three different 

compositions where each composition was treated as input in Random Forest, Decision Tree, and Logistic regression model. The first 

dataset was composed of a 70:30 ratio for training and testing sample points, the second dataset with a 60:40 ratio, and the third with 

a 50:50 ratio. The performance of each model using each dataset composition was analyzed using various accuracy assessments. This 

study also considered each topographical factor's effect on model performance by excluding several factors in model construction. From 

the results, random forest with the first dataset appeared to give the best performance for mapping landslide susceptibility area, shown 

by the highest Area Under Curve (AUC) value, Coefficient Correlation (CC), and Cohen’s Kappa of 0.96, 0.92 (92%) and 0.84, 

respectively. Elevation and geological maps were considered as essential variables shown by significant drops in model accuracy 

assessment when these two factors were separately excluded, while profile curvature was the least essential variable based on the 

insignificant drop in the model accuracy assessment result. 
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I. INTRODUCTION

Landslides are considered as one of the most disastrous and 
very complex natural hazards that cause severe loss of human 
life and property worldwide [1]. This kind of mass movement 
occurs mainly in certain geological formations, steep and 
rugged land surfaces, and extreme climatic conditions result 
in a high degree of instability. Certain hydrological processes 
and elevation patterns due to altitude changes lead to massive 
differences in environmental characteristics in mountainous 
topography areas. Additionally, human activities like road 
construction or deforestation can contribute to this hazard [2], 
[3]. During the last several decades, many government 
agencies attempted to find the most appropriate solution to 
minimize the damage caused directly and indirectly by 
landslides. One of the attempts is generally performed by 
identifying and mapping areas susceptible to landslides. 

These maps are generated based on an assessment of landslide 
susceptibility, a spatial distribution of probabilities of 
landslide occurrences in a given area based on local geo-
environmental factors [4], [5]. Thus, an accurate susceptibility 
mapping is needed as key information for many users from 
both private and public sectors, from governmental 
departments, and the scientific community on both local and 
international levels [6]. Various methods and techniques have 
been proposed to evaluate landslide susceptibility. The 
statistical approaches have become popular in the use of 
remote sensing (RS) with a geographic information system 
(GIS) [7]. There are many statistical approaches used in 
landslide susceptibility assessment, including a frequency 
ratio (FR) [8], [9], statistical index (SI) [10], as well as logistic 
regression (LR) [11], [12]. Furthermore, the approaches using 
machine learning techniques have become popular recently. 
The increasing use of machine learning method was due to 
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robustness and high generalization capability for landslide 
susceptibility analysis [7]. Machine learning methods 
including artificial neural network [13], fuzzy logic [14], [15], 
support vector machine [11], [16], random forest [7], [17], 
and decision tree [18]–[20] methods have been popularly 
applied among the others. The present study proposed the new 
concept to take landslide release area – as a source of landslide 
occurrence – into account to accurately produce a landslide 
release susceptibility map by considering nine topographical 
factors as landslide factors. This study executed using three 
methods: logistic regression (LR), random forest (RF), and 
decision tree (DT). The models' results were compared using 
the receiver operating characteristic (ROC) curve and 

statistical indices to determine the results' model accuracy. 
Hence, the landslide susceptibility model can show areas 
where landslides are more likely to be generated in the future, 
and it can further provide valuable information for urban 
planning and landslide mitigation management and 
prevention.  

II. MATERIALS AND METHOD 

A. Study Area 

This research was conducted in Pacitan region, the 
southwest part of East Java province, Indonesia (shown in Fig. 
1).  

 

Fig. 1 Testing and training points in study area 

 
This regency is located at coordinates 110.55° - 111.25° E 

and 7.55° - 8.17° S and has an area of 1.419,44 km² with an 
altitude 0-1,500 meters above sea level. The administration of 
Pacitan includes 12 subdistricts: Pacitan, Kebonagung, 
Arjosari, Tulakan, Ngadirojo, Punung, Pringkuku, Donorojo, 
Nawangan, Tegalombo, Sudimoro, and Bandar. Pacitan is a 
hilly region with high and steep topography; it is dominated 
by mountainous and rocky, while only a few places form the 
plains. Pacitan region has a tropical climate that experiences 
two seasons: dry (April-October) and rainy (October-April). 
The average monthly rainfall is around 3-503mm, with the 
highest occurring in December (503mm) and the lowest (3mm) 
occurring in June. This rainwater flows through three major 
rivers in the Pacitan region: Grindulu River - Gunungsari, 
Lorok River – Wonodadi, and Kedungpring River – 

Nawangan. These rivers become the source of irrigation for 
agricultural land with rice and horticultural production, 
considering 9.36% or around 130.15 km2 of this region is used 
for agricultural purposes. The temperature in Pacitan is 
relatively stable throughout the year, with the lowest average 
temperature being 24°C and the highest average temperature 
being 26°C. The Pacitan region is known to be prone to 
landslides. There are varying causes for landslides, but they 
are mostly caused by massive rainfall during the rainy season. 
A major landslide event occurred in 2017 and was affected by 
the formation of the Cempaka Tropical Cyclone (STC) in the 
South Waters of Java Island (shown in Fig. 2) [21]. Tropical 
cyclones are hydrometeorological disasters that rarely occur 
in Indonesia because of their geographic position located 
around the equator, but some cyclones form around 
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Indonesian waters and impact weather conditions in Indonesia 
[22]. This condition caused heavy rains that triggered floods 
and landslides, and the Pacitan region was one of the most 
impacted areas during this occurrence. 
 

 
Fig. 2 Landslide caused by Tropical Cyclone in the Pacitan region 

 

B. Data and Research Workflow 

Data and processing workflow for this study is shown in 
Table 1 and Fig. 3, and a thorough explanation has been given 
in the following section. 

TABLE I 
LIST AND DESCRIPTION OF DATA SETS INCLUDED IN THE STUDY, ALONG 

WITH VARIABLES DERIVED FROM EACH SOURCE 

 

Fig. 3 Workflow of data processing 

Data Set Description Derived Variables 

High Spatial 

Accuracy of 

DEM data 

Provided by Indonesia 
Geospatial Information 
Agency (BIG). It has 0.27-
arcsecond (equivalent with 
8.1 m) resolution and used 
EGM2008 as the vertical 
datum. 

- Elevation 
- Slope 
- Aspect 
- Plan Curvature 
- Profile Curvature 
- Ruggedness 
- Topographic Wetness 

Index (TWI) 
Optical 

Satellite Data 
Sentinel-2A and Landsat 7 
TM from 2016 until the 
beginning of 2020. 

Normalized Difference 
Vegetation Index 
(NDVI) 

Indonesia 

Topographical 

map 

Topographical map of 
Indonesia was provided by 
Indonesia Geospatial 
Information Agency (BIG) 

Distance to the river 

Geological 

Map 
Geological map has a 
1:100,000 scale map and 
was provided by Indonesia 
Geological Research and 
Development Centre 

Lithological 
information 
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Mapping of landslide hazard was conducted by using data 
related to landslide triggering factors as follow: 

1) Landslide Inventory Map: Landslides inventory in this 
study was collected using Sentinel-2A and Landsat 7 from 
2015 to late 2019. A landslide inventory map aims to record 
the location and, where known, the date of occurrence and the 
types of mass movements that have left discernable traces in 
an area [23], [24]. The landslide inventory map can be 
generated using various methods. One of the methods is by 
interpreting and analyzing satellite imagery. Landslides 
affected the change in land cover and modified the optical 
properties of the land surface. Satellite sensors can measure 
the variations in the spectral signature of the land surface, and 
the images captured by satellite sensors can be used to detect 
and map landslides [25]. Normalized Difference Vegetation 
Index (NDVI) is a widely used vegetation indices to analyze 
land cover changes. Vegetation indices are mathematical 
transformations designed to assess vegetation's spectral 
contribution to multispectral observations [26]. NDVI 
calculated the intense chlorophyll pigment absorptions in the 
red band against the high reflectivity of plant materials in the 
NIR. The equation of NDVI has been described as follows: 

���� = ���	
�	��
���	�	��

   (1) 

with ρnir meaning Near-Infrared band and ρred meaning Red 
band from the sensor. NDVI resulted from 0 to 1 for the 
vegetation indices. The area with no green vegetation could 
give a value close to zero, and close to positive 1 (0.8 - 0.9) 
indicates the highest possible density of green leaves. The low 
value of NDVI is usually related to the greater probability of 
landslide occurrence as it shows low vegetation cover [26]. 
Furthermore, the result from NDVI was compared with the 
field survey data as the ground truth to generate an accurate 
landslide inventory map. The inventory map was then be 
carried out as the response variable in the model prediction, 
with landslide occurred area identified as 1 and area with no 
landslide occurred as 0.  

2) Topographic factors: Digital Elevation Model with 
resolution 8m x 8m was used to derive 8 from 10 topographic 
factors in this study. The topographic factors including 
elevation, slope, aspect slope, plan curvature, profile 
curvature, ruggedness, and topographic wetness index (TWI) 
(shown in Fig. 4). Elevation was considered as one of the 
factors because it is more likely that higher elevation land has 
a steeper slope increasing the possibility of landslides. The 
slope is known as the first derivative of the elevation which is 
calculated to quantify variation in elevation over a distance.  

Slope is a crucial indicator of a DEM for specific 
applications, including landslide feasibility [27]. The slope 
aspect was calculated according to the eight-neighborhood 
method. The horizontal and vertical deltas were determinate 
using the values of the center cell and its eight neighbors. The 
letters from a to i were used to identify the neighbors, with e 

representing the calculated target cell. The equations used in 
measuring the slope angle and aspect, in this case, are as 
follows: 

 ������ = (���
�� ) × ����2 � !"

!#$ , −  !"
!'$( (2) 

Where, 

  !"
!'$ = (()*+�)
(,*!-))

�  (3) 

  !"
!#$ = ((-*.�)
(,*/)))

�  (4) 

From the equations above, the aspect value has been 
obtained. Slope Aspect or slope direction was used to identify 
the downslope direction from the maximum change rate in 
value from each cell to its neighbors [28]. Curvature is the 
second derivative of elevation and measure of change of slope 
between two points. In order to obtain a curvature parameter, 
this study computed the existing slopes between two elevation 
surface points. This study applied two kinds of curvature as 
the topographic factors: profile and plan curvature. Profile 
curvature has a parallel direction to the maximum slope and 
indicates the direction of it. This variable affects the 
acceleration and deceleration of flow across the surface. 
Meanwhile, Planform curvature (commonly called plan 
curvature) is horizontal to the maximum slope's direction and 
affects the convergence and divergence of flow across the 
surface [29]. Terrain Ruggedness Index (TRI) is a proxy to 
quantify the difference between flat and mountainous 
landscapes [30]. It provides a rapid, objective measure of 
terrain heterogeneity. TRI was calculated using “DOCELL” 
command in ArcGIS, which calculates the sum change in 
elevation between a grid cell and its eight-neighbor grid cell. 
The last topographic factor, TWI, is commonly used to 
quantify topographic control on hydrological processes [31]. 
TWI can examine the pattern of potential soil moisture in the 
field and can also detect the changes in soil texture caused by 
an erosion process. The equation to compute the topographic 
wetness index is as follows: 

 �0� = ln ( 3
4,56) (5)  

Where A is the specific catchment’s area (m2/m) and β is 
slope gradient (in degrees) [32]. Aside from the topography 
index obtained from the DEM, there were two other 
topography factors: distance to rivers and geology condition. 
Distance to rivers was created by digitizing the topographical 
map. This parameter was used to evaluate runoff's role and 
the influence of toe erosion by stream on landslide triggering 
[33]. Meanwhile, the geological condition was obtained from 
the geological map. This parameter is the main factor 
influences the development of landslide [34]. These 10 
topographical factors were later executed as explanatory 
variables in the prediction models. All the topographical 
factor raster data have 8m x 8m resolution and are shown in 
Fig 4.
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Fig. 4 Topography factors for landslide susceptibility prediction; (a) elevation; (b) slope; (c) aspect; (d) plane curvature; (e) profile curvature; (f) roughness; (g) 
TWI; (h) distance to the river; and (i) geology 

 

3) Training and Testing Dataset Preparation: 

Furthermore, all the prepared topographical factors raster and 
landslide inventory maps were bundled together before 
generating several random points to extract the values. 
Considering the possibility of locating random points in an 
area with null value or overlapped with other points in the 
same cell size, the generation of random points needed to be 
filtered out to evaluate all those possibilities. After the 
extraction, each point contained ten topographical values and 
the information from the landslide inventory map. The point’s 
dataset was, then split into training and testing following the 
scenario of each composition. 

C. Model Construction 

This study applied the generated dataset to construct 
landslide susceptibility models with landslide information as 
the dependent variable and the topographical factors as the 
explanatory variables. Models were constructed with three 
machine learning techniques including, RF, DT, and 
Generalized Linear Model (GLM) from logistic regression. 
The effect of data composition is also being considered in this 
study. Assuming the different ratios of data partition affect the 
model performance, this study determined three datasets 
based on different training and testing data composition. The 
first dataset comprises a 70:30 ratio for the Training and 

Testing sample points, whereas the second dataset is 
composed of a 60:40 ratio, and the third with a 50:50 ratio. 

1) Random Forest: RF is the popular ensemble learning 
method developed by Breiman [35], widely used for 
classification, regression, clustering, and interaction detection 
[7]. This method generates thousands of random binary trees 
to form a forest so that each tree depends on the values of 
randomly chosen vectors distributed evenly among all trees in 
the forest. Each tree is grown based on a bootstrap sample 
using a classification and regression trees (CART) procedure 
with a random subset of variables selected at each node [36]. 
The “out-of-bag” (OOB) error rate is calculated using 
observations left out of the bootstrap sample for each tree 
grown on a bootstrap sample. The majority vote determines 
the final decisions of class and model construction among all 
trees.  

2) Decision Tree: DT is a data mining technique for 
solving classification and prediction problems. Data mining 
consists of different methods and algorithms used for 
discovering the knowledge of large data sets [37]. This 
technique can find and describe structural patterns in data as 
a structural tree. It does not require advanced knowledge of 
the relationship between all the input variables and an 
objective variable. DT is used for solving classification as 
well as regression problems. When a DT is used for 
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classification tasks, it is most referred to as a classification 
tree, and when it is used for regression tasks, it is called a 
regression tree. DT has a simple hierarchical structure that is 
easy to understand, and it consists of nodes and leaves. The 
node includes testing a particular attribute and the leaf denotes 
a class. DT classifies instances by sorting them down the tree 
from the root to some leaf node, which gives a classification 
that applies to all instances that reach the leaf. The tree 
complexity is measured by one of the following metrics: the 
total number of nodes, total number of leaves, tree depth, and 
number of attributes used [38]. DT was executed using “rpart” 
package in R software.  

3) Logistic Regression: The logistic regression model is 
applied to establish the relationship between dependent and 
independent variables [39]. Logistic regression looks for the 
most suitable equation as in linear regression while using a 
different method. It used the maximum likelihood method 
instead the least-square method as in the linear regression [40]. 
For this study, the Generalized Linear Model (GLM) is 
chosen as the logistic regression. GLM is a means of 
modeling the relationship between a variable whose outcome 
we wish to predict and one or more explanatory variables. The 
predicted variable is called the target variable and is denoted 
by y [41]. The relationship between μi (the model prediction) 
and the predictors is as follows:  

 7(8�) =  9� + 9�;�� + 9*;�* + ⋯ + 9�;�� (6) 

Equation 7 states that some specified transformation of μi 
(denoted g(μi)) is equal to the intercept (denoted β0) plus a 
linear combination of the predictors and the coefficients 
which are denoted by β1 . . . βp. By applying this concept, 
environmental data acted as predictor variables that calculate 
the value of g(μi) as the model prediction. In this study, GLM 
proceeds Program-R using ‘glm’ package. 

D. Accuracy Assessment 

The evaluation of the model’s performances required the 
derivation of matrices of confusion that identified true 
positive (a), false positive (b), false negative (c), and true 
negative (d) cases predicted by each model. The basic concept 
of a confusion matrix is displayed in Table 2. 

TABLE II 
CONFUSION MATRIX CONCEPT 

P
re

di
ct

ed
 

 Actual 

 Positive (+) Negative (-) 

Positive (+) True Positive False Negative 

Negative (-) False Positive True Negative 

 
The confusion matrix is needed to calculate most of the 

measures of classification accuracy from the prediction model. 
Therefore, this study calculated alternative performance 
measures including overall prediction success (CC), Cohen’s 
Kappa, and the area under the receiving operation 
characteristic curve (AUC). The CC is the ratio of samples 
correctly classified by the prediction model [42]. Cohen’s 
Kappa is a statistic that measures the agreement of two 
categorical items [43]. Calculation of Cohen's Kappa may be 
performed according to the following equation: 

 =>, = ,-?@@A�B,-?@@�C
@D@54ECEFG

 (7) 

=>@ =  H?@!A�BECEFG
@D@54ECEFG

× 3)4I,JA�BECEFG
@D@54ECEFG

$ +  H?@!�CECEFG
@D@54ECEFG

×
3)4I,J�CECEFG

@D@54ECEFG
$  (8) 

 K = H?F
H?�
�
H?�

 (9) 

where Pra represents the observed agreement and Pre 

represents chance agreement. A previous study conducted by 
McKenna and Castiglione (2014) used the categorization 
presented in Table 3 to assess the significance of Cohen’s 
Kappa values [44].  

TABLE III 
COHEN’S KAPPA VALUE CATEGORIZATION 

Cohen’s Kappa Value Agreement Categorization 

< 0.01 No agreement 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

> 0.80 Almost perfect Agreement 

 
The Receiver Operating Characteristic (ROC) curve is a 

graphical method representing the relation between the False 
Positive fraction and the sensitivity for a range of thresholds. 
This method has been widely used to measure the 
performance of prediction models. This curve is obtained by 
plotting all combinations of True Positive Rate (TPR) and 
proportions of False Positive Rate (FPR), which may be 
obtained by varying the decision threshold. Correlation of 
predictive capability and AUC could be quantified as follows: 
excellent (0.9–1), very good (0.8–0.9), good (0.7–0.8), 
average (0.6–0.7), and poor (0.5–0.6) [45] 

III. RESULT AND DISCUSSION 

A. Model Validation and Comparison 

Each model's performance was analyzed using the 
Coefficient Correlation, Cohen’s Kappa, and Area Under 
Curve assessments. The following Table 4 shows the 
comparison of each model validation result.  

TABLE IV 
PREDICTION MODEL VALIDATION RESULTS 

Model 
First Dataset Second Dataset Third Dataset 

CC CK AUC CC CK AUC CC CK AUC 

RF 0.92 0.84 0.96 0.89 0.8 0.95 0.87 0.75 0.95 

DT 0.81 0.61 0.86 0.79 0.58 0.83 0.8 0.61 0.83 

GLM 0.91 0.82 0.85 0.88 0.79 0.83 0.85 0.77 0.82 

 
RF using the first dataset showed the best performance 

compare to other datasets. It achieved 0.96 for its AUC, 0.92 
(92%) for CC, and 0.84 for its Kappa value. DT achieved the 
lowest performance among other models. The least one was 
shown in the second dataset with 0.79 (79%), 0.58, and 0.83 
for the CC, kappa, and AUC values. The ROC of each model 
has been displayed in Fig. 5.  
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Fig. 5 Region of Curve (ROC) of the first dataset: (a) random forest, (b) decision tree, (c) glm; the second dataset: (d) random forest, (e) decision tree, (f) glm; 

and the third dataset: (g) random forest, (h) decision tree, and (i) glm.  

 
These figures showed that RF has almost perfect results in 

all datasets, shown by the AUC values present in Table 4, 
where it achieved over 0.9. DT and GLM appeared to have 
similar results, where DT has a smoother curve compare to 
GLM (shown in Fig. 5). The overall results of AUC and CC 
of all models were over 0.8, which demonstrates good 
performance in producing landslide susceptibility map. 
Kappa value indicated the agreement between classes in the 
prediction model and the reliability of data collection.  

Overall, RF and GLM achieved over 0.75 for its kappa 
value, which indicates less than 25% of the analyzed data are 
erroneous and show almost perfect agreement in all its classes. 
Meanwhile, DT achieved lower kappa value in all datasets 
compared to the other two methods with the lowest value of 
0.58 using the second dataset. Based on the results, the RF 
model using the first dataset shows the best performance. 

Furthermore, the effect of topographical factors to the 
models was also analyzed. These factors greatly impact the 
landslide susceptibility mapping [7]. Each factor may not 
make an equal contribution, and it can affect the model 
prediction result differently. The importance of topographical 
factors was analyzed using the best performance model of RF 
using the first dataset. Variable's importance for the model is 
shown in Fig. 6. The elevation is considered the most 
important variable for landslide occurrence, while profile 
curvature was the least critical. To provide deeper analysis, 
elevation, geological map, distance to the river, topographical 
wetness index, slope, and profile curvature were separated 
into six model constructions.  

 
Fig. 6 Variables importance in RF model 

The RF model's accuracy value shown in Table 5 
significantly dropped as elevation was excluded from the 
topographical factors.  

TABLE V 
ACCURACY FROM MODEL WITH VARIABLE DEDUCTION  

Model 
Accuracy Assessment 

CC CK AUC 

RF first dataset 0.92 0.84 0.96 
RF w/o Elevation 0.88 0.74 0.94 
RF w/o Geology 0.89 0.79 0.96 
RF w/o Distance 0.89 0.79 0.95 

RF w/o Wetness 0.91 0.82 0.96 

RF w/o Slope 0.91 0.82 0.97 
RF w/o Profile 
Curvature 

0.92 0.84 0.97 
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It showed 0.88 of Coefficient Correlation, 0.74 Cohen’s 
Kappa, and 0.94 AUC curve. The accuracy drops also 
occurred when distance and wetness were excluded from the 
model as shown in Table 5. The insignificant drops of 
accuracy occurred as slope and wetness were excluded, where 
the accuracy merely decrease by 0.01 in Coefficient 
Correlation, and no changes of accuracy occurred when 
profile curvature was excluded from the model. The resulting 
accuracy and kappa value were similar with the original 

model, and the AUC value was even higher when profile 
curvature was eliminated. These results showed the effects of 
each topographical factors employed in this study to landslide 
susceptibility modeling.  

B. Land Susceptibility Map 

The prediction models were used to generate landslide 
susceptibility maps in the study area as shown in Fig. 7.  

 

Fig. 7 Landslide susceptibility maps using the first dataset: (a) random forest, (b) decision tree, (c) glm; the second dataset: (d) random forest, (e) decision tree, 
and (f) glm; and the third dataset: (g) random forest, (h) decision tree, and (i) glm. 

 
The maps showed the susceptibility of landslide occurrence 

based on the constructed models and have 8m x 8m for the 
resolution. The maps’ value ranges from 0 to 1, showing the 
area with low to high susceptibility of landslide occurrences. 
The red color in the maps indicates high susceptibility to 
landslide event, while the green color indicates areas with low 
susceptibility. Based on the results, RF and GLM showed 
similar landslide susceptible areas. The maps showed 
insignificant differences in all models showing good accuracy 
to give a constant prediction. 

Meanwhile, the maps generated by DT showed significant 
results with larger area predicted as high susceptibility using 
the third dataset compared to the other two dataset results. DT 
is commonly known for suffering from the major instability 
[46], explaining the significant differences in the map results. 
The overall distribution of landslide results from all models 
showed similar patterns for the susceptible landslide 
prediction, discovering that the area with high susceptibility 
to landslide is located in the western region of Pacitan regency. 

C. Discussion 

In the validation of model performance, this study 
discovered that RF has the best performance among all the 
applied models. However, RF's AUC value showed a 
particular result with very high value, almost reaching a value 
of 1. This result indicates that the model has an overfitting 
problem. It also showed that the training data excessively 
trained the RF. A study conducted by Park [7] derived similar 
results in his study associated with a poor generalization of 
training data which increased the errors. There can be many 
reasons for over fitting. In addition, this study also has a much 
smaller landslide area compared to the non-landslide area; 
thus, the lack of information could make the model incapable 
of learning and predicting precisely despite its high accuracy 
rate.  

Based on Table 4, the model using the first dataset has 
proven to have the highest accuracy among all datasets. And 
the accuracy for RF and GLM model was decreasing when 
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the training and testing ratio was equally set (third dataset). 
This circumstance indicated that if the suitable data partition 
to generate the RF and GLM model was using datasets with 
training data ratio bigger than the testing data. Arabameri et 

al also used several methods, which are RF, Alternative DT 
(ADTree), and Fisher's Linear Discriminant Function (FLDA) 
to do landslide susceptibility mapping in their research [47]. 
The result also indicated that RF resulted in the best result for 
landslide susceptibility mapping compared to another. 
However, this research only employed 70:30 partition for its 
dataset, so the effect of training and testing dataset ratio was 
not taken into account. We conducted three different ratio 
datasets in each model to investigate the effect of dataset 
partition on the model’s performance. RF can perform the 
most stable compared to the other models when employed 
with a different data partition. 

On the other hand, DT showed better performance using 
the third dataset compared to other datasets. The minor 
differences in each DT model accuracy assessment led to 
inconsistencies in DT map results. These inconsistencies were 
indicated in the maps generated by DT, showing different 
maps prediction compared to RF and GLM maps even though 
with only minor accuracy differences. Overall, RF is proven 
to produce the best model among other models in this study.  

Besides, topographical factors are considered to hold great 
importance as well in model performances [7]. As mentioned 
in the previous section, elevation is considered the most 
important variable for land susceptibility mapping. Elevation 
was known to be frequently used in landslide susceptibility 
studies. The study was conducted in an area with hilly 
topography. Thus, it portrays areas with different relative 
relief. In this study, the landslide occurred mostly in 
intermediate elevations around 300-600 meters above mean 
sea level. In his study, Dai encountered similar circumstances 
where landslide events mostly happened in intermediate 
elevation. He stated that this circumstance was possible 
because in high elevation, the topography is mostly 
characterized by weathered rocks, and the shear strength of 
these is much higher, causing this area to be less invulnerable. 
In low elevation, the frequency of landslides is low due to the 
gentle terrain, and it requires a higher perched water table to 
initiate landslides because this area is usually covered with 
thick colluvium and residual soils. Meanwhile, intermediate 
elevation slopes tend to be covered by a thin layer of 
colluvium, which causes the area to be more prone to 
landslides.  

The landslide susceptibility map generated using RF and 
the first datasets, as shown in Fig. 8, predicted around 7,434 
kilometers area in Pacitan region was classified as being 
moderate to highly susceptible to a landslide. These areas are 
mostly located in the southern part of the Pacitan region, 
while the northern part mostly has low susceptibility. The 
southern part of Pacitan region was widely known to be in 
high risk of landslide. Aside from the intermediate/moderate 
elevation, this area's geological condition also played an 
important role. The mass movements often occurred in this 
study area due to high weathering control where large 
amounts of clay minerals were produced; these included 
smectite, illite, and kaolin. The presence of smectite, itlite, 
and kaolin in the weathered zone triggers landslide in this area 
[48]. This result also proves that the geological condition was 

one of the most important factors in our model construction, 
as shown in Fig. 7. 

 

 
Fig. 8 Landslide susceptibility map generated by RF using the first dataset 

IV. CONCLUSION 

Elevation was considered the most important factor in 
generating landslide susceptibility maps as shown in 
significant accuracy drops by model that excluded the given 
factor. The exclusion of profile curvature showed an 
insignificant drop in the model’s performance; this has proved 
the least effect of this model construction factor. 

Comparing the three datasets composition in three different 
machine learning methods showed various effects of each 
method in handling different training and testing dataset ratios. 
The topographical factors employed in this study, including 
elevation, slope, aspect, angle, curvature, distance to the river, 
and geological factor, were proven to be eligible for landslide 
susceptibility mapping. The accuracy assessment results 
showed the RF model to have the best performance while DT 
showed the lowest one.  

The overall AUC and CC values of all models were more 
significant than 0.75, which concludes that the landslide 
susceptibility maps constructed in this study have good 
accuracy in the spatial prediction, and they were able to serve 
this purpose. The determination of variables' importance was 
strongly related to the techniques and variable combination 
used. Thus, the importance of each variable can be different 
if applied to other techniques.  

Overall, the model with the best performance in this study 
was the RF model with 70:30 data ratio. However, because 
the limitation of landslide events used in our research 
landslide inventory map, we suggest further research with 
more landslide samples for a better result. Another machine 
learning method, such as Boosted Regression Tree (BRT) also 
can employ to see if the model could be yield a better result 
that RF.  
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